
How to bring some MAGIC to SPARQL

Work in progress Paper

Christina Ehrlinger
University Passau

Germany
Christina.Ehrlinger@uni-passau.de

ABSTRACT
For SPARQL, the query language to retrieve information
from an RDF graph, the optimization of the order of the
containing triples is a challenging topical issue. In this paper,
we show an approach which passes the information about the
already found binding for a variable to all other occurrences
of this variable in combination with a cost model in order to
minimize the execution time. Different to other approaches
our approach as described in this paper can be applied to
a SPARQL query, which not only consists of basic graph
pattern, but also contains group graph pattern like FILTER
or OPTIONAL. Our experiments show the applicability of
our approach and function as preliminary proof of concept.

1. INTRODUCTION
The structure of the web changes from linked documents,

which contain the information, to directly link the informati-
on using the keyword Linked Open Data. This direct linking
of information generates a huge number of quite big graphs.
In order to handle these graphs, the Resource Descripti-
on Framework RDF 1 is one of the used standard models
for data interchange on the Web. It uses Uniform Resource
Identifiers (URIs) to refer to resources in order to connect
them. The resulting structure is a directed, labeled graph,
where the edges represent the connection between the re-
sources. These RDF graphs are generated very easily due to
the absence of a schema. There exist specialized databases
for storing these RDF graphs, so-called triple stores 2.

The SPARQL query language [8] is used to access the
information stored in these RDF graphs. These SPARQL
queries must be performant in order to find the desired in-
formation in these huge graphs. For optimizing the execution
time of a SPARQL query we can consider two different ap-
proaches. First, we can design a triple store, which optimizes
the storing or the usage of indices. There are also approaches

1https://www.w3.org/RDF/
2https://www.w3.org/wiki/LargeTripleStores

31st GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 11.06.2019 - 14.06.2019, Saarburg, Germany.
Copyright is held by the author/owner(s).

which focus on this like the RDF-3X triple store [7]. Second,
we can rewrite the SPARQL query in order to optimize the
order of the triples.

The same kind of optimizations took place for SQL. There
are highly performant database systems which also considers
the storage of the relations as well as techniques to optimize
the order of the joins, which have to be done in order to
execute SQL queries with more than one relation.

The aim of this approach is not an optimization, which
perfectly fits into a self-designed triple store. It is a generic
way how to reorder SPARQL queries in order to use their
full potential according to their execution time.

The rest of the paper is organized as follows. Section 2
describes the problem statement for the reordering of the
triples and states a motivational example. Section 3 pres-
ents our approach for using the sideways information pas-
sing first for a query containing a basic graph pattern and
furthermore the adaption of the approach in order to use
other components besides to a basic graph pattern, for ex-
ample FILTER. Section 4 shows the experiments which were
executed so far. Section 5 discusses related work.

2. PROBLEM STATEMENT
In order to present our approach for reordering a SPAR-

QL query, we first have a closer look at a simple SPARQL
query and discuss the impact of different orderings. Consi-
dering the SPARQL query in Listing 1. This query can be
executed against a dataset generated using the Lehigh Uni-
versity Benchmark (LUBM) data generator [4]. It consists
of 5 triples, whereas triple t5 also contains a literal.

SELECT ∗
WHERE {

?p : teacherOf ? c . #t1
? s : takesCourse ? c . #t2
? s : adv i so r ?p . #t3
? s : memberOf ?d . #t4
?d : name ’ Department0 ’ . #t5

}

Listing 1: Example for a SPARQL query



While executing the query as shown in Listing 1 using
the common triple store GraphDB3, the query has an ave-
rage execution time of 4606 ms while executing ten times.
If we slightly change the order of the triples, we get the
query shown in Listing 2, whereas this query has an avera-
ge execution time of 12283 ms (executed ten times). Even
for this simple query executed against a quite small dataset
of approximately 130 000 triples we see the huge impact of
reordering the triples of a SPARQL query.

SELECT ∗
WHERE {

? s : takesCourse ? c . #t2
?p : teacherOf ? c . #t1
? s : memberOf ?d . #t4
? s : adv i so r ?p . #t3
?d : name ’ Department0 ’ . #t5

}

Listing 2: Reordered SPARQL query from Listing 1

We also find examples of reordering which lead to a high
improvement regarding the execution time. In Listing 3 we
again have the same SPARQL query apart from the ordering
of the triples. This query has an average execution time of
325 ms.

SELECT ∗
WHERE {

?d : name ’ Department0 ’ . #t5
? s : memberOf ?d . #t4
? s : adv i so r ?p . #t3
? s : takesCourse ? c . #t2
?p : teacherOf ? c . #t1

}

Listing 3: Reordered SPARQL query from Listing 1

The mechanism of reordering to get a more efficient query
is not a new idea. This was done in Datalog [5] while apply-
ing the Magic Set Transformation [1] to a Datalog program
in order to sort the subgoals of a rule and the same idea
was also used while applying the join order optimization to
a SQL query in a relational database system [11].

Especially for Datalog and SPARQL, the ordering of sub-
goals or respectively triples has a huge impact on the va-
riables. The term Sideways Information Passing, short SIP,
was used for this in Datalog and it describes how the bin-
dings of variables are passed from one subgoal to another
subgoal. Depending on the order of the subgoals it results in
a variety of different SIP possibilities, called SIP strategies
[10]. For our approach, we adopt this term for SPARQL. In
the context of SPARQL, it describes the way the binding of
the variables is passed between the triples.

Consider the query from Listing 3 again. We start with the
triple ?d :name ’Department0’. This generates bindings for
the variable ?d, which are passed to the second triple ?s

:memberOf ?d. Again this generates bindings for the varia-
ble ?s, which is passed to the triples ?s :advisor ?p and
?s :takesCourse ?c.

3https://www.ontotext.com/products/graphdb/

In the following chapter, we present an approach in or-
der to use the sideways information passing for SPARQL
queries.

3. USING SIDEWAYS INFORMATION PAS-
SING FOR SPARQL QUERIES

In order to optimize a SPARQL query regarding the SIP,
we can represent the query as a graph to visualize the possi-
ble ways to pass the bindings. In Figure 1 we see the resulting
graph for the SPARQL query in Listing 1.

Every node represents a triple pattern of the query. Two
nodes are connected with an undirected edge if they share
a common variable. Conceptually, the representation allows
us to determine the best order of the triples by transforming
the undirected graph in a directed graph using the approach
described in this paper, whereas the directed edge between
node t1 and node t2 denotes that t1 is in the ranking order
before t2.

t2

t1

t3

t4 t5

Figure 1: Query graph for query in Listing 1

Another way to visually represent the query is shown in
Figure 2. Here we represent every subject and object posi-
tion as a node, no matter if this is a variable, an IRI or a
blank node. For the triple pattern

?s takesCourse ?c

we get two nodes representing the variables ?s and respec-
tively ?c and they are connected with a directed edge, which
represents the predicate takesCourse between these two va-
riables. The edge is directed from the node representing the
subject of the triple to the node representing the object of
the triple. For the triple ?s takesCourse ?c, the edge is di-
rected from the node representing the variable ?s to the node
representing the variable ?c.

?c ?p

?s ?d

’Department0’teacherOf

takesCourse advisor

memberOf

name

Figure 2: SPARQL graph for query in Listing 1

This kind of representation describes the pattern we are
looking for while executing the query against a dataset.

The approach described in this paper focuses on how to
rewrite the query with a more efficient ordering of the triples.
This is done based on the query graph in order to optimize
the sideways information passing.



It consists of the following four steps:

1. Generate query graph

2. Transform undirected graph into directed graph

3. Determine order of the nodes according to the directi-
on of the edges

4. Generate optimized SPARQL query

According to the different elements of a SPARQL query,
we have a closer look at the rearrangement of a query only
consisting of a basic graph pattern and in a second step, we
also consider all possible group graph patterns of a SPARQL
query.

3.1 Basic Graph Pattern Query
Basic graph patterns (BGP) are sets of triple patterns

[8]. The most simple SPARQL query consists of exactly one
triple pattern:

?s ?p ?o

One example of a query which consists only of a basic
graph pattern but more than one triple pattern is shown in
Listing 1. As described before, in the first step we generate
the corresponding query graph for the SPARQL query from
Listing 1 as seen in Figure 1. During the second step, we
convert the undirected query graph into a directed graph.
In the following, we describe how this is achieved. Similar to
Datalog, while performing the Sideways Information Passing
as a preliminary step before the Magic Set Transformation
[1], we try to find Literals or IRIs in the query to get a
starting point for generating bindings for the variables. In
general, we are looking for the node with the highest num-
ber of bound positions (subject, predicate, object). In our
example, the only literal is the name of the department, so
the triple, which contains this literal, will be the first triple
according to the ranking order.

As explained before, this generates a binding for the va-
riable ?d. This binding is passed to all triples, which also
contain the variable ?d, no matter, if it occurs in the sub-
ject or object position. In the query graph, this passing is
visualized by adding an outgoing direction to all undirected
edges of the current node, which corresponds to the current
triple. The search for a node, where the corresponding triple
has the highest number of bound positions and the subse-
quent adding of directions to edges are repeated until all
edges are directed.

This approach works fine for SPARQL queries, where the
corresponding query graph is basically a path. In our exam-
ple query, we can follow the path until node t4. Now more
than one node is affected by adding the direction of an ed-
ge and we have to decide which of the two nodes t2 and t3
should be processed next. In order to solve this, we have in-
troduced a cost-based model to pick the best next node out
of all possible nodes.

The chosen cost model takes into account the average oc-
currence of every property but in addition, also considers
the position of the common variable. For every property p
we determine two different numbers, so-called outgoing and
incoming value. The naming of these values origins in the
SPARQL graph representation. The outgoing value descri-
bes the average amount of outgoing edges of this property

f g h

d e

a b c

takesCourse

teacherOf

teacherOf

advisor

advisor

takesCourse

takesCoursetakesCourse

takesCoursetakesCourse

Figure 3: small sample instance graph as generated
by LUBM

for a node if this node has at least one outgoing edge of
this property. In general, the outgoing value for property p

determines the average number of awaiting bindings for the
object position while the subject position already has a bin-
ding, whereas the incoming value determines the average
number of awaiting bindings for the subject position while
the object position already has a binding.

We also have to consider the cost model in order to choose
the first node, if the query contains only triples of the form
?s p ?o, where only the predicate position p is bound and
not a single literal or IRI is part of the query.

In Figure 3 we see a small instance graph as an example of
the generated RDF graphs by LUBM. The shape of the no-
de represents the type of the node. A rectangle represents a
student, a triangle represents a professor and a circle repres-
ents a course. The outgoing and incoming values resulting
from the small example can be seen in Table 1.

property outgoing incoming

advisor 1 2
takesCourse 2 1.5
teacherOf 2 1

Table 1: Outgoing and incoming values calculated
based on the instance graph in Figure 3

For a better understanding, we have a closer look at the
calculations for the outgoing and incoming values. Consider
the property takesCourse. We sum up all edges with the la-
bel takesCourse. Node e has three edges, the node b has two
edges and the node g has one edge with the label takesCour-
se. Overall we have six edges with this label. To determine
the outgoing value we divide this sum by the number of no-
des, which have an outgoing edge with this label (in this
example three nodes). Overall we get an outgoing value of 2
for the property takesCourse. Similar calculations are done
for the incoming value for the property takesCourse. Now
we consider all nodes, which have an incoming edge with
this label. Node a has two edges as well as node c. Both
nodes f and h have one edge. Again the number of edges
is divided by the number of nodes in order to calculate the
average amount. Overall we get an incoming value of 1.5 for
the property takesCourse.

So we have two different values for every property. Due to
this distinction, we take into account the sideways informa-



tion passing to the subject or rather the object position.
Using this cost model we can now determine which node

to choose in our example from Figure 1. After handling the
nodes t5 and t4 we have to choose between the nodes t2 and
t3. In both nodes the corresponding triple contains the al-
ready bound variable in the subject position, so we compare
the outgoing values of both predicates as seen in Table 1 and
choose the smaller one in order to minimize the intermitted
results. Because advisor has an outgoing value of 1 while
takesCourse has an outgoing value of 2, we choose node t3

to be the subsequent processed node.
Based on the number of bound positions and if equivocal

based on the presented cost model we are able to transform
the undirected query graph into a directed graph. In the
third step, we can use topological sorting for extracting the
resulting order of the nodes from the directed graph. In the
last step, we map the node to the corresponding triple in
order to get the optimized SPARQL query.

3.2 Handling FILTERs
Until now we have considered SPARQL queries which con-

sist of a basic graph pattern or in other words of a set of
triple patterns. On the one hand, these triple patterns gene-
rate bindings for variables. On the other hand, they are also
consuming the binding of variables for the subject position
in order to generate a binding for the object position or vice
versa. Overall a triple pattern can generate and can consu-
me bindings for variables. Things are slightly different as it
comes to FILTERs in SPARQL. SPARQL FILTERs restrict
solutions to those for which the filter expression evaluates
to TRUE [8]. So a FILTER can only consume bindings for
the variables, but can not generate any bindings. In order to
handle this, we have to slightly adapt our present approach.
While generating the query graph, the approach stays the
same, so for every filter in the query, we add a new node
to the query graph next to the nodes for every triple. In
order to distinguish the node for a triple and the node for
a filter, the node for a filter is drawn with a bold line. For
a better differentiation, we also name the node for the filter
consuming node. The meaning of the edges stays the same.
Consider the following SPARQL query, which is the same
SPARQL query as in Listing 1 extended with one FILTER
expression:

SELECT ∗
WHERE {

?p teacherOf ? c . #t1
? s takesCourse ? c . #t2
? s adv i so r ?p . #t3
? s memberOf ?d . #t4
?d name ’ Department0 ’ . #t5
FILTER(?p !=

<http ://www. Department0 .
Un ive r s i ty0 . edu/
Ass i s t an tPro f e s s o r4> ) #t6

}

Listing 4: extended SPARQL query from Listing 1

The corresponding query graph is shown in Figure 4.
While transforming the query graph from an undirected

graph into a directed graph, we use the same approach as
discussed before. The only change regards the handling of
these consuming nodes. From a naive standpoint of view,

t1 t2

t3

t4 t5

t6

Figure 4: Query Graph for query in Listing 4 after
processing the nodes t5, t4 and t3

we can imagine that in general, it can not result in the very
best execution time if the filter is placed at an arbitrary
position. Based on the experiments in section 4 we were able
to substantiate the assumption to place the filter after all
triples, which have at least one common variable with the
filter condition, were processed. Based on the query graph,
all edges of the consuming node have to be directed in order
to be the next node to be processed.

Considering our example query graph in Figure 4 we have
already processed the nodes t5, t4 and t3. In the current
state we have to choose between node t2, node t1 or the
consuming node t6. As described before, the consuming no-
de can only be a candidate, if all edges of the consuming
node were turned into incoming edges in order to get the
bindings from all relevant triples. So we have to choose bet-
ween t2 and t1. This is done using the approach presented
before. In doing so, we first choose t2, afterwards t1. Now
all edges of the consuming node are directed and we can
add the filter to the order of the so far processed triples. If
there would be any undirected edge in the query graph, we
just continue using our approach. Overall this handling of
a filter in a SPARQL query does not mean we always add
the filter at the end of the query. Considering the following
filter regarding the variable ?s:

FILTER(?s != http://www.Department0. Uni-
versity0.edu/GraduateStudent29)

This filter would be added in the current order after we
have processed all triples containing the variable ?s.

In summary, we have adapted our approach to handle the
FILTER construct of a SPARQL query.

3.3 Handling Group Graph Patterns next to
FILTER

Next to a FILTER, there are many more possibilities to
write a group graph pattern in SPARQL, for example OP-
TIONAL or SERVICE. Also these elements can consume
bindings similar to a FILTER, but considering only the trip-
les contained in a group graph pattern, these triples also
generate bindings for each other.

Consider the SPARQL query in Listing 5 with a BGP of
three triples and an OPTIONAL clause with two triples.
The idea is to handle those queries on different abstracti-
on levels. While reordering the triples which are contained
directly in the WHERE clause, the group graph pattern is
abstracted into one single node. On this basis, we can con-
sider the triple patterns and group graph patterns inside of
the current group graph pattern.



SELECT ∗
WHERE {

? s adv i so r ?p . #t1
? s memberOf ?d . #t2
?d name ’ Department0 ’ . #t3
OPTIONAL{ #O

? s : takesCourse ? c . #t4
?p : teacherOf ? c . #t5

}
}

Listing 5: SPARQL query with OPTIONAL

During the abstraction, the query graph for the first level
contains four nodes. The nodes t1, t2 and t3 represent the
corresponding triple pattern while the node O represents the
OPTIONAL clause as shown in Figure 5. Based on this,
we consider a query graph containing the triples t4 and t5,
which are inside of the OPTIONAL. The incoming edges
for the second query graph represent the information about
already bound variables from outside the OPTIONAL as
shown in Figure 5.

t3

t1

t2

O

t4

t5

Figure 5: Query Graphs for the query in Listing 5
for the two different abstraction levels

Until now we have only considered queries, which have at
most one OPTIONAL group graph pattern. This approach
is also applicable if a SPARQL query has more than one
group graph pattern. If this is the case, we generate a con-
suming node for every group graph pattern and use the same
approach as described before. We only have to extend the
mechanism to handle several consuming nodes as potential
next nodes. In order to get the best possible order, we use
a preference ranking for the different kind of group graph
patterns. So for example, a FILTER is ranked above an OP-
TIONAL. This approach is quite generic because a SPARQL
query can also be nested using an arbitrary number of le-
vels. Conceptually handling these elements like OPTIONAL
should be possible using our presented approach as stated
before. As described in section 4 we will need more experi-
ments and tests to show the applicability of our approach
for queries with group graph patterns like OPTIONAL.

4. EXPERIMENTS
In this section, we present the experiments carried out

to test our approach and to get an idea if this approach is
promising. We used the LUBM data generator [4] to generate
a dataset of approximately 130 000 triples. These triples
are stored in GraphDB. One of the first experiments was to
execute all possible permutations of the BGP of a SPARQL
query to get an idea about the different execution times
regarding the different orders of the triples. In addition, the
query was reordered using our presented approach. For every
query tested so far the reordered query was in the forefront
of all execution times from the permuted queries. To give an
idea how the execution times can differ, the distribution of

the execution times regarding all permutations of the query
presented in Listing 1 depicted in Figure 6. For this example,
our approach achieves the best execution time by on average
of 325 ms. All permutations were executed 10 times in order
to reach a good average.

0-500
<2000

<4000
<6000

<8000

<10000

<12000

>15000
0

5

10

15

20

3 3

9

20

14

9

4
5

6
7

10

0

2

8

20

execution time in ms
n
u
m

b
er

s
o
f

p
er

m
u
ta

ti
o
n
s

Figure 6: Distribution of the execution times in re-
lation to the permutations of the query in Listing 1

This test setup was executed with several different queries
but the overall picture is always the same. In Table 2 we see
a comparison between some of the LUBM queries regarding
the best possible execution time for one of the permutati-
ons compared with the execution time achieved while exe-
cuting the permutation derived from our approach. In the
last column, we listed the percentage of permutations of the
respective query, which had the same or smaller execution
time than the derived permutation from our approach.

LUBM
Query

best
execution

time

achieved
execution

time

% of faster
permutations

1 11 ms 11 ms -
2 7 ms 16 ms 0,03056
7 15 ms 15 ms -
9 4 ms 7 ms 0,07778
12 3 ms 39 ms 0,58334
13 4 ms 4 ms -

Table 2: Comparism between best possible executi-
on time and achieved execution time using our ap-
proach for some LUBM queries

For LUBM query 2 our approach as presented in this pa-
per achieves an execution time of 16 ms, whereas the best
permutation achieves an execution time of 7 ms. Based on
these two numbers, it seems that our approach does not per-
form well. If we add the information, that this query has 6
triples, so 720 possible permutations and only approximately
3% of these permutations have the same or better executi-
on time, our approach is in a better position. For some of
the queries, as LUBM query 7 with 4 triples, our approach



derived the best possible permutation based on the executi-
on time. These experiments also showed some examples like
LUBM query 12, where our approach does not determine a
good permutation of the query. These queries will be used
to improve our cost model.

Based on the assumption the approach is using a good
heuristic, we have also examined the impact of the filter pla-
cement. In order to do this, we used our approach to reorder
the BGP of the query, added the filter statement at every
possible position and compared the execution times again.
Also for this test setup, the experiment matches with the
expectations about placing the filter after all triples which
contain at least one of the variables of the filter. In Table 3
we see the impact of the filter placement.

filter placement execution time
before t5 289 ms
after t5 279 ms
after t4 281 ms
after t3 277 ms
after t2 277 ms
after t1 274 ms

Table 3: Impact of the FILTER placement for the
enlarged SPARQL query in Listing 4

Using our approach for the query as shown in Listing 4 we
place the filter after the triple t5, which is also the best po-
sition according to all possible positions as seen in Table 3.
During our experiments, we have observed the impact of the
filter condition itself, but explicitly considering the conditi-
on of the filter will be part of our future research. Overall
our performed experiments showed the applicability of our
approach.

5. RELATED WORK
In general, query optimization is a well-established area

especially for SQL, but regarding SPARQL queries it is a
quite current topic. In the following, we shortly describe so-
me different approaches, which use different methodologies
than our approach presented here. The Characteristic Set
approach [3] uses dynamic programming based algorithm on
a precomputed hierarchical structure, which allows determi-
ning the best order of the triples. In [6] they translate a query
into a multidimensional vector space and perform distance-
based optimization by considering the relative differences
between the triple patterns. Comparing different selectivity
estimations for a SPARQL query was done in [12], whereby
this approach focusses only on BGP queries. It describes dif-
ferent ways to compute heuristics for the optimization but
does not consider the structure of the triple. Our approach
fills this gap between using statistical data and taking the
structure of the query as well as the triple into account.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented our approach for opti-

mizing a SPARQL query by means of using the sideways
information passing. We show how to use our approach for
a SPARQL query only consisting of a basic graph pattern.
Based on this we showed how to adapt the approach in or-
der to handle queries, which also contain FILTERs or other
group graph patterns. The experiments based on the LUBM

dataset showed the impact on the execution time based on
the order of the triples. Also, these experiments functioned
as a preliminary proof of concept for our approach. While
testing the execution time of all possible permutations of the
triples, the order of triples, our approaches chooses, was in
the forefront of the smallest execution times.

As described in the title, this is a work in progress paper.
Therefore these experiments are not the top of the flagpole.
The next steps will include tests with bigger datasets genera-
ted with the LUBM dataset generator as well as tests using
data and test queries from the Berlin SPARQL Benchmark
(BSBM) [2]. While the test queries from LUBM are quite
short, the queries tested in BSBM contain more triples and
also more complex patterns like FILTERs or OPTIONAL
clauses. Another benchmark which provides more complex
test queries than LUBM is the SP 2Bench [9], which we want
to use as a source for test queries.

In order to improve the reordering based on the current
approach we want to take into account semantic information.
This will be part of our future work.

7. REFERENCES
[1] C. Beeri and R. Ramakrishnan. On the power of

magic. In Proceedings of the Sixth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, PODS ’87, pages 269–284, New
York, NY, USA, 1987. ACM.

[2] C. Bizer and A. Schultz. The berlin sparql benchmark.
Int. J. Semantic Web Inf. Syst., 5:1–24, 2009.

[3] A. Gubichev and T. Neumann. Exploiting the query
structure for efficient join ordering in sparql queries.
In EDBT, pages 439–450. OpenProceedings.org, 2014.

[4] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark
for owl knowledge base systems. J. Web Sem.,
3(2-3):158–182, 2005.

[5] J. W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, Berlin, Heidelberg, 1984.

[6] M. Meimaris and G. Papastefanatos. Distance-based
triple reordering for SPARQL query optimization. In
33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA, April
19-22, 2017, pages 1559–1562. IEEE Computer
Society, 2017.

[7] T. Neumann and G. Weikum. Rdf-3x: a risc-style
engine for rdf. PVLDB, 1(1):647–659, 2008.

[8] E. Prud’hommeaux and A. Seaborne. SPARQL Query
Language for RDF. W3C Recommendation, 2008.

[9] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
Sp2bench: A SPARQL performance benchmark.
CoRR, abs/0806.4627, 2008.

[10] S. Sippu and E. Soisalon-Soininen. Multiple sip
strategies and bottom-up adorning in logic query
optimization. In ICDT, 1990.

[11] M. Steinbrunn, G. Moerkotte, and A. Kemper.
Heuristic and randomized optimization for the join
ordering problem. The VLDB Journal, 6(3):191–208,
Aug. 1997.

[12] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. Sparql basic graph pattern optimization
using selectivity estimation. In Proceedings of the 17th
International Conference on World Wide Web, WWW
’08, pages 595–604, New York, NY, USA, 2008. ACM.


