
Traceability Links Recovery in BPMN Models

Raúl Lapeña

SVIT Research Group, Universidad San Jorge, Spain
rlapena@usj.es

Abstract. Traceability Links Recovery has been a topic of interest for
many years. However, Traceability Links Recovery in models in general,
and BPMN models in particular, has not received enough attention yet.
Through my work, I aim to fill this research gap by studying Trace-
ability Links Recovery between requirements and BPMN models. So far,
under the tutelage of directors Carlos Cetina and Óscar Pastor, I adapted
Traceability Links Recovery code techniques to work over BPMN mod-
els. The produced approach was applied to two different case studies,
an academic one and an industrial one. The outcomes of the research
outperformed the state of the art baseline. Under the light of these novel
findings, opportunities for new research unfold.

Keywords: Traceability Links Recovery, BPMN Models, Model Driven
Engineering

1 Introduction

Traceability Links Recovery (TLR) is defined as the software engineering task
that deals with the identification and comprehension of dependencies and re-
lationships between software artifacts. It has been a subject of investigation
for many years within the software engineering community [1, 2]. Research has
shown that affordable traceability can be critical to the success of a project [3],
and leads to increased maintainability and reliability of software systems [4], also
decreasing the expected defect rate in developed software [5]. In recent years,
TLR has been attracting more attention [6]. However, most of the works focus
on performing TLR tasks in code artifacts [7], while TLR in process models is a
topic that has not received enough attention yet. Through my work, I aim to fill
this research gap by studying TLR between requirements and process models.
So far, under the tutelage of directors Carlos Cetina and Óscar Pastor, I adapted
TLR code techniques to work over process models (specifically, BPMN models).
More precisely, through the work presented in [8], we studied TLR between re-
quirements and process models through three different approaches, two adapted
code techniques and a models-specific baseline. Given a query requirement and a
process model, the three approaches used different means to extract a fragment
from the model, relevant to the implementation of the query requirement.

The three approaches were evaluated through the Camunda BPMN for Re-
search case study (github.com/camunda/bpmn-for-research) and through a



real-world industrial case study, provided by our industrial partner, CAF (Con-
strucciones y Auxiliar de Ferrocarriles, www.caf.es/en), a worldwide provider of
railway solutions. One of the adapted code techniques achieved the best results
for all the measured performance indicators in both case studies, outperform-
ing the other two techniques. The overall findings of our paper suggested that
adapting code techniques that provided good results in code was beneficial for
TLR between requirements and BPMN models, since the outcomes outperformed
those of a models-specific baseline. Under the light of these findings, a research
question arises, unfolding opportunities for novel research: How can we further
improve TLR in BPMN models?

The rest of the paper is structured as follows: Section 2 describes the Ap-
proach that obtained the best results and how to apply it to TLR between
requirements and BPMN models. Section 3 details the baseline technique and
the designed Evaluation. Section 4 presents the obtained Results. Section 5 for-
mulates the Research Question that arises from our ongoing work. Section 6
discusses potential Future Work. Section 7 mentions the research Methodology
in use. Finally, Section 8 reviews the works related to this one.

2 Approach

This section describes the Mutation Search technique, the technique designed
in [8] that obtained the best results for TLR between requirements and BPMN
models, providing insight on its steps, application, and outcomes.

2.1 Mutation Search

The Mutation Search technique receives a query requirement and a BPMN model
as input, generates a population of fragments, and ranks said fragments through
Latent Semantic Indexing. From the ranking, the first fragment is taken as the
proposed solution. In order to generate the fragments population, algorithm 1
is followed. In the algorithm, an empty population and a seed fragment (chosen
randomly from the input model) are created. Then, until the algorithm meets
a stop condition (for instance, a certain number of iterations), the fragment
is mutated and each new mutation is added to the population, avoiding the
addition of repeated fragments.

In the algorithm, a mutation in a fragment can be caused by: (1) adding
one new event, gateway, or task that is connected to an already present event,
gateway, or task, (2) removing an element with only one connection, or (3)
adding or removing a lane from the fragment. The performed mutation is chosen
randomly on each iteration.

The top part of Fig. 1 shows this process, having the example input BPMN
model on the left, and some example fragments on the right, generated through
the usage of the algorithm. The generated fragments are represented through
the text contained in all their elements. The text of both the input require-
ment and the generated fragments is then processed through general phrase

53



Algorithm 1 Mutation Search Algorithm

1: P ← [] . Initialize the population
2: F ← randomFragment(inputModel) . Create an initial seed fragment
3: while !(StopCondition) do . While the stop condition is not met
4: F ← mutateFragment(F ) . Mutate the fragment
5: if !(F ∈ P ) then . If the new fragment is not in the population
6: P ← P + F . Add the new mutation to the population
7: end if
8: end while
9: return P . Return the population

styling techniques (lowercasing and tokenization), Parts-Of-Speech Tagging [9],
and Lemmatizing [10].

Finally, the requirement and the fragments are fed into Latent Semantic
Indexing, which ranks the fragments according to their similitude to the re-
quirement. Latent Semantic Indexing (LSI) [11] is an automatic mathemati-
cal/statistical technique that analyzes relationships between queries and docu-
ments (bodies of text). LSI has been successfully used to retrieve Traceability
Links between different kinds of software artifacts in different contexts [7].

To that extent, LSI produces a term-by-document co-ocurrence matrix. The
bottom left part of Fig. 1 shows an example term-by-document co-occurrence
matrix, with values associated to an example. Each row in the matrix (term)
stands for each of the words that appear in the processed text of the requirement
and the model elements. Each column in the matrix (document) stands for each
of the fragments (MF1 to MFn) generated through the algorithm. The final
column (query), stands for the processed input requirement. Each cell in the
matrix contains the frequency of each term in each document.

Vector representations of the documents and the query are obtained by nor-
malizing and decomposing the term-by-document co-occurrence matrix using a
matrix factorization technique called Singular Value Decomposition (SVD) [11].
In Fig. 1, a three-dimensional graph of the SVD is provided, on which it is pos-
sible to notice the vectorial representations of some of the columns. To measure
the similarity degree between vectors, the cosine between the query vector and
the documents vectors is calculated. Cosine values closer to one denote a high
degree of similarity, and cosine values closer to minus one denote a low degree
of similarity. Through this measurement, the fragments are ordered according
to their similarity degree to the requirement, producing the relevancy ranking
shown on the bottom right part of Fig. 1. From the ranking, the first fragment
is considered as the candidate solution for the requirement, and consequently
taken as the final output of the Mutation Search technique.

54



Ke
yw

or
ds

Query

MFN

MF2

Q

MF1

Documents ScoresSingular Value Decomposition

Q

MF9
MFn

MF6

MF1 MF2 … MF9 … MFn Query

Inhibition 1 0 … 0 … 0 0

Door 0 1 … 1 … 2 1

Button 0 1 … 0 … 1 0

Open 0 0 … 1 … 1 1

… … … … … … … …

Model Element Ranking

MF9 = 0.97

MFn = 0.52

…

MF6 = - 0.93

REQUIREMENT
The system will open the doors

MODEL
In

hi
bi

tio
n Hu

m
an

Do
or

 
M

od
ul

e
Push doors 

button
Yes

Are the doors open?

X

Open the 
doors

No

EXAMPLE MODEL FRAGMENTS

In
hi

bi
tio

n

Push doors button

Push doors button

Are the doors open?

X

Yes
Are the doors open?

X

Open the doors

No

Do
or

 
M

od
ul

e

Open the doors

MF1

MFn

MF2

MF9

MF6

Fig. 1. Mutation Search Technique Example

3 Evaluation

The following paragraphs introduce the baseline, the experimental setup, the
case studies, and the oracles used to evaluate the baseline and Mutation Search.
This section also details the design of the evaluation.

3.1 Linguistic Rule-Based Baseline

Spanoudakis et al. [12] present a linguistic rule-based approach to support the
automatic generation of traceability links between natural language requirements
and conceptual models. Specifically, the traceability links between the require-
ments and the conceptual models are generated through a set of requirement-
to-object-model (RTOM) rules that specify sequences of terms and grammatical
patterns. The technique searches for matching patterns in the requirements and
the conceptual models, producing a link per each found match. We worked with
a set of rules adapted so that the technique works over BPMN models.

3.2 Experimental Setup

Through [8], TLR between requirements and BPMN models is performed. The
results obtained by Mutation Search are compared against those of a models-
specific baseline. An overview evaluation can be seen in Fig. 2. The top part
shows the inputs, extracted from the documentation provided in the case stud-
ies: requirements, BPMN models, and the approved traceability between both.
The approved traceability is a document that depicts the correct fragments that

55



correspond to the requirements. It is provided by software engineers from our in-
dustrial partner, and conforms the oracle of the evaluation. For each case study,
the linguistic baseline takes the mentioned inputs, and generates a single frag-
ment for each requirement. The generated fragment is compared with the oracle
fragment. The Mutation Search technique generates a ranking of fragments per
requirement instead. Since the rankings are ordered from best to worst trace-
ability, the first fragment in each ranking is picked for comparison against its
corresponding oracle. Once the comparisons are performed, a confusion matrix
is calculated both for the baseline and for Mutation Search.

Linguistic Mutation Search

Requirements BPM Model Approved 
Traceability

Approaches 
Input

Oracle

Model Fragment Model Fragment 
(Ranking @ 1)

Precision, Recall, F-Measure, MCC
Measurements & Report

Fig. 2. Experimental Setup

A confusion matrix is a table that is often used to describe the performance of
a classification model (in this case, the linguistic baseline and Mutation Search)
on a set of test data (the solutions) for which the true values are known (from
the oracle). The confusion matrix distinguishes between the predicted values
and the real values, classifying them into four categories: (1) true positive; (2)
false positive; (3) true negative; and (4) false negative. Then, some performance
measurements are derived from the values in the confusion matrix. In particular,
a report including four performance measurements (recall, precision, f-measure,
and MCC) is created for each of the two case studies, both for the baseline and
for Mutation Search.

3.3 Case Study and Oracles

In order to perform the evaluation of the approaches, we relied on two different
case studies: (1) the Camunda BPMN for Research academic repository, and
(2) a set of BPMN models provided by CAF, our industrial partner. In order
to obtain the performance results of the approaches, we relied on the available
correct solutions, provided in both case studies.

56



Camunda BPMN for Research: The Camunda BPMN for Research case
study consists of four BPMN modeling exercises. Each exercise contains an as-
sociated textual description and the solution model for the provided description.
In order to apply the approaches to the Camunda case study, a software engineer
derived a set of requirements from the problem descriptions. Each exercise has
an associated solution model for the provided description. The same software
engineer who derived the requirements from the problem descriptions also gen-
erated a set of fragments from the solution model, mapping each fragment to
a single requirement. Thus, we were provided with a set of requirements, the
fragments that implement them, and the TLR mapping between both artifacts.

CAF: For our evaluation, CAF provided us with the requirements and
BPMN models of five railway solutions. They also provided us with their ex-
isting documentation on requirements to BPMN models traceability, where each
requirement is also mapped to a single fragment.

4 Results

Table 1 outlines the results. Each row shows the obtained precision, recall, f-
measure, and MCC values. The Mutation Search technique achieved the best
results for all the performance indicators in both case studies, providing a mean
precision value of 63%, a mean recall value of 77%, a combined F-measure of
68%, and an MCC value of 0.60 for the Camunda BPMN for Research case study,
and a mean precision value of 79%, a mean recall value of 72%, a combined F-
measure of 74%, and an MCC value of 0.69 for the CAF case study.

Table 1. Mean Values and Standard Deviations for Precision, Recall and F-Measure

Precision Recall F-Measure MCC

Linguistic - Camunda 40%±25% 35%±22% 33%±13% 0.25±0.19

Linguistic - CAF 35%±28% 35%±10% 30%±7% 0.18±0.13

Mutation Search - Camunda 63%±21% 77%±22% 68%±19% 0.60±0.24

Mutation Search - CAF 79%±19% 72%±19% 74%±16% 0.69±0.20

5 Research Question

From the results of our work, a Research Question arises: How can we further
improve TLR in BPMN models? The following section will address this ques-
tion, briefly mentioning some of the possible future works derived from a close
inspection of the results.

57



6 Future Work

This section presents some ideas and opportunities for future work that arose
from the presented Research Question:

1. (Accepted - CAiSE 2019) Tacit knowledge in the requirements may have
a negative impact on semantic-based techniques. How can we minimize this
impact?

2. (Currently under review - IS CAiSE 2018 special issue) BPMN
models have some particularities that other models lack. Could we take in
account these particularities in our techniques in order to lead them to en-
hanced results?

3. (Ongoing work) BMP models have less text that other models. Could we
enrich the text of BPMN models to improve TLR techniques based on text
search?

7 Methodology

To perform this research, as well as our ongoing work, we have followed the
design science methodology guidelines presented in [13].

8 Related Work

Related works focus on the impact and application of linguistic techniques to
TLR problem resolution at several levels of abstraction. Works like [14, 15] use
linguistic approaches to tackle specific TLR problems. In [16], the authors use
linguistic techniques to identify equivalence between requirements. The work
presented in [17] uses linguistic techniques to study how changes in requirements
impact other requirements in the same specification. Our work is not based or
focused on linguistic techniques as a means of TLR analysis, but we rather study
novel techniques to perform TLR between requirements and BPMN models.

Other works target the application of LSI to TLR tasks. De Lucia et al. [18]
present a tool based on LSI in the context of an artifact management system.
[19] takes in consideration the possible configurations of LSI when using the
technique for TLR between requirement artifacts. Through our work, we do not
study the management of artifacts nor different LSI configurations or how LSI
configurations impact the results of TLR, but we rather study TLR between
requirements and BPMN models.

References

1. Gotel, O.C., Finkelstein, C.: An Analysis of the Requirements Traceability Prob-
lem. In: Proceedings of the First International Conference on Requirements Engi-
neering, IEEE (1994) 94–101

58



2. Spanoudakis, G., Zisman, A.: Software Traceability: a Roadmap. Handbook of
Software Engineering and Knowledge Engineering 3 (2005) 395–428

3. Watkins, R., Neal, M.: Why and How of Requirements Tracing. IEEE Software
11(4) (1994) 104–106

4. Ghazarian, A.: A Research Agenda for Software Reliability. IEEE Reliability
Society 2009 Annual Technology Report (2010)

5. Rempel, P., Mäder, P.: Preventing Defects: the Impact of Requirements Traceabil-
ity Completeness on Software Quality. IEEE Transactions on Software Engineering
43(8) (2017) 777–797

6. Parizi, R.M., Lee, S.P., Dabbagh, M.: Achievements and Challenges in State-of-
the-Art Software Traceability between Test and Code Artifacts. IEEE Transactions
on Reliability 63(4) (2014) 913–926

7. Rubin, J., Chechik, M.: A Survey of Feature Location Techniques. In: Domain
Engineering. Springer (2013) 29–58

8. Lapeña, R., Font, J., Cetina, C., Pastor, O.: Exploring new directions in traceability
link recovery in models: The process models case. In: Proceedings of the 30th
International Conference on Advanced Information Systems Engineering (CAiSE).
(2018)

9. Hulth, A.: Improved Automatic Keyword Extraction given more Linguistic Knowl-
edge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics (2003) 216–223

10. Plisson, J., Lavrac, N., Mladenic, D., et al.: A Rule Based Approach to Word
Lemmatization. In: Proceedings of the 7th International Multi-Conference Infor-
mation Society. Volume 1., Citeseer (2004) 83–86

11. Landauer, T.K., Foltz, P.W., Laham, D.: An Introduction to Latent Semantic
Analysis. Discourse Processes 25(2-3) (1998) 259–284

12. Spanoudakis, G., Zisman, A., Pérez-Minana, E., Krause, P.: Rule-Based Gener-
ation of Requirements Traceability Relations. Journal of Systems and Software
72(2) (2004) 105–127

13. Wieringa, R.J.: Design science methodology for information systems and software
engineering. Springer (2014)

14. Sultanov, H., Hayes, J.H.: Application of Swarm Techniques to Requirements
Engineering: Requirements Tracing. In: 18th IEEE International Requirements
Engineering Conference. (2010)

15. Sundaram, S.K., Hayes, J.H., Dekhtyar, A., Holbrook, E.A.: Assessing Traceability
of Software Engineering Artifacts. Requirements Engineering 15(3) (2010)

16. Falessi, D., Cantone, G., Canfora, G.: Empirical Principles and an Industrial Case
Study in Retrieving Equivalent Requirements via Natural Language Processing
Techniques. Transactions on Software Engineering 39(1) (2013)

17. Arora, C., Sabetzadeh, M., Goknil, A., Briand, L.C., Zimmer, F.: Change Impact
Analysis for Natural Language Requirements: An NLP Approach. In: IEEE 23rd
International Requirements Engineering Conference. (2015)

18. De Lucia, A., Fasano, F., Oliveto, R., Tortora, G.: Enhancing an Artefact Man-
agement System with Traceability Recovery Features. In: Proceedings of the 20th
IEEE International Conference on Software Maintenance, IEEE (2004) 306–315

19. Eder, S., Femmer, H., Hauptmann, B., Junker, M.: Configuring Latent Seman-
tic Indexing for Requirements Tracing. In: Proceedings of the 2nd International
Workshop on Requirements Engineering and Testing. (2015)

59


