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Abstract. Trajectory patterns characterize similar behaviors among trajectories,
which play an important role in applications such as urban planning, traffic con-
gestion control, and studies of animal migration and natural phenomena. In this
paper we model trajectories as a sequence of line segments that represent the
steady movement of an object along time. We use a segment-clustering process
to group trajectories’ segments and partial segments based on their temporal and
spatial closeness. Then, it defines a trajectory pattern that results from the ag-
gregation of segment clusters, aggregation that is not only based on spatial and
temporal sequentiality, but also on the compatibility of trajectories in each seg-
ment cluster. The experimental assessment shows the effectiveness of the method.
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1 Introduction

Due to the current advances in sensor networks, wireless technologies, and RAID-
enabled ubiquitous computing, data about moving objects (also called trajectories) is
an example of massive data relevant in many real applications [4]. According to [4], a
trajectory pattern is a set of individual trajectories that visit the same sequence of places
with similar travel times. A classical representation of trajectories is given by a sequence
of time-stamped locations in a, typically, 2D space trajectory clustering algorithms aim
at grouping similar trajectories (or part of trajectories) according to similarity measures.
The main problem of trajectory aggregation is the imprecision of spatio-temporal data
[8], which makes more challenging the definition of similarity measures that compare
different trajectories. There are several notions of trajectory similarity measures [13]
being the Euclidean Distance Measure, in its simplest version, robust for trajectory
shifts.

We propose a method to derive trajectory patterns, which correspond to patterns of
trajectories with similar behavior during a time interval. To obtain the trajectory pat-
terns, we first group complete or partial segments of trajectories that have a similar
behavior in space and time. Then we aggregate segment clusters considering a compat-
ibility measure. A similarity measure in terms of a distance function is sensible to the
visual comparison, is computationally affordable, and is complemented with strategies
to avoid sensitivity to sampling rate and noise. We focus here on a similarity measure
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defined in terms of Euclidean distance for free movements, but it is also possible to
consider different distance functions when trajectories are constrained to other types
of spaces such as networks. Using the Euclidean distance, two segments of trajectories
can be considered similar if they coincide (approximately) in their starting and end-
ing points. In addition, two segments can be also considered similar if they coincide
in some parts of the segments [6, 12]. But it is not enough to have spatial similarity;
temporal similarity must ensure that trajectories also occur close in time to capture the
time-sensitivity of the similar behavior.

There exist several proposals for the extraction of trajectory patterns [6, 5, 1, 8, 3,
13, 12, 14]. They mostly vary in terms of their similarity functions and the capacity of
making incremental extraction of patterns. They consider similarity between sampling
points of trajectories (i.e., segments of trajectories), without considering that, between
sampling points, trajectories can be partially similar. According to [14] our work falls
in the category of trajectory clustering. We argue in this work that clustering not only
whole segments, but also portions of segments, captures similarity between trajectories
that could otherwise be underestimated.

We compare our proposal with the work presented in [6] which proposes the parti-
tion and group framework that allows the discovery of common sub-trajectories from a
trajectory database. First, it partitions trajectories into a set of line segments and then it
groups similar complete line segments. Trajectories are partitioned according to char-
acteristics points. Then, they generate a representative trajectory for each cluster. The
algorithm they propose to obtain clusters is based on a suitable distance function, which
is composed of the perpendicular distance, the parallel distance, and the angle dis-
tance. The algorithm works over a set of line segments and classifies them as part of
a cluster or as a noise. Only clusters with a cardinality over a threshold are considered
valid. Finally, the algorithm computes a representative trajectory for every cluster. The
main difference of this previous work with respect to our proposal is that they cluster
complete line segments, while we are able to cluster portions of line segments. In addi-
tion, we also include time in the comparison of segments and, when obtaining clusters,
we do not exclude a segment as a noise, but we keep portions of segments that do not
match a cluster, and use them in future computations of clusters. Only at the end of the
process of clustering, we eliminate noise segments. In this way, our implementation is
not strict with possible noise segments as the one proposed in [6].

2 Trajectory Pattern

A trajectory of an object is represented based on points with temporal dimension [5].
A point SPoint is a tuple (x, y) on the Euclidean space and a temporal point TPoint
is a tuple (SPoint, t) where t is a time instant. For simplicity, we also refer as a time
interval a tuple TT = [ts, te], where ts, te ∈ R and te ≥ ts. A segment S of an object’s
trajectory is a pair of TPoints [Ps,Pe], where Ps = ((xs, ys), ts), Pe = ((xe, ye), te),
and te > ts. The definition of trajectory is based in the definition given in [9]. A trajec-
tory T is a tuple composed of an identification and a sequence of consecutive segments
〈id, S1,S2, . . . ,Sm〉 that describes the path of an object and where, for every pair of
consecutive segments Si = [Ps,Pe] and Sj = [P′s,P

′
e] in T, Pe.x = P′s.x,Pe.y = P′s.y



Trajectory Patterns Based on Segment-Cutting Clustering 3

and P′s.t− Pe.t ≤ ε, whereε is the length of the interval in which an object may stop at
a particular TPoint. We call sub-trajectory Ts to a subset of consecutive segments of an
object’s trajectory T. A sub-trajectory is also a trajectory. With some abuse of notation,
we say that Ts ⊆ T if Ts is a sub-trajectory of T.

Notice that a trajectory is a sequence of segments, which differs from the classi-
cal definition in terms of a sequence of TPoints. We explicitly define trajectories as a
sequence of segments to emphasize the treatment of the segments in the clustering pro-
cess. Also, a sub-segment is also a segment. At a physical level, however, we can avoid
the duplication of endpoints in the definition of segments.

Let T be a trajectory, S, S1, and S2 be segments, and P and P′ be SPoints, the
following are useful operators.

– SD(P,P′): it denotes the Euclidian spatial distance between two SPoints P and
P′. If points are on a network, then this should be the distance on the network.
Overloading this operator, SD(S,P) is the shortest Euclidian distance from SPoint
P to segment S (i.e., the length of the perpendicular line from P to S).

– TD(P,P′) = |P.t − P′.t|: it is the temporal distance between two TPoints P and
P′.

– ID(T): it returns the identification of a trajectory T.
– ID(S): it returns the identification of the trajectory to which the segment S belongs

to.
– STARTs(T): it returns the starting segment of a trajectory T.
– ENDs(T): it returns the ending segment of a trajectory T.
– STARTp(S): it returns the starting point of a segment S.
– STARTp(T): it returns the starting point of a trajectory T, this is, STARTp(T) =
STARTp(STARTs(T)).

– ENDp(S): it returns the ending point of a segment S.
– ENDp(T): it returns the ending point of a trajectory T.
– LENGTH(T): it returns the number of segments of T.
– ANGLE(S1,S2): it returns the formed angle between segments S1 and S2.

2.1 Relations between Trajectory Segments

Intuitively, two segments S1 and S2 will be totally related if their initial and ending
points are close, spatially and temporally, and they have the same direction, this is,
the angle between the segments is less than 90◦. We formalize this in the following
definition.

Definition 1. Let S1 and S2 be two trajectory segments from different trajectories. S1
and S2 are totally related if and only if:

– SD(STARTp(S1),STARTp(S2)) ≤ ∆s

– TD(STARTp(S1),STARTp(S2)) ≤ ∆t

– SD(ENDp(S1),ENDp(S2)) ≤ ∆s

– TD(ENDp(S1),ENDp(S2)) ≤ ∆t

– ANGLE(S1,S2) < 90o. 2
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(a) (b) (c) (d)

Fig. 1. Partial relations between two segments S1 and S2 from different trajectories

Two segments are partially related if they are not totally related, they have the same
direction, and one extreme point of a segment is close, spatially and temporally, to some
point of the other segment. It is possible to have different forms of partial relations
between two segments. We have considered four forms of partial relations.

Definition 2. Let S1 and S2 be two trajectory segments that are not totally related.
S1 and S2 are partially related if and only if they satisfy one of the following partial
relations, which are illustrated in Figure 1:

– Case 1 (Figure 1(a)). In this case: (i) The starting points of segments S1 and S2

are spatially and temporally close to each other. This is, they satisfy the distances
established by threshold ∆s and ∆t. (ii) The ending point of segment S1 is not
close to any point of segment S2, but the ending point of segment S2 is close to
some point (different from an endpoint) of segment S1.

– Case 2 (Figure 1(b)). In this case: (i) The ending points of segments S1 and S2 are
spatially and temporally close to each other. (ii) The starting point of segment S1 is
not close to any point of segment S2, but the starting point of segment S2 is close
to some point (different from an endpoint) of segment S1.

– Case 3 (Figure 1(c)). In this case: Neither the starting and ending point of segment
S1 are close to any point of segment S2, but the starting and ending point of segment
S2 are close to some point (different from an endpoint) of segment S1.

– Case 4 (Figure 1(d)). In this case: (i) The starting point of segment S1 is close
to some point of segment S2. (ii) The ending point of segment S1 is not close to
any point of S2.(iii) The starting point of segment S2 is not close to any point of
segment S1. (iv) The ending point of segment S2 is close to some point (different
from an endpoint) of segment S1. 2

2.2 Segment Clustering

We use the concept of segment cluster to refer to a set SC = {S1, S2, . . . , Sn} of not
necessarily consecutive segments or sub-segments from different trajectories that are
totally related to each other. The process of generating segment clusters that are not
totally related is as follows. Consider a trajectory Ti with segments S1, . . . , Sn: (i) If a
segment Si of Ti is not totally related to any of the segments in the already computed
segment clusters, but it is partially related to some segment Sj in a cluster cj , then: (i)
We first identify the type of partial relation between segments Si and Sj , according to
Definition 2. (ii) A new segment Ss is generated and corresponds to the projection of
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the shortest segment on the longest segment. Note that this implies to calculate a TPoint
that splits the original segment. Let us assume that Si is shorter than Sj then, segment
Ss corresponds to the projection of Si over Sj . (iii) Cluster cj is updated and contains
segments Ss and Si, a new cluster is generated containing the residual segment Sj−Ss.

The dynamic computation of segment clusters refers to the capability of adding new
trajectory segments when we had already computed a set of segment clusters, without
starting the whole process of segment clustering. The segments of a new trajectory can
be added into existing segment clusters or can form new clusters.

We introduce the following notation over segment clusters that is useful in the
next definition of trajectory patterns. Let cl be a segment cluster composed of a set
S of segments. Then, (i) CONVEX(cl) denotes the convex hull over the TPoints that
form the segments of the cluster; (ii) TInterval(cl) denotes the time interval [ts, te]
such that ts = min∀si∈S{STARTp(si).t} and te = max∀si∈S{ENDp(si).t}; and (iii)
IDS(cl) = {ID(si)|si ∈ cl} is the set of trajectories’s ids that are part of the cluster.
Given a segment cluster cl, we call the pattern of cl, the tuple of the form (geo, tt, ids),
with geo = CONVEX(cl), tt = TInterval(cl), and ids = IDS(cl). Notice that this
pattern is essentially a geometric approximation of the segment cluster. For simplicity,
we use cp.a with a ∈ [geo, tt, ids] to access each of the elements of the pattern cp.

2.3 Trajectory Pattern

Segment clusters can be aggregated to form trajectory patterns if, they have at least
two segments, their areas intersect, their share a temporal interval, and they satisfy
a compatibility threshold of common trajectories. Trajectory patterns are patterns that
combine two or more patterns extracted from single segment clusters. We first introduce
the concept of compatible patterns, useful to define trajectory patterns.

Definition 3. Let cp1, cp2 be two patterns, with cp1 6= cp2. Patterns are compatible if:

1. cp1.geo ∩spatial cp2.geo 6= ∅, where ∩spatial denotes geometric intersection.

2. cp1.tt ∩time cp2.tt 6= ∅, where ∩time denotes temporal intersection.

3. |cp1.ids ∩ cp2.ids|
|cp1.ids ∪ cp2.ids| >= ∆j , where ∆j is the threshold of the number of common
trajectories. 2

Definition 4. Let cp1 and cp2 be two compatible patterns. A trajectory pattern tp for
cp1 and cp2 is a tuple of the form (geo, tt, ids), where geo is the geometric union of
cp1.geo and cp2.geo, tt is the time union of cp1.tt and cp2.tt, and ids the set union of
cp1.ids and cp2.ids. Because trajectory patterns are patterns, we can recursively apply
this definition to aggregate more than two patterns. 2

The extraction of trajectory patterns starts with an empty set of trajectory patterns
TP, a set C of segment clusters and its corresponding patterns C∗ and, iteratively, finds
compatible clusters to aggregate to trajectory patterns. At the end of this iterative pro-
cess, TP is empty if it does not find compatible clusters or contains patterns composed
of at least two patterns in C∗. This concept is similar to the concept of macro clus-
ters presented in [7], where, unlike our proposal, patterns of trajectories are computed
considering only complete segments of trajectories and only spatial closeness.
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(a) Segment clusters (b) Segment clusters to be aggregated (c) Convex hull

Fig. 2. Aggregation of segment clusters

Example 1. Consider the segment clusters in Figure 2(a). Figure 2(b) shows the seg-
ment clusters that can be aggregated from the set of segment clusters, this is, clusters
cl1, cl3, cl4 and cl5. Clusters cl2, cl6, cl7 and cl8 are discarded because they have only
one segment. Since the areas and time intervals of clusters cl1, cl3, cl4 and cl5 inter-
sect (see Figure 2(b)), they may be aggregated if they satisfy a specific compatibility
threshold (∆j). 2

Intuitively, a set of trajectory patterns corresponds to the aggregation of trajecto-
ries that have similar behavior and satisfy a compatibility threshold, which indicates a
percentage of common trajectories. Note that by applying Definition 4 iteratively, it is
possible to get a set of trajectory patterns, each of them with possible different levels of
compatibility.

3 Evaluation and Comparison with the State of the Art

To show that our method is effective to find trajectory patterns we use both real and
synthetic datasets. To evaluate effectiveness we compare our method with the method,
called Traclus, proposed in [6], which does not consider the temporal distance between
segments, and also compare complete segments but not sub-segments of trajectories.
In this case we use synthetic datasets. We also present a qualitative evaluation of our
method that shows some features that are not supported by the baseline. To do so, we
use a real dataset that corresponds to truck trajectories in Greece that has been used in
[10, 11, 2] to determine trajectory patterns.

3.1 Quantitative Comparison with the State of the Art

We generated 1,000 trajectories with the Brinkhoff generator3. Then, we randomly se-
lected 100 of them and created 50 copies of each one. Thus, these 100 trajectories
correspond to the ground truth of trajectory patterns that a clustering algorithm should
recognize as patterns. Figure 3 shows the comparison between the baseline method
presented in [6] and our proposed method.

3 http://chorochronos.datastories.org/?q=node/51
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Fig. 3. Comparison with the state of the art

For our method we graphic two lines, one unfiltered and another filtering those
segments that have less than 50 elements. For each method we show a line and not
a single point because, to consider a segment of the ground truth equal to a segment
obtained by an algorithm, a tolerance may be applied to ignore precision issues. For
each method, the point located on the leftmost endpoint is the one with tolerance 0,
and then it increases to 10, 100 and 250. Obviously, the greater the tolerance, we are
considering more distant segments as equal. Even so, they are small tolerance values.

In the chart, we show precision-recall values, which are standard in the information
retrieval community. In our domain, precision may be interpreted as the portion of the
ground truth that an algorithm can retrieve, whereas recall would be the portion of the
retrieved patterns that are indeed in the ground truth. Hence, the ideal method would
be the one that gets earlier to the upper right corner (precision 1 and recall 1). As it
can be seen, our method with filtering is the one that dominates the others by being the
only one to get close to that point. Regarding our unfiltered method, although it obtains
a precision of 1, it is at the expense of the recall (that is, it recovers all the reference,
but also a lot of noise). The baseline is improving by increasing the tolerance in the
comparison, but it does not reach our method with filtering.

3.2 Qualitative evaluation of our proposal

The trucks dataset contains GPS (with reference system GGRS87) positions of 50
trucks transporting concrete in the Athens area between August and September of
2002. This dataset contains temporal information, and the time interval to take the
samples is 30 seconds. The set contains 111,927 segments, conforming 276 trajecto-
ries, with an average of 406 segments per trajectory. We use a spatial threshold ∆s

of 420 units, a temporal threshold ∆t of 209,950 units of time, and different com-
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patibility thresholds. These thresholds were chosen because they are the values that
minimize a ClusterCost function defined for a set of segment clusters C and a set R
of isolated segments not included in any ci ∈ C. Function ClusterCost is defined as:
ClusterCost = ClusterWeight+ NoiseWeight, where:

ClusterWeight =

{∑
ci∈C

AREA(CONVEX(ci))
|IDS(ci)|

|C| > 0

0 otherwise

NoiseWeight =

{∑
ri∈R LENGTH(ri)

2 ∗ π |R| > 0

0 otherwise

Figure 4(a) shows the 17,855 segment clusters obtained by our algorithms with
∆s = 420 and ∆t = 209, 950.

(a) Segment clusters (b) Trajectory patterns for ∆j = 0%

Fig. 4. Segment clusters and trajectory patterns for the trucks dataset

Trajectory patterns for the trucks dataset We use different compatibility thresholds
to compute trajectory patterns considering the 17,855 segment clusters in Figure 4(a).
Consider ∆j = 0%, this is, there is not a constraint over a percentage of common
trajectories. In this case, all the segment clusters whose areas and time intervals intersect
form a unique trajectory pattern. Figure 4(b) shows the result of the experiment, where
there are six trajectory patterns and two non-aggregate clusters.

A value for ∆j greater than 50% provides a lower proportion of trajectory patterns
with respect to the total of trajectory patterns and non-aggregate clusters. Figure 5(a)
shows the 3, 064 trajectory patterns with ∆j = 60%. 5(b) illustrates the result for
∆j = 100%, in which case there are 1, 963 trajectory patterns.

Trajectory patterns under different temporal intervals We also compute trajectory
patterns for different periods of time. They were obtained considering the following pa-
rameters ∆s = 420 units, ∆t = 209, 950 units of time, and ∆j = 20% (compatibility
threshold). We consider different days of the week and weekends, and we can conclude
that during the week, trucks remain mostly in the central zone in the afternoons. Figure
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(a) ∆j = 60% (b) ∆j = 100%

Fig. 5. Trajectory patterns for different ∆j

6 shows the trajectory patterns for September 11 (Wednesday) to September 14 (Satur-
day) of 2002. This kind of finding would not be possible with the algorithm in [6] as it
does not consider time.

(a) September 11 (b) September 12 (c) September 13 (d) September 14

Fig. 6. Trajectory patterns for days of September of 2002

4 Conclusions and Future Work

We presented a new concept of trajectory pattern that corresponds to the aggregation of
compatible segment clusters from trajectories. To compute segment clusters, we con-
sider the spatial and temporal distance between segments and sub-segments of trajec-
tories, and also the angle of the segments. Aggregation of segment clusters is possible
if the clusters satisfy a compatibility threshold, have more than one segment, and their
areas and time intervals intersect. Our method allows the dynamic computation of seg-
ment clusters, and process the called macro clustering presented [7]. The experimenta-
tion we reported shows that the method is effective for computing trajectory patterns.
For future work, we would like to optimize the algorithms for segment clustering and
trajectory patterns detection. To do so, we can consider indexing structures in space and
time.
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