
Performance Analysis and Comparison of
Deductive Systems and SQL Databases

Stefan Brass and Mario Wenzel

Universität Halle, Institut für Informatik, 06099 Halle (Saale),
brass@informatik.uni-halle.de, mario.wenzel@informatik.uni-halle.de

Abstract. We compare the performance of logic programming systems
with tabling (XSB, YAP) and new Datalog implementations (Soufflé,
our BAM) with the performance of relational database systems (SQLite,
PostgreSQL, MariaDB). These databases support recursive views, and
can compute, e.g. the transitive closure and same generation cousins. We
also tried the RDF store Apache Jena and the graph database Neo4j.
The main contributions compared to previous benchmarking approaches
like OpenRuleBench [4] are: (1) We created a number of additional
graphs of different structure when we identified a problem with the Open-
RuleBench test graphs. (2) We developed a database to store and analyze
benchmark measurements. It is much more general than the previous re-
sult data files, and supports detailed evaluations of the data. (3) We
propose a formula to predict the runtime of the transitive closure bench-
mark based on parameters of the input graph. This work on runtime
prediction is only the beginning of using machine learning techniques on
runtime data.

Keywords: Performance, Benchmarks, Deductive Databases, Recursive
Queries, SQL

1 Introduction

Benchmarks can be a useful tool to compare performance between systems and
evaluate how well different kinds of systems and evaluation schemes perform
against each other. Especially comparing different models of computation and
evaluation schemes can be helpful for system developers in identifying shortcom-
ings and furthering cross-pollination between disciplines.

In the area of deductive databases/rule-based systems, OpenRuleBench [4] is
a well-known benchmark suite. It is a quite large collection of problems, basically
12 logic programs, but some with different queries and different data files. In
contrast to database benchmarks, the OpenRuleBench benchmarks contain no
updates. They assume that the input data is given in a file (in a format suitable
for the tested system), and the task is to evaluate some query.

However, the OpenRuleBench scripts run each benchmark only once, and
do not support comparing runtimes of the same benchmark for different option
settings or program versions, or even on different machines. We have developed

28 Stefan Brass and Mario Wenzel

a database and new benchmark execution scripts in order to overcome these
restrictions. The scripts measure all runtimes externally, and collect also infor-
mation about the used main memory (where possible). Furthermore, the test
graphs used in OpenRuleBench for the transitive closure have a very specific
(dense) structure, and even graphs declared as non-cyclic contain loops. We
solved this problem and used a much larger collection of different test graphs.

In this paper, we show results for only two of the OpenRuleBench benchmark
problems, namely the transitive closure, and the same generation cousins (our
project web pages contain some more benchmark results). However, we analyze
the benchmark results in detail. In particular, we investigate formulas to predict
the runtime of a system based on characteristics of the graph. We believe that
for declarative programming, it is important that one can get a rough estimate
of the runtime on an abstract level (without need to understand implementation
details). At least, one wants to be sure that for all inputs that might occur (even
larger ones), the runtime will be acceptable. If the runtime would suddenly
“explode” for specific inputs, the system would be unreliable.

Database optimizers have done runtime estimation for a long time. But this
uses internal information of the system, such as the availability of indexes and
sizes of data structures. We took a “black box” approach and measure runtime,
and try to approximate the results with a formula based on characteristics of
the given problem (input and output). If this works, it helps to understand the
runtime behaviour of the system, and gives the user some trust into its reliable
performance. Furthermore, it helps to “compress” the many single numbers for
the runtime measurements into a few understandable parameters of the formula.
This compression is not lossless, but it helps to see the “big picture”.

The runtimes of transitive closure in relational databases have already been
investigated in [6], but there has been progress in the implementations of re-
lational database systems. For instance, the number of iterations, which used
to be important eight years ago, has become less important now. Today, it is
common that even open source database systems support “recursive common
table expressions” (recursive views), whereas earlier this was restricted to the
big players (e.g., DB2). So far, we used SQLite, PosgreSQL, and MariaDB for
our performance tests.

We are especially interested in performance and performance measurements
since we are developing an implementation of our “Push” method for bottom-up
evaluation of Datalog [1, 2]. We recently defined an abstract machine “BAM”
for the bottom-up evaluation of Datalog, and implemented a first prototype [3].
“Pushing” tuples through relational algebra expressions has also been done very
successfully for standard databases.

There is a renewed interest in Datalog, probably mostly due to new appli-
cations. E.g. the Soufflé system [8] uses Datalog for the static analysis of Java
programs. It is also a fast new Datalog implementation.

We also checked classical logic programming systems, in particular, XSB [7].
This supports full Prolog, but with tabling, such that termination is guaranteed
for Datalog. It has beaten many older deductive database prototypes.

Performance Analysis and Comparison of Deductive Systems and SQL DBs 29

2 A Benchmark Database

The OpenRuleBench scripts [4] run each benchmark only once. However, it is
common practice to execute benchmark programs several times. There is some
variation in the runtimes of the same program on the same data on the same
machine. Since we are developing our own system, we want a reliable indication
of the effects of changes in the implementation, even if they are not dramatic.

When measuring other systems, we feel obliged to do some tests with different
option settings (or different indexes) and choose the best settings we could find
(with our limited expertise). Thus, the situation gets more complicated than
in the OpenRuleBench, since we have different implementation variants of the
same benchmark for the same system.

Furthermore, as developers we use different machines with different operating
systems. In order to keep the overview of the different runtime measurements,
we decided to develop a benchmark database. The database of measurements
also allows us to easily run statistical analyses on any kind of dataset.

SYS_TYPE

* STYPE
U * SEQ_NO
 * HEADLINE

BENCHMARK

* BENCH
U * SEQ_NO
 * HEADLINE

TEST_SYS

* SYS
U * SEQ_NO
 * FULL_NAME
 o URL
 o REMARK

BENCH_IMPL

* IMPL
 * STATUS
 o DESCRIPTION

SYS_INSTALL

* INST_NO
 * COMPILER
 * STATUS
 o REMARK

SYS_VER

* VER
 * VER_ADDTEXT
 o VER_DATE
 o REMARK

BENCH_RUN

* RUN_DATE
* RUN_NO
 * WITH_OUTPUT
 o LOAD_TIME
 o EXEC_TIME
 o TOTAL_TIME
 o USER_TIME
 o SYS_TIME
 * REAL_TIME
 o MEM
 * STATUS
 o REMARK

GRAPH_TYPE

* GTYPE
U * SEQ_NO
 * NAME

INPUT_SET

* SET_ID

INPUT_FILE

* FILE_ID
U * SEQ_NO
 * LINES
 * BYTES
 * FILENAME
 o DESCRIPTION

INPUT_GRAPH

 o PARAM_1
 o PARAM_2
 * NUM_NODES
 * NUM_EDGES
 * DUP_EDGES
 * LOOPS
 * MIN_IN_DEGREE
 * MAX_IN_DEGREE
 * MIN_OUT_DEGREE
 * MAX_OUT_DEGREE
 * CYCLES

OTHER_INPUT

INPUT_TYPE

* ITYPE
U * SEQ_NO
 * HEADLINE
 * DESCRIPTION

MACHINE

* MACHINE
U * SEQ_NO
 * STATUS
 o MODEL
 o YEAR
 o MONTH
 o PRICE
 * NUM_CPUS

Fig. 1. ER-diagram of benchmark database

We also implemented a number of views to analyze the data. The generation
of tables in LATEX and HTML format is done by means of SQL queries. Our
views also help to check for outliers to get more confidence in the data. One can
also query for the best implementation variant of a benchmark for a system.

3 Transitive Closure and Same Generation

For space reasons, we can discuss only two benchmark problems in this paper.
The first is the well known task to compute the transitive closure of a binary

30 Stefan Brass and Mario Wenzel

relation, i.e. the reachability relation between nodes in a graph, where the edges
are given. The standard tail-recursive formulation in Datalog/Prolog is:

tc(X,Y) :- par(X,Y).

tc(X,Y) :- par(X,Z), tc(Z,Y).

The name “par” stands for “parent” or “parameter” (of tc). It is the edge
relation of a directed graph. The nodes in the test graphs (see Section 4) are
integers, thus a large set of facts of the form par(1,2) is given. The benchmark
is to compute the entire tc relation, i.e. the predicate tc is queried with both
arguments “free”. Therefore this benchmark is called “TCFF”.

The second problem is the “same generation” problem (“SGFF”), which is
also part of the OpenRuleBench collection [4]. It can be formulated based on the
same edge relation “par”: Two vertices are in the same generation if they each
have a path of the same length connecting to a common vertex:

sg(Y,Y) :- par(_, Y).

sg(X,Y) :- par(X,A), sg(A,B), par(Y,B).

While this program first looks very similar to the transitive closure, performance
is quite different, because the program is not tail-recursive.

Since many of the test graphs are cyclic, a standard Prolog system would not
terminate with these programs. We need systems that support tabling to detect
repeated calls to the recursively defined predicate. We used XSB version 3.8.0,
and YAP version 6.2.2.

XSB has some tuning parameters, and we tried ten different settings for
the same generation benchmark. The best we could get was using subsumptive
tabling, load_dync for loading the data, and an index on par(2,1). For this
benchmark, the trie index gave bad results.

We also tried the Soufflé system [8]. It is intended for static analysis of Java
programs, but it is also a fast Datalog evaluator. We used version 1.5.1. We ran
our tests with only a single job enabled to have a better comparison to the other
systems that do not parallelize the query evaluation. We used the version that
compiles via C++ to native code. The interpreted version is much slower.

Of course, native code gives an advantage over systems based on an abstract
machine, such as XSB, YAM, and our “Bottom-Up Abstract Machine” BAM.
For Prolog systems, a rule of thumb is that native code gives on average a factor
of 3 over emulators of the Warren abstract machine. Experiments we did with
a native code implementation of our Push method vs. our BAM showed only a
factor of 1.5–2.

3.1 Relational Databases

Recursive view definitions were introduced in the SQL-99 standard. Most mod-
ern relational database systems support them, and therefore can compute the
transitive closure.

The query is (using a recursive “common table subexpression”, i.e. a local
view definition):

Performance Analysis and Comparison of Deductive Systems and SQL DBs 31

WITH RECURSIVE tc(a,b) AS (

SELECT par.a, par.b from par

UNION

SELECT par.a, tc.b from par JOIN tc ON par.b = tc.a

) SELECT Count(*) FROM tc;

The query for the same generation problem is analogous. As a table definition
for the par-table, we used the following definition, with slight alterations and
additions depending on the used database system.

CREATE TEMP TABLE par (

a INT NOT NULL, b INT NOT NULL,

CONSTRAINT par_pk PRIMARY KEY (a, b)

) WITHOUT ROWID;

CREATE INDEX par_fb ON par (b);

For SQLite, we used a temporary in-memory table for the par relation. We
added PRAGMA temp store = MEMORY; in order to deactivate using temporary
files. We used SQLite3 version 3.24.0.

PostgreSQL is a server-based database system. As CPU time, we record in
our database the time the server process of the session used. However, the main
comparison is done on real time, which is simpler for server-based systems (it
also gives parallel implementations an advantage). The startup time of the server
is not included in the time measurements. We used version 9.4.15.

MariaDB is the community fork of the server-based MySQL database system.
We used both the InnoDB storage engine and the Memory storage engine for the
par relation. For the latter we set max head table size to 4∗10243. The support
of recursive CTEs is new (since version 10.2.2). We used version 10.3.9.

3.2 Graph Databases / RDF Triple Stores

Transitive Closure and Same Generation are included in the OpenRuleBench
suite for the graph database system Apache Jena using the Java API for the
included OWL reasoner. Since SPARQL 1.1 added Property Paths [9] where non-
variable predicates can be combined in a similar fashion to regular expressions,
we can formulate the Transitive Closure now directly in SPARQL:

SELECT (count(*) as ?resultcount) WHERE {?a :par+ ?b}

This does not work for the same generation, because there we need two paths
of the same length. For the transitive closure benchmark, we used Apache Jena
version 3.8.0 on OpenJDK 1.8 (Java 8), and had to increase the JVM’s thread
stack size to 16MB (JVM ARGS=-Xss16m).

Since the two benchmark problems are graph problems, we also tried the
well-known graph database Neo4j. However, the following query in the graph
query language Cypher did not give competitive performance:

MATCH (a)-[*]->(b)

RETURN DISTINCT a,b;

32 Stefan Brass and Mario Wenzel

There are other possibilities to formulate this query (e.g., via shortest paths),
but they do not work for arbitrary graphs.

It is possible to formulate the same generation problem in Cypher, but since
one computes first arbitrary pairs of paths ending in the same node, and then
selects paths of equal length, the performance is bad. One would need a clever
query optimizer.

3.3 Execution Methodology and Hardware

We executed the benchmarks on a HP Blade server with two Intel Xeon CPUs
E5-2630 v4@2.20GHz with 10 cores and 20 threads each. As far as we know,
Jena is the only one of the tested systems that uses multiple threads for the
test query. The machine has 128 GB of RAM. The operating system is Debian
x86_64 GNU/Linux 8.10 (3.16.0).

The overall execution time (“elapsed wall clock time” and CPU time) and the
memory (“maximum resident set size”) for each test of the standalone programs
was measured with the Linux /usr/bin/time program.

For the server based systems we took a snapshot of the status information
provided by /proc/[pid]/stat [5] at the start of the client program and when
the query was finished. The difference between both snapshots is used to measure
CPU time. This approach can not be used to measure memory usage. We made
sure that for MariaDB only one user was connected, as we gathered the status
of the server process. PostgreSQL starts a different process for every user session
and we measured the stats for that specific process.

Most tests were run ten times and the time average values were calculated.
In the comparison table (Fig. 2 below), we use real time.

4 Test Graphs

The OpenRuleBench collection [4] uses a particular algorithm to generate ran-
dom graphs that leads to all vertices having nearly identical degrees, compared
to just selecting edges at random. Cycle-free graphs are created by ordering the
edges towards the greater node. Since this happens after the edges have been
selected, it leads to duplicate edges in the generated non-cyclic graphs. Further-
more, reflexive edges (loops) were not excluded for non-cyclic graphs.

Because of this, we developed generators for graphs with properties that
are easily analyzed in the context of the given recursive problems. The number
of edges in the graph is the input size of the problem. The maximum of the
lengths of the shortest path between any two connected vertices is the number
of iterations until the fixed point of the Tp operator is found for the transitive
closure (Ntc). We label vertices incrementally starting from 1.

– The complete graph Kn has n vertices, n2 edges and Ntc(Kn) = 1.
The set of edges is E = {(i, j) | i = 1, . . . , n, j = 1, . . . , n}.

– The maximum acyclic graph Tn is a subset of Kn without the edges (a, b)

with a ≥ b. It has n vertices, n(n−1)
2 edges and Ntc(Tn) = 1.

Performance Analysis and Comparison of Deductive Systems and SQL DBs 33

– The cycle graph Cn has n vertices, n edges and Ntc(Cn) = n.
E = {(i, i + 1) | i = 1, . . . , n− 1} ∪ {(n, 1)}.

– The cycle graph with shortcuts Sn,k is a directed graph that is a superset
of the cycle graph Cn where n − 1 > k > 0 additional edges per vertex are
added, skipping n

k+1 vertices in the cycle. n should be divisible by k+1. One

additional edge per vertex allows skipping 1
2 of the cycle, while two edges

would allow skipping 1
3 or 2

3 of the cycle. Ntc(Sn,k) = n
k+1 . The set of edges

is E = {(i, 1 + (i− 1 + nt
k+1) mod n) | t = 1, . . . , k, i = 1, . . . , n} ∪ Cn.

– The path Pn has n vertices and n−1 edges: E = {(i, i+ 1)|i = 1, . . . , n−1}.
Ntc(Pn) = n− 1. The transitive closure of Pn is Tn.

– The multi-path graph Mn,k is a directed graph that contains n ∗ k vertices
that form k pairwise vertex-disjoint paths of length n− 1. The set of edges
is E = {(i, i + k)|i = 1, . . . , (n− 1) ∗ k}. Ntc(Mn,k) = n− 1. Mn,1 is Pn.

– The binary tree graph Bh of height h > 0 is a directed graph that contains
2h − 1 vertices and 2h − 2 edges. Ntc(Bh) = h − 1. The set of edges is
E = {(i, 2i) | i = 1, . . . , 2h−1 − 1} ∪ {(i, 2i + 1) | i = 1, . . . , 2h−1 − 1}.

– The graph Vn is the reverse of Bn (all edges point towards the root).
– The Y-graph Yn,k is a directed graph with n + k vertices. It consists of n

vertices with edges to the center vertex n+ 1, which is attached to a path of
k vertices: E = {(i, n+ 1) | i = 1, . . . , n}∪ {(i− 1, i) | i = n+ 2, . . . , n+ k}.
The number of iterations for the tc computation is Ntc(Yn,k) = k.

– The W-graph Wn,k (with k ≤ n) has a single level of edges, where each vertex
in a set of n vertices points to k vertices from a disjoint set of another n
vertices. The graph has 2n vertices, n ∗ k edges, and Ntc(Wn,k) = 1. The set
of edges is E = {(i, n + 1 + (i + j − 1) mod n) | i = 1, . . . , n, j = 1 . . . , k}.

– The X-graph Xn,k consists of n vertices pointing to a central vertex, which
in turn points to k vertices (the default for k is n). The set of edges is
E = {(i, n+ 1 | i = 1, . . . , n}∪{(n+ 1, n+ 1 + j) | j = 1, . . . , k}. The graph
has n + k + 1 vertices, n + k edges, and Ntc(Xn,k) = 2.

4.1 A Cost Measure: Applicable Rule Instances

As a first try to estimate the runtime, we look at the number of applicable rule
instances in the given logic program. I.e. this is the total number of variable as-
signments that satisfy the body (condition) of the rules. The standard seminaive
evaluation would look at each such rule instance exactly once.

As an example, consider the transitive closure program applied to the com-
plete graph K100 (100 vertices, 10 000 edges). The (non-recursive) starting rule

tc(X,Y) :- par(X,Y)

is applicable 10 000 times (once for each of the input facts). For the rule

tc(X,Z) :- par(X,Y), tc(Y,Z)

there are 10 000 facts in the par relation and each one has 100 join partners in
the tc relation (the number of tuples with a given Y value). Thus the total size of

34 Stefan Brass and Mario Wenzel

the join par(X,Y), tc(Y,Z) is 1 000 000. Of course, in this example, the second
rule generates only duplicates, but they must be computed and eliminated. The
associated costs for the rules are added and we get a total cost of 1 010 000.

Note that this cost measure is purely declarative, and does not look at the
sequence in which facts are computed. For the applicable rule instances, we only
need the final version of the tc/sg-relation in the minimal model.

Graph tc size tc instances sg size sg instances

Kn n2 n2 + n3 n2 n2 + n4

Tn
n(n−1)

2
1
6n(n− 1)(n + 1) 1+(n−1)2 n4−6n3+19n2−22n

4 + 2
Cn n2 n2 + n n 2n
Sn,k n2 (k + 1)(n + n2) n2 † n(k+1) + n2(k+1)2 †

Pn
n(n−1)

2
n(n−1)

2 n 2(n− 1)

Mn,k k n(n−1)
2 k n(n−1)

2 k ∗ n 2k(n− 1)
Bh (h−2)∗2h + 2 (h−2)∗2h + 2 2h − 1 2h+1 − 4

Vh (h−2)∗2h + 2 (h−2)∗2h + 2
∑h−1

i=0 22i 2h − 2 + 4 ∗
∑h−2

i=0 22i

Yn,k n ∗ k + k(k−1)
2 n ∗ k + k(k−1)

2 n2 + k n2 + n + 2k − 2
Wn,k n ∗ k n ∗ k n∗min(2k, n+1) n ∗ (k + k2)
Xn,k n + k + n ∗ k n + k + n ∗ k k + 1 + n2 2k + n + n2

† For k = 1 ∧ n mod 4 = 2, sg size is n2

2 and sg instances is 2(n2 + n).

5 Analysis of the Results

5.1 Results for the Transitive Closure Benchmark

The average runtimes of the main systems for the some test graphs are shown
in Fig. 2. We give the runtime of XSB in seconds (real time), and for all other
systems, we list the factor of the runtime of that system compared to XSB. Thus,
an entry less than 1 means that the system is faster than XSB. The average factor
at the bottom of the table is determined over all 50 graphs we measured, not
only the ones shown in the table. All data are available on our web page.

Although the transitive closure is a typical problem for a logic programming
system such as XSB, the relational databases PostgreSQL and SQLite are for
most graphs only 3–5 times slower (for PostgreSQL, the worst factor in our TCFF
tests was 7.0, for SQLite 9.7). For MariaDB there are five examples where it is
more than 100 times slower than XSB. Performance seems to go down for larger
problem instances. Soufflé is very fast on some problem instances, but slower
than XSB on others (remember that we used Soufflé in single-threaded native-
code mode). The numbers for our own prototype look promising, but there are
a few problem instances that have potential for further optimization.

Figure 3 shows the relation between the runtime and the cost measure for
the graphs. For some systems, such as XSB, the relationship between the cost
measure (the number of applicable rule instances) and the runtime looks to be
more or less linear. A first try for runtime prediction for XSB and the transitive
closure program is to assume a speed of 5.3 ∗ 106 rule instances per second.

Performance Analysis and Comparison of Deductive Systems and SQL DBs 35

Graph XSB (s) BAM YAP SQLite PostgreSQL MariaDB Jena Soufflé

K500 13.342 0.30 0.66 5.07 3.62 3.75 1.92 0.20
K1000 103.266 0.31 0.67 5.56 3.82 3.76 1.82 0.18
T500 2.301 0.62 0.76 4.52 2.84 4.58 3.09 0.31
C2000 1.597 0.18 1.18 4.93 3.28 7.87 5.14 1.55
S2000,1 1.844 0.28 1.47 5.43 3.39 9.02 5.03 1.79
P4000 3.145 0.23 1.29 4.81 2.87 31.58 4.33 1.57
M64,128 0.283 0.17 0.49 2.25 2.59 2.07 9.28 0.83
M4096,2 6.252 0.55 1.44 5.16 2.91 50.63 4.07 1.62
B18 2.012 0.82 1.03 3.50 2.49 8.85 7.33 0.76
Y1000,8000 14.084 1.41 1.33 5.66 3.12 67.51 3.78 1.75
W1000,1000 2.210 0.12 1.17 1.71 1.31 3.20 4.80 0.43
X10000 23.630 6.80 0.36 9.70 7.01 243.93 4.30 0.87

AVG 0.56 1.21 4.88 3.42 28.27 4.96 0.95

Fig. 2. TCFF Run Time (Real Time for XSB, Factor compared with XSB for others)

For other systems, including our own BAM, there are graphs where the more
or less linear relationship is severely violated. Of course, these inputs are interest-
ing for the system developers. We also have to look at other cost factors besides
the number of applicable rule instances. One such approach is the subject of the
next subsection.

5.2 Predicting Runtimes

We assume that the main computation consists of the following four components:

– Initialize is the time it takes to initialize the program (e.g. for parsing
and optimizing the query, and allocating memory). Since we consider only a
single query, this time is a system-dependent constant IS (for the system S).

– Loading and preprocessing is the process of reading input data from
the file system and storing it into some other data structure. This includes
creating any indexes. While reading from the file system is expected to be
done in linear time, creating indexes may take log-linear time. Therefore, we
assume that this phase costs LS ∗e(G)∗ log(e(G)), where e(G) is the number
of edges in the input graph G and LS is a system-dependent constant.

– Deduction is the work of applying the rules to derive new facts, in this case
for the tc predicate. This is where the previously discussed cost measure is
used. We assume that the time needed is DS ∗R(G), where DS is a system-
dependent constant, and R(G) is the number of applicable rule instances.

– Answer processing is the work of processing a computed answer to the
query. We assume that the time needed is AS ∗T (G), where AS is a system-
dependent constant, and T (G) is the size of the tc-relation (i.e. the answer).
Note that R(G) − T (G) is the number of non-successful rule applications,

36 Stefan Brass and Mario Wenzel

0 0.5 1
0

50

100
ti

m
e

in
s

xsb

0 0.5 1
0

100

200

YAP

0 0.5 1
0

200

400

ti
m

e
in

s

PostgreSQL

0 0.5 1
0
50
100
150
200

Jena

0 0.5 1
0

200

400

600

ti
m

e
in

s

SQlite

0 0.5 1
0
200
400
600
800
1,000

MariaDB [1,000 s timeout]

0 0.5 1

·109

0

20

40

rule instances

ti
m

e
in

s

Souffle

0 0.5 1

·109

0

20

40

rule instances

BAM

Fig. 3. Time vs. Rule Instances for Transitive Closure Benchmark

i.e. rule applications that computed only duplicates of already known an-
swers. With the two parameters DS and AS , it is possible to treat successful
and non-successful rule applications differently.

Given the partial costs above, we estimate the runtime ES(G) for a specific
system S and for an input G as the sum of the components, i.e.

ES(G) = SI ∗ 10−3 +
(
LS ∗ e(G) ∗ log(e(G)) + DS ∗R(G) + AS ∗ T (G)

)
∗ 10−9.

The factors mean that SI is measured in milliseconds, whereas the other con-
stants are in milliseconds per one million cost units. E.g. DS are the milliseconds
per one million rule applications.

Let us consider an estimate as acceptable if the real value differs less than
20% from the estimate, i.e. lies between 0.8 ∗ ES(G) and 1.2 ∗ ES(G). We used
a simple optimization program to search for good values for the parameters.
The average error was a secondary optimization criterion (of lower priority than

Performance Analysis and Comparison of Deductive Systems and SQL DBs 37

improving the number of graphs with acceptable prediction). Obviously, for some
systems, we have not yet the right cost parameters. E.g., currently, non-successful
joins are not counted at all. For MariaDB, it seems that we need an additional
factor for large data (that presumably do not fit in the main memory buffer).

Program Init: IS Load: LS Ded.: DS Ans.: AS Within ±20% Avg. Err.
XSB 130 90 95 284 49/50 6%
SQLite 90 93 593 1317 49/50 7%
PostgreSQL 369 102 419 711 48/50 8%
Jena 2076 1599 166 1402 47/50 9%
YAP 20 4 200 221 35/50 30%
Soufflé 25 12 42 671 32/50 23%
BAM 0 373 32 54 31/50 81%
MariaDB 19 1026 438 1164 24/50 512%

5.3 Results for the Same Generation Benchmark

The runtimes for the same generation benchmark and some selected input graphs
are shown in Fig. 4. Data for more graphs and the plots relating runtime to the
number of applicable rule instances are available on the web page.

Graph XSB (s) BAM YAP SQLite PostgreSQL MariaDB Soufflé

K500 9277.250 0.31 0.41 2.31 1.79 3.51 0.14
T100 2.137 0.61 1.18 3.12 2.70 4.97 0.43
C1000 0.075 0.03 0.13 0.33 1.87 0.73 0.25
S1000,1 1.233 0.32 0.86 3.64 2.83 3.93 1.35
P4000 0.105 0.00 0.19 0.86 1.56 0.95 0.18
M4,2048 0.125 0.00 0.32 1.05 1.36 1.04 0.24
M4096,2 0.133 0.00 0.45 1.23 1.36 1.21 0.23
B18 1.088 0.11 1.14 2.17 1.20 4.03 0.28
V12 2.296 0.42 0.30 4.24 4.87 21.80 0.69
Y500,4000 0.218 0.30 0.16 2.82 3.06 1.97 0.56

AVG 0.20 0.47 2.00 2.13 3.05 0.41

Fig. 4. SGFF Run Time (Real Time for XSB, Factor compared with XSB for others)

6 Conclusions

Since we are developing our own Datalog system, we of course need to do sys-
tematic runtime measurements. We started with some benchmarks of the Open-
RuleBench [4], but we soon lost the overview on the many measurements we
made on different systems with different versions — and of course, also running

38 Stefan Brass and Mario Wenzel

exactly the same benchmark twice gives slightly different results. The Open-
RuleBench scripts have no support for all this information, and therefore we
developed the database that is described in this paper. Currently, the main ta-
ble BENCH RUN contains more than 30.000 rows. If one really wants to make sense
of the collected data, one has to do some data mining. We found that the number
of applicable rule instances can be used as a first try to estimate runtimes. In
order to give better estimations, our current approach uses four parameters: The
initialization time, the load time depended on the size of the input relation, the
deduction time based on the applicable rule instances, and the answer (query
result) time that uses the output size. In future, we plan to investigate more
parameters, and to extend the approach to other benchmarks.

Further information (including source code, data files, SQL scripts to create
the database, and benchmark results) is available on the web page of the project:
http://dbs.informatik.uni-halle.de/rbench/.

References

1. Brass, S.: Implementation alternatives for bottom-up evaluation. In: Hermenegildo,
M., Schaub, T. (eds.) Technical Comm. of the 26th Int. Conf. on Logic Pro-
gramming (ICLP’10). LIPIcs, vol. 7, pp. 44–53. Schloss Dagstuhl (2010), http:

//drops.dagstuhl.de/opus/volltexte/2010/2582
2. Brass, S., Stephan, H.: Pipelined bottom-up evaluation of Datalog: The Push

method. In: Petrenko, A.K., Voronkov, A. (eds.) Perspectives of System Informatics
(PSI’17). LNCS, vol. 10742, pp. 43–58. Springer (2018), http://www.informatik.
uni-halle.de/~brass/push/publ/psi17.pdf

3. Brass, S., Wenzel, M.: An abstract machine for Push bottom-up evaluation of
Datalog. In: Hartmann, S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R.
(eds.) Database and Expert Systems Applications, 29th International Conference,
DEXA 2018, Proceedings, Part II. LNCS, vol. 11030, pp. 270–280. Springer (2018),
http://www.informatik.uni-halle.de/~brass/push/publ/dexa18.pdf

4. Liang, S., Fodor, P., Wan, H., Kifer, M.: OpenRuleBench: An analysis of the per-
formance of rule engines. In: Proc. of the 18th Int. Conf. on World Wide Web. pp.
601–610. ACM (2009), http://rulebench.projects.semwebcentral.org/

5. Linux man-pages Project: proc(5) Linux User’s Manual, 4.16 edn. (9 2017)
6. Przymus, P., Boniewicz, A., Burzańska, M., Stencel, K.: Recursive query facilities in

relational databases: A survey. In: Database Theory and Application, Bio-Science
and Bio-Technology (DTA/BSBT 2010). pp. 89–99. No. 118 in Communications in
Computer and Information Science, Springer (2010), http://www-users.mat.umk.
pl/~eror/papers/dta-2010.pdf

7. Sagonas, K., Swift, T., Warren, D.S.: XSB as an efficient deductive database
engine. In: Snodgrass, R.T., Winslett, M. (eds.) Proc. of the 1994 ACM SIG-
MOD Int. Conf. on Management of Data (SIGMOD’94). pp. 442–453 (1994),
http://user.it.uu.se/~kostis/Papers/xsbddb.html

8. Scholz, B., Jordan, H., Subotić, P., Westmann, T.: On fast large-scale program anal-
ysis in Datalog. In: Proceedings of the 25th International Conference on Compiler
Construction (CC’2016). pp. 196–206. ACM (2016)

9. SPARQL 1.1 Query Language, W3C Recommendation (3 2013), http://www.w3.
org/TR/sparql11-query/

