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ABSTRACT

Stream processing systems have become the major engine
whenever data processing with low latency or real-time ca-
pability is required. Meeting the performance demands of
these systems in terms of latency, throughput and resource
utilization is hence crucial to ensure stable operation and
correct functioning. Current performance modeling approa-
ches target this issue by predicting performance characte-
ristics on the architecture level, e.g by measuring existing
deployments as a whole and estimating the impact of rela-
ted changes. However, these approaches neglect the actual
application logic of the streaming system and are hence neit-
her able to identify bottlenecks in the processing behavior
nor to predict performance during development. In this pa-
per we propose a more comprehensive performance modeling
approach that considers both, the deployment architecture
and the actual implementation logic of stream processing
systems on the example of the SAP HANA Streaming Ana-
lytics Server. For this means, we derive a performance model
based on the actual source code of the stream processing so-
lution and compare the simulation of our model with the
actual measurements. Our results show that the approach
provides much better findings allowing to identify bottlen-
ecks in the application logic and to predict the point in time
when an over-queuing situation occurs to provide valuable
insights for both developers and performance analysts.
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1. INTRODUCTION

Current trends in the area of Big Data have increased the
necessity to process data as it arrives instead of collecting
the information for later analysis. In many scenarios, the
data is most valuable at the time of its generation but loses
its importance within few seconds or minutes [4]. A com-
mon example for such domains is predictive maintenance,
which aims to estimate an equipment failure before the pro-
blem actually occurs and hence allows to prevent a complete
breakdown by maintaining the system in time [13]. Such se-
tups require monitoring and analyzing sensor data as it ar-
rives. This is why so-called stream processing systems (SPS)
become more and more important in areas such as IoT or
Industry 4.0 [12].

SPS are designed to continuously handle incoming events
by providing real-time computation to allow an immedia-
te reaction on detected trends or patterns. Due to the se-
quential processing model of stream applications, an over-
flow of an internal queue affects all preceding operations and
could spread until all prior queues are filled up. These so-
called over-queuing situations heavily increase the latency of
a system and, if real-time processing is required, potentially
bring the whole business scenario to fail. The development
of stream processing solutions thus requires not only to en-
sure a high throughput, but also to prevent over-queuing
situations despite varying workload situations [7]. For these
reasons, performance is not only a quality of service aspect,
but vital for the whole streaming application scenario to
succeed [14]. It is hence a crucial task to ensure performan-
ce of SPS during both, the development of the streaming
application and the operation of the system.

However, despite the necessity to build SPS that meet the
performance demands, there is currently a lack of experti-
se to develop and operate these applications in an efficient
manner [3]. According to Requeno et al. (2017), ”[...] there is
now an urgent need for novel, performance oriented software
engineering methodologies and tools capable of dealing with
the complexity of such a new environment”[11]. Performan-
ce simulation and prediction approaches provide promising
solutions for this issue by allowing to determine bottlenecks
and answer sizing questions during both system operation
and development [5].



We target this issue by proposing a performance predicti-
on approach that simulates the performance aspects of the
SPS for each processing task of the application logic, ins-
tead of the component as a whole. For this reason, we apply
a transformation of the source code in to a performance mo-
del to provide simulation based predictions. In this paper we
focus on the internal queues in order to predict over-queuing
situations and determine the bottleneck task in order to pro-
vide better insights than traditional prediction approaches.
We evaluated our approach by predicting the performance
of an HANA Streaming Analytics Server and compared the
results with actual measurements. This paper is organized
as follows. Section 2 describes existing research in the area
of performance prediction for SPS. Section 3 introduces the
concept of stream processing as well as some related consi-
derations regarding performance. Section 4 presents our mo-
deling approach including our experiment. Finally, section 5
concludes this paper and states future research directions.

2. RELATED WORK

Despite the fact that the first stream processing engines
were already proposed several years ago [1] the number of
performance prediction approaches related to these systems
are sparse. One of the first approaches that focus on Apa-
che Spark streaming was proposed by Krofl/Krcmar (2016).
They applied the Palladio Component Model (PCM) [2] to
simulate the Spark processing framework and parametrized
the PCM instance based on measurements obtained from
running the HiBench * benchmark suite. The approach focu-
ses on scalability prediction by measuring an existing stream
processing system and predicting its throughput under va-
rying workload scenarios. The simulation yielded accurate
results with prediction errors between 0,67% and 3,41% [7].
However, the approach treats the application logic as a black
box and hence does not provide any insights into the appli-
cation’s behavior.

Requeno et al. (2017) propose a framework based on UML
profiles to model Apache Storm applications. This includes
the modeling of the Storm topology (layout of spouts and
bolts) as well as the deployment of the respective nodes. Af-
terwards an automatic model-to-model transformation deri-
ves a generalized stochastic petri net for simulation purpose.
The prediction covers the thread utilization (CPU) and exe-
cution time for each bolt [11]. However, the approach does
not give further insights into the operations contained in
each bolt as well as the internal queuing behavior. In addi-
tion, it requires to design and parametrize the whole model
with UML which can be considered as time consuming and
exhaustive. Lin et al. (2018) propose an ABS based model to
simulate Spark streaming applications [9] similar to the ap-
proach in [7]. ABS is a language to describe the behavior of
distributed object-oriented systems. Their approach allows
to configure the stream application, as well as the Spark
processing framework itself and therefore provides the capa-
bility to evaluate different deployment settings. The focus of
the approach is to predict the throughput. RAM and CPU
can be parametrized but their utilization is not part of the
prediction. Again the approach does not provide detailed
insights into the actual processing tasks contained in each
stage and also internal queues are not considered.

Thttps://github.com/intel-hadoop/HiBench

3. STREAM PROCESSING

SPS are designed to continuously process large volumes
of data. In contrast to traditional database systems, a stre-
aming system does not necessarily persist any information,
but rather treats the data on the fly by maintaining a glo-
bal state through continuous analyzing or by modifying the
data before forwarding it another system. The data sources
for SPS are typically sensors or edged computing devices
that monitor a certain object and report their observations
continuously in the form of events. Current SPS distinguish
between two processing models micro-batching and event-
processing. Systems like Apache Spark Streaming that apply
a micro-batch processing model do not immediately process
events but rather collect them in a job. As soon as a predefi-
ned threshold is reached, the microbatch job is released and
processed by the engine, which typically results in better
throughput rates at the cost of a higher latency. In contrast
to that, systems like Apache Storm or Flink apply event-
processing and handle the arriving events immediately as
they arrive. Other engines as for example the SAP HANA
streaming server support both processing models and there-
fore leave the decision to the developer. The stream applica-
tion as part of the SPS determines how an event is treated
by the system by defining a sequence of connected opera-
tions (e.g. filters or functions) that form a directed acyclic
graph (DAC). Depending on the actually used SPS frame-
work, the terminology for an operation varies. Apache Spark
Streaming uses the term stage to describe a set of operations
that is executed by one node, whereas Storm uses the term
bolt to describe a similar structure. In the context of this
paper we use the HANA streaming terminology and simply
refer to a stream operation as a task.

3.1 HANA Stream Processing

In contrast to the open source representatives Apache
Spark Streaming and Apache Storm, the SAP HANA stre-
aming server is a commercial product that is integrated in-
to the HANA database platform and focuses on analytical
workloads. Therefore it provides several libraries e.g. to sup-
port event-based machine learning based on data streams.
The HANA streaming server has a monolithic structure and
focuses on single deployments rather than distributed lands-
cape with multiple worker-nodes. Streaming application are
implemented in projects by using the Continuous Computa-
tion Language (CCL) and pushed onto the streaming server.
CCL has an SQL like syntax but the server does not execute
the statement only once but repeatedly for every incoming
event. The supported IDE for CCL development is Eclipse
in combination with the streaming development plugin. Asi-
de from the source code view of the streaming project there
is also a graphical representation provided. Figure 1 shows
a visual example of a HANA streaming project, inspired
by the RIOT ETL streaming application benchmark [12].
Events arrive in the .csv format and are firstly parsed into
an internal structure. Afterwards a range filter is applied to
omit outliers. The succeeding bloom filter checks if the tuple
belongs to a predefined set of events and discards the infor-
mation otherwise. Afterwards an interpolation is performed
to enrich the data with additional information, followed by
a join operation that merges the event with historical da-
ta provided by a HANA in-memory database. Finally, the
streaming server annotates the tuple with a timestamp and
forwards the information to a database for persistency.
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Figure 1: Visualized Stream Application

3.2 Performance Considerations

Based on the example introduced in Figure 1, several
aspects are worth considering in terms of performance that
apply to most streaming solutions. Firstly, due to the time
criticality of most stream processing business cases, the la-
tency is of special importance for any SPS due to the reasons
explained in section 1. Since the information value of many
events expire within short time periods it is crucial to en-
sure that the data items are processed in a timely fashion.
Secondly, the throughput is a valuable characteristic to de-
cide which volumes of data the streaming engine is able to
handle. It is defined by the slowest task (bottleneck) of the
streaming application and hence should be the focus of any
performance improvement activities. For SPS also the me-
mory is of particular interest, since most SPS are designed
to keep all the events and processing logic in memory. If data
has to be stored on disk or paging is required due to limi-
ted RAM resources, the latency heavily increases [14]. Some
streaming frameworks such as Apache Flink even crash if
memory over allocation occurs [10].

Another characteristic of SPS are the internal queues. The
HANA streaming engine automatically provides one queue
prior to each task to temporarily buffer events if the corre-
sponding task is still occupied by another data tuple. Sin-
ce most SPS are applied in the context of IoT, the corre-
sponding workload is mostly data-driven and often harder
to predict in terms of volume, velocity and variety [8]. Inter-
nal queues hence allow to handle temporary bursts of data
that exceed the usual throughput of the system without cra-
shing the whole application. The situation when one queue
is filled up is called over-queuing and is one of the severest
vulnerabilities of a SPS. Since every event has to be pro-
cessed according to the DAG, preceding tasks will start to
queue-up as soon as the bottleneck queue is full, because
they cannot continue with their operation as long as the-
re is no space left to store the output. Figure 2 depicts an
example with three queues. Since task3 is the bottleneck,
due to its processing rate of 1/s, its preceding queue2 will
start to fill up as soon as queued is full. Afterwards, task2
is not longer able to sustain its high processing rate because
no space is left for putting the processed events. Therefore,
queue?2 and eventually queuel will also queue-up until no
more new events can be accepted leading to a forced load-
shedding. Even if not the whole system is over-queued, each
additional event increases the whole latency of the applicati-
on. In the worst-case, this could lead to a situation where all
the events that are currently in progress by the system are
already outdated. For developers and performance analysts
it is hence most important to identify the bottleneck task
and its throughput. This allows to determine at which rate
the queue starts to fill up and how long it would take until
over-queuing arises in situation of unexpected data bursts.
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Figure 2: Component Diagram

o <<Interface>>
|_StreamProcessingServei

<<Interface>>
|_HanaDatabase

void WriteToDB()

void riot_etl(double
workload)

\< <Provides> »

< <BasicComponent> >
StreamProcessingServer

<Provides> >

SEFFCompartment <<Requires>>

¥ I_StreamProcessingServer.riot_et < <BasicComponent> »

HanaDatabase

PassiveResourcesCompartmeni

Queue,RangeFMter<Capacily‘ 1024:
Queue,B\oomF\\ter<Capa(\ty‘ 1024:
QLIeue,lnlerpo\at\on<Capacwly‘ 1024
Queue,JomOperal\on<Capacwly: 1024

@ Queue_Annotate<Capacity: 1024
QLleue,ParseStream<Capacwly: 1024

SEFFCompartmeni
¥ 1_HanaDatabase. Write ToDE

PassiveResourcesCompartmeni

ComponentParameterCompartmer
ComponentParameterCompartmer

x ResourceRequiredRoles
ResourceRequiredRoles

Figure 3: Component Diagram

4. PERFORMANCE PREDICTION

Due to the characteristics stated in section 3.2 we em-
phasize the importance to build performance models that
simulate not only the SPS as a whole but considers all the
individual tasks and queues of the application logic as well.
For this reason, we perform a manual transformation of a
streaming application based on its CCL source code into
an instance of the Palladio Component Model. PCM is a
meta-model that consists of several model parts to separate-
ly describe the different performance aspects of the modeled
system such as its components, resource environment, usage
profile and behavior.

4.1 Modeling Approach

Preliminary to the model transformation, we perform a
load test with a simple training workload in order to obtain
the maximum processing rate of each task as well as the ave-
rage drop rates of the different filter operations. For this re-
ason we use the built in streamingmonitor utility to measure
each second the number of processed events for every task.
We use this information later to parameterize our model.
Furthermore, we configure our streaming system to apply
event-processing instead of micro-batching. As a first step
of our model creation, we define the general architecture of
our system by using the PCM repository diagram. As depic-
ted in Figure 3 this diagram provides information about our
system’s components as well as the provided interfaces and
services. The performance simulation in this paper focuses
on the stream processing server. However, since our stream
application persists the processed events eventually to the
database, we need an additional component to model these
external calls. This allows us in future work to extend the
model with a prediction of the database utilization, depen-
ding on the streaming servers output. The stream processing
server contains six internal queues, one for each of the diffe-
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rent processing tasks. The TableRead and WriteToDB ope-
rations are part of the related processing tasks and hence
do not own a dedicated queue. On the architecture level,
we model a queue as a passive resource with a capacity of
1024 events, which is the default size for the HANA strea-
ming server. For each service provided by a component via
its interface, a so-called Service Effect Specification (SEFF)
is created. The SEFF itself is another model that is linked
to the repository diagram and describes the actual behavior
of the respective services depcited as a finite state machine.
In order to obtain the SEFF for the streaming application,
we perform a manual transformation of the CCL source co-
de into its respective PCM model elements. Each streaming
task is mapped to an internal action and parametrized with
the average processing rates obtained by the initial measure-
ments. An internal action describes a local resource demand
invoked by processing a single event. In this example we on-
ly define a throughput rate in order to limit the number
of events that can be processed per second. In future work
an assignment of hardware resources such as CPU or RAM
would also be possible. Before entering the task, each event
has to acquire a token from the related passive resource (as
defined in the repository diagram) and is only allowed to
enter the task in case at least one token is available, which
is similar to concept of semaphores. After leaving the task
the event has to acquire the token from the next queue be-
fore releasing its hold. Figure 4 depicts this behavior on the
example of the parse stream and range filter action.
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branch action. PCM supports two types of branch transi-
tions, the guarded transition requires a boolean expression
to decide which branch to choose, whereas the probabilistic
transition only needs a probability assigned to it. For our
model we choose a probabilistic transition in order to re-
present the average drop rates of the respective filters. As
depicted in Figure 5 a filter processes an incoming task and
hence invokes a processing resource demand. If the event is
dropped it still has to release its claim on the current queue,
otherwise the event is forwarded to the next internal action.
The workload is defined in the usage model. For our predic-
tions we define two different usage scenarios for the data
rates 1000 and 1600 events per second. This allows us to
simulate both load situations without changing the model.
We choose an open workload since requests arrive at a cer-
tain rate which implies that the total number of events in
the system can be variable in contrast to a closed workload
model. This is required in order to predict the over-queuing
situations. The scenario behavior describes how each event
interacts with the system. In our case it just enters the SEFF
of our application and passes the variable workload that con-
tains some characteristics about the current usage scenarios.
Figure 6 displays the scenario for 1000 events per second.

4.2 Experiment

For our experiment we used an electricity-usage dataset
obtained from the Boston Central Library ? as our workload.
The dataset consists of about 250000 power measurements
that were recorded every 5 minutes since the year 2016. We
used the first 200000 tuples of the dataset and split them
into a training, and test set with 100000 records each. For
our streaming system we setup a virtual machine with 1.0
processing units and 32 GB RAM based on an IBM Power
E870 Server with 4.19 GHz and SLES12 SP02. We used the
training set to perform a simple load test, while simulta-
neously monitoring each task via the streaming monitor uti-
lity to obtain the parametrization for our model. Afterwards
we ran the simulation of our PCM instance multiple times

https://data.boston.gov/dataset /central-library-
electricity-usage
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by using the SimuCom?® plugin to predict the performan-
ce for the two different workload situations. We choose the
event rates 1000/sec and 1600/sec to include a small scalabi-
lity prediction and compared the results with corresponding
measurements obtained by running the test workload. Our
simulation focused on the utilization of the internal queues
or more precisely at which point the different queues in the
system will be full. Figure 7 compares the measured over-
queuing timestamp (MOTS) and the simulated over-queuing
timestamp (SOTS) for an event rate of 1000 records per se-
cond. After 5.66 seconds, the queue of the Interpolation task
is filled up. Through this effect, also the preceding Bloom
Filter queues eventually up after 8.31 seconds, even if its
capable processing rate is much faster than 1000/s. Finally,
the whole streaming server over-queues after 14.32 seconds.
This leads to an omitting of new events due to dynamic
load shedding. For a time-critical system, this would imp-
ly that not only the real-time requirement could fail due to
the increased latency (queuing delay), but the also results
of the streaming servers calculations would be distorted due
to the loss of the latest events. Our simulation predicts that
the over-queuing already occurs after 13.72 seconds, whe-
reas the measured time is 0.6 seconds later. A developer
or analyst would get several valuable insights from such a
result. Firstly, the bottleneck can be identified as the In-
terpolation task, since it is the first task that over-queues.
Through such an insight any performance improvement ac-
tivities can be focused on the application level, which would
be much more efficient than just providing more hardware
resources. Hirzel, et al. (2014), for example proposes a ca-
talog consisting of 11 stream processing optimizations that
are mostly applied on task level [6]. Secondly, the predicti-
on yields that system is not capable of handling a workload
of 1000/s. However, due to the data-driven characteristic of
most workloads related to SPS, unexpected data bursts can
always occur. The most important insight is hence that ac-
cording to the simulation, the system would, in case of such
a burst, still remain stable for 13.72 seconds. This predic-
tion is hence a good example why task based performance
considerations are important for stream processing systems.
Figure 8 depicts the simulation and measurement results
with a workload of 1600/s. Even though the data rate has
only increased by 60%, the whole application already over-
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Figure 8: Over-queuing Prediction 1600/s

queued after 2.78 seconds. Both simulations provided reaso-
nable results with an average accuracy of 95.01% (1000/s)
and 91.97% (1600/s). The model can hence also be used for
predicting different workload scenarios. The differences bet-
ween simulation and measurement can be mostly attributed
to two factors. Firstly, our probabilistic filter operations do
not perfectly reflect the actual drop rates of the measure-
ment. In summary, the difference between the average dro-
prate of the training and the test dataset is less than 2%. The
other factor is the dynamic load-balancing. If a task over-
queues, the run-time environment of the streaming server
reallocates the CPU shares among the threads. For this rea-
son our defined processing rates need to be modified as well
in order to reflect these dynamic changes. Since, the PCM
framework does not allow any kind of dynamic ResourceDe-
mand redistribution, we have to perform multiple simulation
runs. Each time a queue runs full, a new SEFF has to be ge-
nerated containing the adapted average processing rates. In
addition the queue-sizes in the component diagram need to
be adapted according to the state before the load-balancing
took effect. The whole simulation of the usage scenario is
hence performed in four stages, with each stage depending
on the results of the previous one. Inaccuracies of previous
stage are hence carried to the following simulation stages.

4.3 Limitations

As described in the previous section, we needed four si-
mulation runs for each of our usage scenarios due to the
integrated load-balancing of the HANA streaming platform.
This can be considered as one of the strongest limitations
of the current approach, since the manual creation of mul-
tiple SEFF stages is time-consuming. The best solution for
this issue would be to extend the PCM framework in or-
der to support dynamic ResourceDemands. For this reason
a representation as depicted in Figure 9 would probably be
sufficient. In this case, depending on the current state of the
queue the processing rate would be increased or reduced.
Another option would be to automate the transformation of
CCL source code to PCM instances. An automatic recreati-
on of models based on previous simulation runs would also
allow more flexibilty. Another limitation is, that our cur-
rent setup only encompasses stateless tasks such as filters
or annotations. Especially for analytical workload scenarios,
stateful operations like sliding-windows are very common
and required when working with aggregation operators such
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as MAX or AVG. These tasks demand a modified conside-
ration, due to the reason that the total number of events
present within the system is not longer defined only based
on the individual processing rates and queue-sizes, but also
dependent on the retention policy of the window-operations.
Finally assumptions are made regarding the expected filter
drop rates.

5. CONCLUSION

This paper addresses the gap of performance predictions
that consider the application logic of a SPS on a task le-
vel. Our experiment showed that accurate results can be
achieved even for varying workload scenarios. The approach
provides good insights into the inner workings of a stream
application allowing to predict over-queuing situations and
identify bottlenecks. It is hence a first step towards a tooling
that allows developers and analysts to build and operate sta-
ble streaming systems. In addition, we intend to automate
the CCL to PCM transformation in order to provide devel-
opers a useful tool to provide performance insights already
during system development. Since CCL development is per-
formed in the Eclipse IDE, such a feature could be provided
and integrated as an additional plugin. We could already
show that such transformation from different programming
languages than Java are possible [15]. Finally, the predicti-
on of hardware resources such as RAM or CPU would be
a valuable extension. Especially the prediction of RAM re-
sources is normally difficult due to non-deterministic factors
such as the Garbage Collector in Java systems. However,
since our current approach is already able to simulate the
approximate number of events within our system, we can
probably come up with a reasonable prediction regarding
RAM utilization.
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