
HyperBench: A Benchmark and Tool for
Hypergraphs and Empirical Findings?

Wolfgang Fischl1, Georg Gottlob1,2, Davide M. Longo1, and Reinhard Pichler1

1 TU Wien, firstname.surname @tuwien.ac.at
2 University of Oxford, georg.gottlob@cs.ox.ac.uk

1 Introduction

Answering Conjunctive Queries (CQs) and solving Constraint Satisfaction Prob-
lems (CSPs) are classical NP-complete problems of high relevance in Computer
Science. Consequently, there has been an intensive search for tractable frag-
ments of these problems over the past decades. We are mainly interested here
in tractable fragments defined via decomposition of the underlying hypergraph
structure of a given CQ or CSP. The most important decomposition methods are
hypertree decompositions (HDs), generalized hypertree decompositions (GHDs),
and fractional hypertree decompositions (FHDs) alongside the corresponding
width notions hypertree width (hw), generalized hypertree width (ghw), and
fractional hypertree width (fhw), respectively.

It has been shown that CQ answering and CSP solving are tractable on every
class of CQs/CSPs, if the underlying hypergraphs have bounded hw(H), ghw(H),
or fhw(H). Since fhw(H) ≤ ghw(H) ≤ hw(H) holds for every hypergraph H,
bounded fhw defines the biggest tractable class of CQ answering and CSP solving.
On the other hand, only for hw , it is feasible in polynomial time to recognize if a
given hypergraph has width ≤ k for fixed k. In contrast, for fhw and ghw , the
problem of recognizing low width is NP-complete even for k = 2 [7].

In [7], the following properties of the underlying hypergraphs have been
identified to ensure tractable computation of GHDs and FHDs of a given width
(if they exist) or at least to allow for a good approximation thereof.

Definition 1. The intersection width iwidth(H) of a hypergraph H is the maxi-
mum cardinality of the intersection e1 ∩ e2 of any two distinct edges e1, e2 of H.
For positive integer c, the c-multi-intersection width c-miwidth(H) of a hypergraph
H is the maximum cardinality of any intersection e1 ∩ · · · ∩ ec of c distinct edges
e1, . . . , ec of H. The degree deg(H) of a hypergraph H is the maximum number
of edges a vertex of H occurs in, i.e., maxv∈V (H)|{e ∈ E(H) | v ∈ e}|.

We say that a class C of hypergraphs has the bounded intersection property
(BIP), the bounded multi-intersection property (BMIP), or the bounded degree
property (BDP) if there exist constants i, c, and d, such that every hypergraph
in C satisfies iwidth(H) ≤ i, c-miwidth(H) ≤ i, or deg(H) ≤ d, respectively.

Indeed, it has been shown in [7] that, if it exists, a GHD of low width can
be computed in PTIME for hypergraphs enjoying the BDP, BIP, or BMIP. For

? This is an extended abstract of [6].

FHDs, an exact PTIME algorithm has been presented in case of the BDP; for
the BIP, a polynomial time approximation scheme (PTAS) exists.

Despite the appealing theoretical results, little is known in practice about
these properties and their interplay with the various notions of width. The goal of
this work is to remedy this deficit. More concretely, we investigate questions such
as the following: Do the hypergraphs underlying CQs and CSPs in practice, indeed
have low degree and (multi-)intersection width? Are these properties non-trivial
in the sense that, e.g., low intersection width does not immediately lead to low
hw , ghw , and fhw? We also want to get a better understanding of the relationship
between ghw and hw . In general, only the inequality hw(H) ≤ 3 · ghw(H) + 1 is
known. But do these two notions of width indeed differ by factor 3 in practice?
And do theoretical tractability results (such as tractable GHD computation in
case of the BIP) indeed lead to practically feasible computation?

In order to provide answers to these questions, we have collected a vast amount
of CQs and CSPs from concrete applications as well as randomly generated ones,
and translated them into a uniform hypergraph format. We have successively
performed a series of experiments on these hypergraphs – determining the hw and
ghw , the degree and (multi-)intersection width as well as further metrics relating
to the size such as number of vertices, number of edges, and maximum size of edges.
All the hypergraphs thus collected together with the results of our experiments
are publicly available at http://hyperbench.dbai.tuwien.ac.at/. Below, we give a
summary of these results. Moreover, we note that this benchmark has already been
profitably applied in the experimental evaluation of decomposition algorithms by
other authors [5].

2 Basic Definitions

We assume the reader to be familiar with basic concepts such as CQs and CSPs.
The hypergraph corresponding to a CQ φ is defined as H = (V (H), E(H)), where
the set of vertices is V (H) = variables(φ) and the set of edges is E(H) = {e |
∃A ∈ atoms(φ) : e = variables(A)}. Due to lack of space, we also have to assume
familiarity with the various notions of decompositions and width.

We have already introduced the crucial properties BDP, BIP, and BMIP. By
slight abuse of notation, we shall say in the sequel that a hypergraph H has
BDP = d, BIP = i, or c-BMIP = i, if H satisfies the conditions iwidth(H) = i,
c-miwidth(H) = i, or deg(H) = d, respectively.

3 Results

We have collected 3070 CQs and CSPs from different sources and converted them
into hypergraphs. Our collection of CQs comprises 535 queries used in practical
applications and 500 randomly generated ones using the tool from [11]. The
non-random CQs stem from various sources. Queries in [4] come from a huge
SPARQL repository comprising over 26 million CQs, from which we have included
only the hypergraphs with hw ≥ 2. Queries in [9] come from a big collection of
SQL queries from which we have extracted over 15,000 CQs (in particular, no
nested SELECTs). Again, we have only included hypergraphs with hw ≥ 2 into
our benchmark. The remaining non-random CQs come from different benchmarks

such as the Join Order Benchmark (JOB) [10] and TPC-H [12]. Our collection
of 2035 CSPs is composed of 1953 instances from [2] and 82 instances used in
previous analyses [3,8]. The instances from [2] are divided in two classes: 1090 of
them come from applications and the remaining 863 are random instances.

Table 1. Percentage of instances having BDP, BIP, 3-BMIP, 4-BMIP ≤ 5.

BDP BIP 3-BMIP 4-BMIP
(%) (%) (%) (%)

Application-CQs 81.68 100 100 100
Application-CSPs 53.67 99.91 100 100
Random 10.12 76.82 90.17 93.62

In our first experiment, we computed BDP, BIP, 3-BMIP, 4-BMIP for
our collection of hypergraphs. The results are presented in Table 1. We group
our instances in three classes: application-CQs, application-CSPs, and random
instances (both CQs and CSPs). In the first place, we are interested in the
percentage of hypergraphs whose values of BDP, BIP, 3-BMIP, and 4-BMIP are
small. It turned out that all application-CQs have BIP ≤ 5 and yet smaller 3-
BMIP and 4-BMIP. The BDP tends to be bigger, but there are still 81.68% of the
application-CQs with BDP ≤ 5. As for the application-CSPs, the BIP and BMIP
are also small in general, namely 99.91%, 100% and 100% have BIP ≤ 5, 3-BMIP
≤ 5, and 4-BMIP ≤ 5, respectively. Interestingly, the percentage of application-
CSPs with BDP ≤ 5 is rather low (53.67%) compared with application-CQs. The
random instances behave differently. Indeed, we have measured 76.82%, 90.17%
and 93.62% of the random instances (with very similar behaviour of random CQs
and random CSPs) to have small BIP, 3-BMIP, and 4-BMIP, respectively. The
percentage of instances with BDP ≤ 5 even falls more dramatically to 10.12% for
random instances. To conclude, BIP and BMIP indeed tend to be (very) small
for both CQs and CSPs taken from applications and they are still reasonably
small for random instances.

As a next step, we have systematically applied the computation of hw [8] to
our benchmark. The aim of this experiment was to determine the hw or at least
an upper bound thereof for each hypergraph. We have organized the computation
in different rounds, each of which has a different value of k, which is initialized
with k = 1. In each round, we check if hw(H) ≤ k holds and, if so, compute a
concrete HD with this width. If the program ends with a yes-answer, we have an
upper bound on hw . In case of a no-answer, we have a lower bound. No bound
is obtained in case of a timeout (which we set at 3,600 seconds). For all the
instances with no upper bound (i.e., either no-answer or timeout) for a value of
k, we continue with k := k+1 in the next round. We were able to determine that
for all application-CQs hw ≤ 3 holds and to compute concrete HDs of this width.
For 694 of all 1172 application-CSPs (59.22%) we have verified hw ≤ 5. In total,
considering also random instances, 1849 (60.23%) out of 3070 instances have
hw ≤ 5. For 1453 of them, we determined exact hw , for the others we only have
an upper bound and the actual value of hw could be even less. We conclude that

for the vast majority of CQs and CSPs (in particular those from applications), hw
is small enough to allow for efficient CQ answering or CSP solving, respectively.

We have also analysed the correlation between all the hypergraph parameters
studied here. BIP and BMIP are obviously highly correlated. More interestingly,
we observe a high correlation between any two of the number of vertices, the
arity (= maximum edge size), and hw . It is worth underlining that BDP, BIP,
3-BMIP, 4-BMIP have low correlation with hypertree width. That is, low values
of these parameters are favourable for GHD computation [7] but they do not
imply that also the hw and (as we will see below) the ghw are particularly small.

Finally, we have implemented several algorithms for GHD-computation, which
exploit low BIP. For all hypergraphs with hw ≤ k and k ∈ {3, 4, 5, 6}, we checked
whether ghw ≤ k− 1 holds. To this end, we ran our algorithms with a timeout of
3,600 seconds. If the timeout does not occur, we say that the instance is “solved”.
We found out that in 98% of the solved cases and 57% of all instances with hw ≤ 6,
hw and ghw have identical values. Actually, we expect that the percentage in case
of the solved case is more significant because the GHD computation algorithms
usually take longer in case of a no-answers, i.e., we conjecture that most of the
unsolved instances also have identical values of hw and ghw .

4 Conclusion

In this work, we have extensively experimented with a big collection of hy-
pergraphs (from both CQs and CSPs). We have thus made several interesting
observations, which have been summarized above. For instance, the discrepancy
between hw and ghw seems to be much smaller in practice than the theoretical
factor 3. Moreover, it has turned out that hypergraph parameters such as BIP,
on the one hand, tend to be very small in practice and, on the other hand, low
BIP is indeed very helpful for computing concrete decompositions – especially
GHDs. This leads us to several directions for future work. Further improvements
of our GHD algorithms and implementations are required to increase the number
of “solved” instances. The development of algorithms exploiting low 3-BMIP or
4-BMIP seems to be a natural next step, since the latter parameters tend to be
yet smaller than BIP. On the more theoretical side, it would be very interesting to
settle the open question if bounded BIP also ensures tractable FHD-computation:
so far, we only know that BIP allows for a PTAS for the fhw .

Acknowledgement

This work was supported by the Austrian Science Fund (FWF) project P30930-
N35. Davide Mario Longo’s work was supported by the Austrian Science Fund
(FWF) project W1255-N23.

References

1. Arocena, P.C., Glavic, B., Ciucanu, R., Miller, R.J.: The ibench integration metadata
generator. Proc. VLDB Endow. 9(3), 108–119 (2015)

2. Audemard, G., Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: an XML-based
format designed to represent combinatorial constrained problems. http://xcsp.org

3. Berg, J., Lodha, N., Järvisalo, M., Szeider, S.: Maxsat benchmarks based on
determining generalized hypertree-width. MaxSAT Evaluation 2017 p. 22 (2017)

4. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query
logs. PVLDB 11(2), 149–161 (2017)

5. Fichte, J., Hecher, M., Lodha, N., Szeider, S.: An SMT Approach to Fractional
Hypertree Width. Proc. CP 2018, pp.109–127 (2018)

6. Fischl, W., Gottlob, G., Longo, D.M., Pichler, R.: Hyperbench: A benchmark and
tool for hypergraphs and empirical findings. In: PODS 2019 (to appear) (2019)

7. Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decompositions:
Hard and easy cases. In: Proc. PODS 2018. ACM (2018)

8. Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decomposi-
tion. ACM Journal of Experimental Algorithmics 13 (2008)

9. Jain, S., Moritz, D., Halperin, D., Howe, B., Lazowska, E.: Sqlshare: Results from
a multi-year sql-as-a-service experiment. In: Proc. SIGMOD 2016. ACM (2016)

10. Leis, V., Radke, B., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann,
T.: Query optimization through the looking glass, and what we found running the
join order benchmark. The VLDB Journal (2017).

11. Pottinger, R., Halevy, A.: MiniCon: A scalable algorithm for answering queries
using views. The VLDB Journal 10(2-3), 182–198 (Sep 2001)

12. Transaction Processing Performance Council (TPC): TPC-H decision support
benchmark. http://www.tpc.org/tpch/default.asp (2014)

