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Abstract. RDF and Property Graph databases are two approaches for
data management that are based on modeling, storing and querying
graph-like data. In this paper, we present a short study about the inter-
operability between these approaches. We review the current solutions
to the problem, identify their features, and discuss the inherent issues.

1 Introduction

RDF [24] and graph databases [37] are two approaches for data management that
are based on modeling, storing and querying graph-like data. Several database
systems based on these models are gaining relevance in the industry due to their
use in several domains where graphs and network analytics are required [6].

Both, RDF and graph database systems are tightly connected as they are
based on graph-oriented database models. On the one hand, RDF database sys-
tems (or triplestores) are based on the RDF data model [24], their standard query
language is SPARQL [19], and there are languages to describe structure, restric-
tions and semantics on RDF data (e.g. RDF Schema [13], OWL [18], SHACL [25],
and ShEx [11]). On the other hand, most graph database systems are based on
the Property Graph (PG) data model [7], there is no standard query language
(although there are several proposals [4]), and the notions of graph schema and
integrity constraints are limited [32]. Therefore, these two groups of systems
(in particular the latter) are dissimilar in data model, schema, query language,
meaning and content.

Given the heterogeneity between RDF and graph database systems, it results
necessary to study the interoperability among them, i.e. the ability of these
systems to exchange data, information (structure and semantics) and knowledge
(constraints and business rules).

The main objective of this paper is to present an overview of the research
concerning the interoperability between RDF and property graph databases.
First, we clarify the notion of database interoperability, identifying three types:
syntactic interoperability, semantic interoperability, and query interoperability
(Section 2). Second, we present a short review of the current approaches and



works, including data format transformations, data and/or schema exchange,
and query translations. (Section 3). Third, we isolate and discuss the main issues
and challenges in the topic (Section 4).

2 Database Interoperability

The term “Interoperability” was introduced in the area of information systems,
and it could be defined as the the ability of two or more systems or components to
exchange information, and to use the information that has been exchanged [3]. In
the context of data management, interoperability is concerned with the support
of applications which exchange and share information across the boundaries of
existing databases [38].

Providing interoperability between database models, systems and applica-
tions is a very concrete and pragmatic problem, which stems from the need of
reusing existing systems and programs for building new applications [38]. Data
and information interoperability is relevant for several reasons, including:
– Promotes data exchange and data integration [30];
– Allows to have a common understanding of the meanings of the data [22];
– Allows the creation of information and knowledge, and their subsequent reuse

and sharing [40];
– Facilitates the access to a large number of independently created and man-

aged information sources of broad variety [40];
– Facilitates the reuse of available systems and tools [38];
– Allows to explore the best features of different approaches and systems [31];
– Enables a fair comparison of database systems by using benchmarks [5];
– Supports the success of emergent systems and technologies [38];
– It is a crucial factor for the development of new information systems [29].

One can define several forms of interoperability in information systems [28].
For instance, focusing in the dimension of heterogeneity, Sheth [40] defined four
levels of interoperability: system, syntax, structure and semantic. The system
level concerns the heterogeneity of computer systems and communications. The
syntax level considers machine-readable aspects of data representation (i.e. data
formats and serializations). The structure level involves data modeling constructs
and schematic heterogeneity. The semantic level requires that the information
system understand the semantics of the use’s information request and those of
information sources.

In the context of Web Languages and Ontologies, the syntactic interoper-
ability means that the applications can take advantage of parsers and APIs
providing syntactical manipulation facilities. Additionally, semantic interoper-
ability implies that applications can understand the meaning of representations
and thus can setup automatically mappings between different representations by
content analysis [33].

In the context of databases, interoperability can be divided into syntactic,
semantic and query interoperability. Syntactic interoperability refers to the abil-
ity of a database system to use data from other database system [23]. It could



means that both database systems are able to exchange information, although
they may not being aware of the meaning of such information. Semantic inter-
operability can be defined as the ability of database systems to exchange data
in a meaningful way. It implies that the systems have a common understanding
of the meanings of the data [22]. Query interoperability implies the existence
of methods to transform different query languages or data accessing methods
between two systems. It means that a query in the source database system can
be translated into one that can be directly executed on the target system [48].

3 RDF and Property Graphs interoperability

In general terms, syntactic interoperability between RDF and PG databases
means data exchange at the level of serialization formats, semantic interoper-
ability implies the definition of data and schema mappings, and query interop-
erability implies query translations among SPARQL and property graph query
languages. This section presents a review of the approaches and methods pro-
posed for these types of interoperability.

3.1 RDF databases

Every RDF database system is designed to support the Resource Description
Framework [24], a W3C standard created to describe web resources, although
it could be used in any application domain. RDF defines a data model which is
based on the notion of RDF triple. An RDF triple is a tuple formed by a subject,
a predicate, and an object. The subject denotes a resource, the predicate refers
to an attribute or relationship of the subject, and the object defines the value for
such property. A collection of RDF triples could be visualized a graph where the
subjects and objects are represented as nodes, and the predicates are represented
as edges. An RDF database could be considered as a collection of RDF graphs.
RDF reification is a feature which means to create triples about triples, here
metadata (e.g. temporal, uncertainty and trust metrics).

The RDF Schema vocabulary [13] provides a simple way to describe the
structure of an RDF database. In this case, the schema is described as a collec-
tion of a resource classes and property classes. Moreover, the classes could be
hierarchically organized by using subclass and subproperty relationships. More
complex restrictions can be expressed in languages like OWL [18], SHACL [25]
and ShEx [34]. These languages provide semantic interpretations that allow to
infer additional triples. This feature is called RDF(S) entailment.

SPARQL is the standard query language to retrieve and manipulate RDF
data. The first version (SPARQL 1.0 [35]) provides basic operators to express
graph pattern matching. The second version (SPARQL 1.1 [19]) adds features
like explicit negation, path expressions, subqueries and aggregate operators.



3.2 Property graph databases

Most of the current graph database systems have been designed to support the
property graph data model. A property graph [7] is a directed labelled multi-
graph with the special characteristic that each node or edge could maintain a
set (possibly empty) of properties. A property is formed by a name and a value.

The notion of schema for a property graph database has not been developed
in practice, although some systems use the notions of node types and edge types.
Integrity constraints are also in development. In [32], the authors mention three
types of integrity constraints: inherent constraints, explicit constraint and im-
plicit constraint. Additionally, we found node/edge/property constraints, path
constraints, and graph pattern constraints with property values [12].

In spite of the extensive research on querying graph databases [4], there is no
standard query language for property graphs. A recent publication, called the
GQL manifest [2], proposes to define and standardize one property graph query
language by fuzing the best of three query languages: Cypher [1], PGQL [36]
and G-CORE [8].

3.3 RDF-PG Syntactic interoperability

Assume that the syntactic interoperability is given by the facilities to trans-
form data from one format to another. Hence, the main requirement to support
syntactic interoperability is the existence of data formats (i.e. a syntax for en-
coding data stored in a database), over which transformation methods can be
implemented.

Turtle, TriG, RDF/XML, RDF/JSON and JSON-LD are data formats for en-
coding RDF data. In contrast, there is no data format to encode property graphs.
Given this restriction, some systems use graph data formats (like GraphML,
DotML, GEXF, GraphSON), but none of them is able to cover all the features
presented by the property graph data model. YARS-PG [47] is a recent pro-
posal of data format which was designed to be simple, extensible and platform
independent, and to support all the features provided by the current database
systems based on the property graph data model.

Given a source data format S and a target data format T , the first option to
support syntactic interoperability is to define a textual mapping from S to T .
Note that the schema of the database is not considered in the transformation.
Hence, the structure, semantics and restrictions of the source data could not be
preserved by the translated data.

Hartig [20] proposes two transformations between RDF? and property graphs.
RDF? is a syntactic extension of RDF which is based on reification. The first
transformation maps any RDF triple as an edge in the resulting property graph.
Each node has the “kind” attribute to describe the type of a node (e.g. IRI).
The second transformation distinguishes data and object properties. The former
are transformed into node properties, and latter into edges of a property graph.
The limitation of the second transformations is that metadata triples cannot be
transformed. The shortcoming of this approach is that RDF? isn’t supported by



majority of RDF triplestores (except Blazegraph and the most recent addition,
AnzoGraph) and requires conversion of existing RDF data beforehand.

Schätzle et al. [39] propose a mapping which is native to GraphX (a parallel
processing system implemented on Apache Spark). The proposed graph model
is an extension of the regular graph, but lacking the concept of attributes. The
mapping uses an special attribute label to store the node and edge identifiers, i.e.
each triple t = (s, p, o) is represented using two vertices vs, v0, an edge (vs, vo)
and properties vs.label = s, vo.label = o, (vs, vo).label = p. The proposed method
does not address blank nodes or RDF entailment.

Nyugen et al. [27] proposed LDM-3N (labeled directed multigraph-three
nodes), a graph model for RDF data. It is an extension of the regular graph,
without the concept of attributes, and represents each triple element as separate
nodes, thus three nodes (3N) . The LDM-3N graph model is used to address the
Singleton Property (SP) based reified RDF data.

Tomaszuk [46] presented an approach that uses the YARS serialization for
transforming RDF data into property graphs. This approach basically performs
a transformation between encoding schemes and does not consider the RDF
schema and its entailments. This approach has several implementations, eg.
neo4j-yars5 and TTL2YARS6.

With respect to the methods to transform property graphs into RDF graphs,
the literature is very restricted. The current methods [16,20] are based on reifi-
cation. In the simplest case, for each edge in the property graph there will be
a blank node (in the RDF graph) containing at least three nodes (resources or
literals) and three edges (properties). Such elements will be necessary to describe
all the information of the original edge.

A additional approach to provide syntactic interoperability is the use of an
intermediate data format. It is possible to find some tools to transform RDF into
other formats and vice versa, eg. Triplify [9] for relational data, GRDDL [14] for
XML and CSVW [42] for tabular data. However, to the best of our knowledge,
there is not study about the subsequent transformation to property graphs.

3.4 RDF-PG Semantic interoperability

Semantic interoperability between databases means that both, source and target
systems, are able to understand the meaning of the data to be exchanged. It
implies that both, data and schema must participate of the transformations
method.

A common approach to support semantic interoperability is the definition of
data and schema transformation methods. The schema transformation method
takes as input the schema of the source database, and generates a schema for
the target database. Similarly, the data transformation method allows to move
the data from the source database to the target database, but taking care of the
target schema. The transformation methods can be implemented by using data

5 https://github.com/lszeremeta/neo4j-sparql-extension-yars
6 https://github.com/lszeremeta/ttl-to-yars



formats or data definition languages. To the best of our knowledge, there is no
method that support data and schema transformations between RDF and PGs.

A additional approach is the use of a data transformation language. For
instance, XSPARQL [10], and SPARQL Template Transformation Language
(STTL) [15] are languages that allow data transformation between RDF and
other languages or formats. In the opposite direction, RML [17] is a generic
language which allows to define mappings from heterogeneous sources to RDF.
In a recent article [26], the authors present the Graph to Graph Mapping Lan-
guage (G2GML) for mapping RDF graphs to property graphs. This language
can be processed by an implementation called G2G Mapper (available on https:

//github.com/g2gml). There is no formal definition nor analysis of the features
of this transformation language.

3.5 RDF-PG Query interoperability

Query interoperability between RDF and property graph databases is a current
issue due to the lack of a standard query language for property graphs. Grem-
linator [44,45] is a tool that translates SPARQL queries into Gremlin pattern
matching traversals. Gremlin is a popular language used by some graph database
systems and graph processing frameworks. Gremlinator [44] has been successfully
integrated as a plugin of the famous Apache TinkerPop graph computing frame-
work7. Given the above, the openCypher initiative is working on the Cypher to
Gremlin translation (https://github.com/opencypher/cypher-for-gremlin).

Hartig et al. [21] defined extensions of the SPARQL query language that
capture an alternative approach to represent statement-level metadata that can
be used in property graphs (see [20]). This proposal, called SPARQL? is an
RDF?-aware extension that introduces new features that enable users to directly
access metadata triples in queries.

4 Issues and challenges

Based on our literature review about RDF and property graphs interoperability,
we identified several issues and challenges which will be discussed in this section.

4.1 Syntactic interoperability

– There is no standard data format for encoding property graphs. This is a
crucial issue to support syntactic interoperability.

– The most RDF serializations are triple-centric, while the most PG serializa-
tions represent graph as lists of nodes and edges.

– Despite the serializations based on JSON or XML in both models, the syn-
taxes used are difficult to map.

7 The sparql-gremlin plugin of the Apache TinkerPop framework available on Github
– (https://github.com/apache/tinkerpop/tree/master/sparql-gremlin)



– The support for multi-values is different in the models. A property graph
just support arrays, while RDF provides different types of lists.

– The RDF data model allows metadata about properties, i.e. edges between
edges are allowed. Although this feature is not common in real data, a data
mapping should be able to manage it. Note that a property graph does not
support multi-level metadata.

– RDF reification leads to an explosion in the size of the resulting graph. This
can be avoided by implementing a “smart” transformation that is able to
recognize a set of triples describing a reification, and map them to a single
node in the property graph.

4.2 Semantic interoperability

– The RDF model presents features with special meaning (or semantics) that
cannot be modeled by the property graph data model (at least not in a easy
way). Blank nodes, reification, and entailment are some of these features.

– Usually, an RDF database contains a mix of data and schema. In such case,
it is necessary to decide whether to extract the schema (and transforming it
independently), or processing the schema as part of the data.

– Another intrinsic feature of an RDF database is the occurrence of a partial
schema. In such case, we must define whether the schema will be used or not.
In the first case, it could be necessary to “discover” the schema, and just
then transform the data. Hence, such an approach could imply the use of a
transformation method that is schema independent, or a combined method
that supports data with or without schema.

– A semantic issue is the right and complete interpretation of a reified triple,
and its representation in a property graph.

– RDF Schema supports the definition of subclass and subproperty. These
features are not supported by current property graph database systems.

– OWL, that is intended to be a layer above RDF Schema, supports more
complex constraints for classes (e.g. intersection) and properties (e.g. tran-
sitivity). These features are not supported by the property graph model.

– An RDF database could contain semantic information that allows data in-
ference (i.e. to infer new triples based on the existing triples). Current graph
database systems have been not designed to support inference.

– Discovering semantic information and resolving mismatches requires the ap-
plication of human intelligence and judgment. Hence, the semantic interop-
erability is determined by the power of the translation methods to support
data and semantics interpretation.

4.3 Query interoperability

– Unlike the standardisation (via the W3C standards and ISO committees) of
query languages for the relational databases (SQL) and the RDF databases
(SPARQL), property graph databases do not have a standard query lan-
guage. This has led to the development of a wide range of vendor-specific



graph query languages (e.g. Cypher for Neo4j and Gremlin for Apache Tin-
kerPop).

– Most of the current property graph query languages do not have a solid
formal foundation (semantics, complexity and expressiveness). This raises a
critical challenge for supporting query interoperability, since a formal map-
ping between SPARQL and a property graph language cannot be defined.

– The notion of schema in the context of property graph query languages is not
strictly defined, or even absent in some cases due to their NoSQL oriented
nature. This creates another challenge when aiming to transform RDF data
(which consists of schema information) to property graph data.

– Property graph query languages address two different paradigms: declara-
tive and imperative. For instance, Cypher is a declarative query language,
whereas Gremlin is an imperative graph traversal language that also offers
a declarative construct. This adds an additional challenge, since these two
different paradigms operate on disparate sets of semantics (i.e. set vs bag
semantics), while aiming to support query interoperability.

– There are some on-going efforts, such as [41,43], that advocate consolidating
the relational and graph algebras in order to lay a foundation for proving the
equivalences between the different transformations and mappings to support
query interoperability between RDF and Property graphs. Nonetheless, there
is still scope for improvement.

Therefore, there is a need to propose a standardized query language for prop-
erty graph databases. It will facilitate the formal definition and study of query
transformation methods.

5 Conclusions

Interoperability is a very important feature that should be supported by any
database systems. In this article we concentrate on the interoperability between
RDF databases and property graph databases. Our analysis of the available
approaches and methods does not cover all the issues and challenges, but shows
that there are several problems to deal with.

The interoperability among systems is based on agreements between re-
questers and providers [22]. Hence, the research on the area must be supported
by the development of successful standards (starting with the standardization
of the property graph data model and its query language).
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