
An approach to efficiently storing property graphs in
relational databases

Work in progress paper

Matthias Schmid
University of Passau

Germany
Matthias.Schmid@uni-passau.de

ABSTRACT
Graph structured data can be found in an increasing amount
of use-cases. While there exists a considerable amount of
solutions to store graphs in NoSQL databases, the com-
bined storage of relationally stored data with graph struc-
tured data within the same system is not well researched.
We present a relational approach to storing and process-
ing huge property graphs, which is optimized for read-only
queries. This way, all the advantages of full-fledged rela-
tional database systems can be used and the seamless in-
tegration of classical relational data with graph-structured
data is possible.

1. INTRODUCTION
The increasing appearance of data graphs reinforce the

need for adequate graph data management. To meet this re-
quirement of property graph storage, several graph databases
engines have been developed. The most popular1 examples
of databases with graph storage capability include Neo4j2,
Microsoft Azure Cosmos DB3 and OrientDB4. While these
graph databases offer good performance as long as the data
fits into main memory, one can not always assume that this
requirement can be fulfilled. In addition the seamless inte-
gration of those solutions with relational-based information
system remains a problem.

Motivated by our own use-case, in which we need to store
huge graphs that represent buildings, RDF data that seman-
tically describes those buildings and relational data into a
single information system, we were looking for a relational-
based solution that offers efficient read-focused performance.
In SQLGraph:An Efficient Relational-Based Property Graph

1from https://db-engines.com/de/ranking/graph+dbms,
if not explicitly stated, all websites were accessed in Febru-
ary 2019
2https://neo4j.com/
3https://azure.microsoft.com/de-de/services/cosmos-db/
4https://orientdb.com/

31st GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 11.06.2019 - 14.06.2019, Saarburg, Germany.
Copyright is held by the author/owner(s).

Store [9] Sun et al. introduce an efficient approach to store
property graph data in relational databases named SQL-
Graph. While the original approach seems to offer good
performance and promises to also perform well on datasets
that do not fit into main memory, we were able to increase
its performance for read-only queries by adapting the adja-
cency list concept.

The contributions of this paper are:

1. We propose a new adaption of the relational schema
presented in [9],

2. we show that the adapted schema performs better on
read-only queries

3. and we show that the new schema requires less disk
space.

2. RELATED WORK
In this work we focus on the relational-based storage of

property graph data. Bornea et. al first proposed the ap-
proach of shredding graph edges into adjacency tables in [1].
Sun et al. base their work in [9] on the previously mentioned
work of Bornea et. al and outlined a novel schema layout
for storage of property graph data in relational databases,
which is generalized from the approach to store RDF data in
relational databases. They combine the shredding of edges
into adjacency tables with the use of JSON -based attribute
storage to overcome the limitations of fixed columns. To
make the retrieval of data more convenient, they propose a
translation mechanism that converts Gremlin [8] queries to
SQL queries, which can be run on the proposed relational
schema.

In the field of RDF there exist numerous benchmarking
efforts. But to the best of our knowledge the benchmarks
provided by the Linked Data Benchmark Council (LDBC)
are the only benchmarks that directly address the problem
of benchmarking property graph stores. We do not con-
sider graph processing frameworks like Apache Giraph5 in
our work, since we focus on the storage and retrieval of graph
data, not its parallel processing. The LDBC is an EU project
with the goal to develop benchmarks for graph structured
data. They strife to find the acceptance benchmarks like
the TPC [7] have achieved. The Linked Data Benchmark
Council - Social Network Benchmark (LDBC-SNB) is one
approach being developed by the LDBC that uses a gener-
ated social network graph as its data set and represents the

5http://giraph.apache.org/



Figure 1: A property graph example

data as a property graph. The benchmark suite also pro-
vides a data set generator that can create test data with
different scale factors. An overview of different scale factors
and the corresponding number of vertices and edges is de-
picted in Table 1. Works on the Social Network Benchmark
are not finished yet, but the Interactive Workload has been
released in draft stage [4].

SF Approx. #Vertices Approx. #Edges
1 3,200,000 17,300,000
3 9,300,000 52,700,000
10 30,000,000 176,600,000
30 99,400,000 655,400,000

Table 1: Approximate number of vertices and edges
by LDBC-SNB scale factor (SF)

3. SQLGRAPH SCHEMA ADAPTATION
For this paper we use the following definition of a property

graph.

Definition 1. A property graph consists of a set of ver-
tices and directed edges. Every edge has a label assigned
to it. Each vertex or edge can additionaly have multiple
key-value pairs assigned that serve as attributes.

Figure 1 shows an example of a simple property graph that
describes two people, who are connected by an edge with
the label knows.

3.1 Proposed Schema
Our approach utilizes the combined approach of relational

and JSON -based storage developed in [9]. We adapted the
schema of adjacency lists and as a result, our proposed
schema reduces the amount of required tables from six (as
in the original SQLGraph schema) to four tables.

The vertex table stores the internal vertex id and the
attributes for each vertex. In our prototypical implementa-
tion the attributes are implemented as the jsonb data type
provided by PostgreSQL.

VID Attributes

1
{”lastName”: ”Mueller”,
”firstName”: ”David”}

2
{”lastName”: ”Choi”,
”firstName”: ”Jae-Jin”}

Table 2: The vertex attributes table

Our approach differs from the SQLGraph schema in re-
spect to the definition of the adjacency tables. In their
work Sun et al. [9] show that shredding vertex adjacency
lists into a relational schema provides a significant advan-
tage over other mechanisms, for example mechanisms that
store all edge information in a single table. To this end a
hash function has to be defined that matches edge labels to a
respective column triple of the adjacency table. We directly
apply the approach to compute a hash function through the
use of coloring heuristics as described in [1]. Note that, since
the LDBC-SNB data set includes a data model, it is possi-
ble to compute a conflict free hash function for this specific
data set. In the original approach in [9] the edges are split
into two tables: If only one edge of a label exists for the ver-
tex, it’s edge-id, label and target node-id are stored in the
outgoing primary adjacency (OPA) and incoming primary
adjacency (IPA) tables respectively. By studying available
data sets and use cases (e.g. the LDBC-SNB) one can see
that it is usually not the case that only one edge of a spe-
cific label exists for a single node. Therefore if the vertex
has multiple outgoing edges of the same label, the edge-
ids and target vertices are stored in the outgoing secondary
adjacency (OSA) and incoming secondary adjacency (ISA)
tables respectively, while the target vertex id of the OPA or
IPA is set to an artificial value that serves as the join partner
for the OSA and ISA table. A query to receive all outgoing
or incoming neighbours can be written with the use of an
outer join. If there exists only a single edge, the outer join
will not find a corresponding partner in the secondary table
and therefore use the data in the primary table. If more
edges do exist, the join partners will be the resulting edges.
This query works independently of the number of edges per
label and the hash function. We will present an example of
this query structure for our schema adaption, that omits the
outer join, later in this section.

Nevertheless, this means every edge hop of a complex
query requires an (outer) join-operation between the pri-
mary and secondary adjacency tables. This even is the case,
if only a single edge of the required type is present, since
the construction of the query should be independent of the
hash function. Because the retrieval of direct neighbours
of a vertex is one of the most important operations in any
graph application, this join poses a major bottleneck for
most queries.

In our approach we eliminate the need for a join-operation
between OPA and OSA by storing all edges of one type
in the corresponding columns using arrays. Table 3 shows
an example of our adjacency tables: In the graph are two
knows-edges that point from the vertex with id 1 to vertices
2 and 3. Since in this example the knows and the likes
label are hashed to the same column triple, a second row for
vertex 1 has to be inserted. Note that this can be omitted
with a better hash function or by providing more columns.
An evaluation of optimal numbers of columns, if no hash
function with a low amount of resulting conflicts for a given
amount of columns can be found, has not been part of our
research yet and will have to be addressed in the future.

Since we can provide a conflict free hash function for the
LDBC-SNB data set, an outgoing neighbourhood query for
a specific vertex can be answered by loading a single tuple
from the database. By eliminating the need of an outer join
for any edge hop, a major drawback of the original schema
is overcome.



VID EID1 Label1 Targets1 ... EIDk Labelk Targetsk
1 [4, 5] knows [2, 3] [11] creator of [13]
1 [12] likes [7] null null null
2 [6] likes [7] null null null

Table 3: The adapted outgoing adjacency table

WITH unshred edges AS (
SELECT ve r t ex id AS source id ,

UNNEST( array [ l ab e l 0 , . . . , l a b e l k ] ) AS l abe l ,
UNNEST( array [ ta rge t 0 , . . . , t a r g e t k ] ) AS tmp

FROM outgo ing adjacency
WHERE ve r t ex id = <?>

) ,
ga the r edge s AS (

SELECT source id , l abe l ,
a r ray e l ement s (tmp) AS t a r g e t i d

FROM unshred edges
WHERE l a b e l = <?>

)
SELECT sour ce id , l abe l , t a r g e t i d
FROM gathe r edge s

Listing 1: Example neighbourhood query for a single
node

An example for the general query structure implemented
in the PostgreSQL dialect is depicted in Listing 1. The first
common table expression unshred edges converts the list of
tuples belonging to one vertex, of which every row contains
k edge types, into a list of rows that contains one edge type
per row. The second common table expression gather edges
then splits those tuples into a list of edges that represents a
well known edge structure.

Analogue to the storage of vertex attributes, we store
edge attributes. As in the original schema, we do not
only store attributes in this table, but also additional in-
formation about the edges. Namely the source vertex, the
target vertex and the label of the edge are recorded. In [9] it
is claimed, that queries that require to trace along an vari-
able number of edges are performed much more efficiently
when the edge table is used instead of the adjacency table.
Our preliminary evaluations support this claim.

EID SID TID Label Attributes
4 1 2 knows {”since” : ”14.03.2016”}
5 1 3 knows {”since” : ”20.04.2016”}
6 2 7 likes null

Table 4: The edge attributes table

3.2 Preliminary Schema Evaluation
In order to evaluate and test our concepts we have cre-

ated a prototypical implementation of the concepts in Post-
greSQL.

3.2.1 Methodology
Our goal was to compare the read-only query performance

of our adaptation with the original SQLGraph schema. To
this end we used part of the Interactive Workload of the
LDBC-SNB [2, 4, 10].

We generated different data set sizes using the generator
and performed tests with data sets that fit into the main
memory of the system as well as data set sizes that are too

huge to fit into main memory. To confirm the requirement of
redundant representation of edges, we defined path queries
with different fixed length and also path queries of variable
lengths. After we confirmed the necessity of the edge tables,
we also chose several queries provided by the Interactive
Workload of the LDBC-SNB to evaluate the performance of
our adjacency implementation against the original schema.
We chose test queries applying the following criteria:

• The main pattern of the query uses paths of fixed
length and use edges of known label. This criteria is
desired, because preliminary evaluations (see [6]) have
shown, that in other cases the use of the attribute table
performs better than the adjacency tables.

• The set of queries requires the use of incoming, outgo-
ing and undirected edges to cover all combinations of
the adjacency tables.

• Different lengths of paths are contained in the set of
queries to evaluate, if the difference in path length
makes one of the two schema versions preferable.

• Queries with big intermediate result sets are part of
the query set, since [9] states this type of query as a
potential bottleneck of the original approach.

The parameters required by the queries were randomly
chosen from the generated data set files and generated pa-
rameters. The same parameters were used for both ap-
proaches.

To make the performance of the two schemas as compa-
rable as possible, we first implemented all queries for the
adapted schema. Then we replaced only the necessary sub-
queries that concern the differences between the schemas,
changing as little of the query as possible. We confirmed
the correctness of our query implementations by comparing
the results with results returned by a reference implemen-
tation provided for Neo4j, of which correctness has been
validated.6

We evaluated the previously chosen queries on the same
hardware using the same data set. The evaluation was con-
ducted on a dedicated server with two Intel Xeon 2.4GHz
CPUs (in total 16 cores), 64GB memory and a single 240GB
SSD running 64-bit Linux. We used PostgreSQL 10 on the
aforementioned server, while we ran the client program of
the benchmark on a standard laptop that connected to the
database over LAN. All queries that were performed for
performance evaluation purposes were proceeded by several
warm-up queries as in most state-of-the-art benchmarks and
also advised in [3].

All examples previously shown in this paper are a sim-
plified version of the test data provided by the LDBC-SNB
data generator.

6https://github.com/PlatformLab/ldbc-snb-
impls/tree/master/snb-interactive-neo4j



3.2.2 Redundant Edge Data
Our findings support the need for redundant storage of

edge data in the edge attributes table as well as the adja-
cency table as claimed by [1, 9]. We find a general tendency
for queries to perform significantly better with the use of ad-
jacency tables, if the queried path is of fixed length. While
this is true for paths of fixed length, the opposite holds for
paths of variable length. This type of queries requires re-
cursive SQL queries. Recursive queries with the use of the
edge attributes table outperform any recursive query that
uses adjacency tables. In her Master’s thesis Kornev [6]
conducted an extensive evaluation, that shows when to use
the edge attributes table in favor of adjacency lists.

1 3 10
0

20

40

60

80

100

SNB Scale Factor

R
eq
u
ir
ed

D
is
k
S
p
a
ce

in
G
B

SQLGraph Schema

Adapted Schema

Figure 2: Required storage capacity

3.2.3 Required Disk Space
Since we reduced the number of tables, we expected a re-

duction in required storage capacity. To this end we im-
ported different sizes of generated data sets provided by
the LDBC-SNB data set generator. The generator creates
data sets according to an input scale factor (1, 3, 10, 30, . . .).
We then sampled the required storage capacity using Post-
greSQL functions. The numbers shown in Figure 2 repre-
sent the complete graph schema, including all indexes and
constraints. Due to hardware constraints we could not yet
import data sets with a scale factor greater than 10. We will
address higher scale factors in future work. Nevertheless our
findings show, that our adaption of the schema reduces the
required storage space by over 10%. This is mainly due to
the reduced overhead by removing one table and the asso-
ciated index structure that is needed to efficiently join the
OPA/IPA and OSA/ISA tables.

3.2.4 Query Performance
We expected a reduction in query execution time for re-

trieval queries that use the adjacency lists. To confirm this
we evaluated our approach with the use of queries defined
by the Interactive Workload. First we chose four queries of
the short query set. This type of query usually requires the
system to evaluate a relatively low amount of vertices and
edges to compute the answer, typically the neighbours of
one entity of the data set [4]. The results shown here were
performed against the generated data set with scale factor

10. This data set size does not fit in the main memory of
the server.

SQ1 SQ3 SQ5 SQ7
0

20

40

60

LDBC SNB Short Queries - Scale Factor 10

ti
m
e
in

[m
s]

SQLGraph Schema

Adapted Schema

Figure 3: Runtime of the Interactive Workload
Short Queries

Figure 3 shows the results of the conducted tests in a
boxplot. The upper bound of the box shows the 75th per-
centile, the line within the box shows the 50th percentile
and the lower bound of the box shows the 25th percentile,
while the whiskers show the maximal and minimal execution
time respectively. The results of the simpler queries con-
firm our expectation regarding execution time. The schema
adaption improved query performance across the board for
these queries. As we expected, the more edge hops a query
performs, we can observe a bigger difference in execution
time. Note that short query 3 (SQ3) uses an undirected
edge. Since our schema does not directly support undi-
rected edges, this query results in a SQL query that uses
both the incoming adjacency and outgoing adjacency tables
and therefore is similar to a 2-edge-hop.

We then additionally conducted experiments on four com-
plex read-only queries of the Interactive Workload. Complex
queries touch a significant amount of data and often include
aggregation [4]. The chosen queries differ in the count of re-
quired edge-hops with CQ 12 containing the highest amount
of hops.

Once again our findings confirm an increase in read per-
formance of our schema adaptation. Considering complex
queries the difference in execution time becomes even more
apparent, which confirms the findings in [9] that stated that
big intermediate join results, which is a point of focus for
the set of complex queries, can be a bottleneck for their
approach. Our approach significantly increases query per-
formance for these types of queries.

4. CONCLUSION
In this paper we have described our approach to store

property graph data in a relational database. Our approach
reduces the number of joins that are required for queries
that contain paths of fixed length compared to earlier ap-
proaches. We have conducted a preliminary evaluation of
our approach using part of a standardized benchmark for
property graphs, namely the LDBC-SNB. The evaluation



CQ2 CQ5 CQ8 CQ12
0

20

40

60

LDBC SNB Queries - Scale Factor 10

ti
m
e
in

[s
]

SQLGraph Schema

Adapted Schema

Figure 4: Runtime of the Interactive Workload
Complex Queries

results show that the adaption is a more efficient version of
the database schema in regards to read-only queries. Due
to the reduction in the amount of required tables and there-
fore also index structures, we were also able to reduce the
required disk space.

Therefore we have found an approach that enables us to
efficiently store the property graph data from our use-case
in a relational database and link it with the already exist-
ing relational data. In addition, [9] show an approach to
store RDF data in a property graph model. Thus, we can
efficiently integrate all data of our use-case in a single rela-
tional database.

5. FUTURE WORK
Future evaluations will have to show the validity of the

approach compared to native database systems like Neo4j.
Since most NoSQL and graph database systems focus on
main memory computation, we expect those to perform com-
parable or better than our approach on data sets that can
be handled in main memory. On the other hand we expect
our approach do outperform non-relational based systems
on data sets that require regular disk accesses due to their
size. These points will be addressed in future evaluations.

Additionally we will evaluate the approach more exten-
sively using the complete LDBC-SNB Interactive Workload
on bigger data sets and more realistic server hardware. The
workload also contains queries that insert data. We expect
updates to also perform efficiently.

One major drawback of this approach is the complexity
of the queries required to retrieve the data. To that end
systems like Neo4j offer a very abstract and convenient way
to query data with graph query languages like Cypher [5].
We propose a translation mechanism that converts Cypher
queries to SQL queries that can be evaluated by our im-
plementation on PostgreSQL. Kornev [6] has already shown
that a translation of Cypher queries to SQL is possible. Un-
fortunately the translated queries do not in all cases achieve
the efficiency that can be achieved with queries written by
an expert. Therefore more optimization possibilities for the
translation mechanism need to be explored. This will be
part of our future research.

6. ACKNOWLEDGMENTS
This research was partially supported by the ”Bayrische

Staatsministerium für Wirtschaft, Energie und Technologie”
in the context of ”BaBeDo”(IUK568/001) which we conduct
in partnership with VEIT Energie GmbH.

7. REFERENCES
[1] M. A. Bornea, J. Dolby, A. Kementsietsidis,

K. Srinivas, P. Dantressangle, O. Udrea, and
B. Bhattacharjee. Building an efficient rdf store over a
relational database. pages 121–132, 06 2013.

[2] P. A. Boncz. LDBC: benchmarks for graph and RDF
data management. In 17th International Database
Engineering & Applications Symposium, IDEAS ’13,
Barcelona, Spain - October 09 - 11, 2013, pages 1–2,
2013.

[3] D. Dominguez-Sal, N. Martinez-Bazan,
V. Muntes-Mulero, P. Baleta, and J. L. Larriba-Pey. A
discussion on the design of graph database
benchmarks. In Technology Conference on
Performance Evaluation and Benchmarking, pages
25–40. Springer, 2010.

[4] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi,
A. Gubichev, A. Prat, M.-D. Pham, and P. Boncz.
The LDBC social network benchmark: Interactive
workload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 619–630, New York, NY, USA,
2015. ACM.

[5] N. Francis, A. Green, P. Guagliardo, L. Libkin,
T. Lindaaker, V. Marsault, S. Plantikow, M. Rydberg,
P. Selmer, and A. Taylor. Cypher: An evolving query
language for property graphs. In Proceedings of the
2018 International Conference on Management of
Data, SIGMOD ’18, pages 1433–1445, New York, NY,
USA, 2018. ACM.

[6] L. S. Kornev. Cypher für sqlgraph. Master’s thesis,
University of Passau, 2017.

[7] M. Poess and C. Floyd. New tpc benchmarks for
decision support and web commerce. ACM Sigmod
Record, 29(4):64–71, 2000.

[8] M. A. Rodriguez. The gremlin graph traversal
machine and language (invited talk). In Proceedings of
the 15th Symposium on Database Programming
Languages, DBPL 2015, pages 1–10, New York, NY,
USA, 2015. ACM.

[9] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis,
G. Hu, and G. Xie. Sqlgraph: An efficient
relational-based property graph store. In Proceedings
of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1887–1901. ACM,
2015.

[10] G. Szárnyas, A. Prat-Pérez, A. Averbuch, J. Marton,
M. Paradies, M. Kaufmann, O. Erling, P. A. Boncz,
V. Haprian, and J. B. Antal. An early look at the
LDBC social network benchmark’s business
intelligence workload. In Proceedings of the 1st ACM
SIGMOD Joint International Workshop on Graph
Data Management Experiences & Systems (GRADES)
and Network Data Analytics (NDA), Houston, TX,
USA, June 10, 2018, pages 9:1–9:11, 2018.



APPENDIX
A. EVALUATION QUERIES: INTERACTIVE WORKLOAD

Query Cypher Representation

SQ 1

MATCH (n : Person { id :{ id }})− [ : IS LOCATED IN]−(p : Place )
RETURN

n . f i rstName AS firstName , n . lastName AS lastName ,
n . b i r thday AS birthday , n . l o ca t i on IP AS loca t i on Ip ,
n . browserUsed AS browserUsed , n . gender AS gender ,
n . c reat ionDate AS creat ionDate , p . id AS c i t y I d

SQ 3

MATCH (n : Person { id :{ id }})−[ r :KNOWS]−( f r i e n d )
RETURN

f r i e n d . id AS personId , f r i e n d . f i rstName AS firstName ,
f r i e n d . lastName AS lastName , r . c reat ionDate AS f r i endsh ipCreat i onDate

ORDER BY fr i endsh ipCreat i onDate DESC, to In t ( personId ) ASC;

SQ 5

MATCH (m: Message { id :{ id }})− [ :HAS CREATOR]−>(p : Person )
RETURN

p . id AS personId , p . f i rstName AS firstName ,
p . lastName AS lastName ;

SQ 7

MATCH (m: Message { id :{ id }})<−[:REPLY OF]−( c : Comment)
− [ :HAS CREATOR]−>(p : Person )

OPTIONAL MATCH (m)− [ :HAS CREATOR]−>(a : Person )−[ r :KNOWS]−(p)
RETURN

c . id AS commentId , c . content AS commentContent ,
c . c reat ionDate AS commentCreationDate , p . id AS replyAuthorId ,
p . f i rstName AS replyAuthorFirstName , p . lastName AS replyAuthorLastName ,
CASE r

WHEN n u l l THEN f a l s e
ELSE true

END AS replyAuthorKnowsOriginalMessageAuthor
ORDER BY commentCreationDate DESC, to In t ( replyAuthorId ) ASC;

CQ 2

MATCH ( : Person { id :{1}} ) − [ :KNOWS]−( f r i e n d : Person )<−[:HAS CREATOR]−( message )
WHERE message . c reat ionDate <= {2} AND ( message : Post OR message : Comment)
RETURN

f r i e n d . id AS personId , f r i e n d . f i rstName AS personFirstName ,
f r i e n d . lastName AS personLastName , message . id AS messageId ,

CASE e x i s t s ( message . content )
WHEN true THEN message . content
ELSE message . imageFi le

END AS messageContent ,
message . c reat ionDate AS messageDate

ORDER BY messageDate DESC, to In t ( messageId ) ASC
LIMIT {3} ;

CQ 5

MATCH ( person : Person { id :{1}} ) − [ :KNOWS∗1 . . 2 ] − ( f r i e n d : Person )
<−[membership :HAS MEMBER]−( forum : Forum)

WHERE membership . jo inDate >{2} AND not ( person=f r i e n d )
WITH DISTINCT fr i end , forum
OPTIONAL MATCH ( f r i e n d )<−[:HAS CREATOR]−( post : Post )<−[:CONTAINER OF]−( forum )
WITH forum , count ( post ) AS postCount
RETURN

forum . t i t l e AS forumName , postCount
ORDER BY postCount DESC, to In t ( forum . id ) ASC
LIMIT {3} ;

CQ 8

MATCH ( s t a r t : Person { id :{1}})<− [ :HAS CREATOR]−()<−[:REPLY OF]
−(comment : Comment)− [ :HAS CREATOR]−>(person : Person )

RETURN
person . id AS personId , person . f i rstName AS personFirstName ,
person . lastName AS personLastName , comment . creat ionDate ,
comment . id AS commentId , comment . content AS commentContent

ORDER BY commentCreationDate DESC, to In t ( commentId ) ASC
LIMIT {2} ;

CQ 12

MATCH ( : Person { id :{1}} ) − [ :KNOWS]−( f r i e n d : Person )
OPTIONAL MATCH

( f r i e n d )<−[:HAS CREATOR]−(comment : Comment)− [ :REPLY OF]−>(: Post )
− [ :HAS TAG]−>( tag : Tag ) ,

( tag )− [ :HAS TYPE]−>( tagClas s : TagClass )− [ : IS SUBCLASS OF ∗ 0 . . ]
−>(baseTagClass : TagClass )

WHERE tagClas s . name = {2} OR baseTagClass . name = {2}
RETURN

f r i e n d . id AS f r i end Id , f r i e n d . f i rstName AS fr iendFirstName ,
f r i e n d . lastName AS friendLastName , c o l l e c t (DISTINCT tag . name ) ,
count (DISTINCT comment) AS count

ORDER BY count DESC, to In t ( f r i e n d I d ) ASC
LIMIT {3} ;

Table 5: Chosen queries for preliminary evaluations of the adapted schema approach


