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Abstract. A transition t eventually stops a place/transition Petri net
if each reachable marking of the net enables only finite occurrence se-
quences without occurrences of t (i.e., every infinite occurrence sequence
enabled at this marking contains occurrences of t). Roughly speaking,
when t is stopped then all transitions of the net stop eventually. This
contribution shows how to identify stopping transitions of bounded nets
using the reachability graph and of unbounded nets using the coverability
graph.

1 Introduction

We consider the following problem in this paper: Assume a place/transition Petri
net and a transition t of this net. Can we eventually stop the behavior of the net
by forbidding occurrences of t in occurrence sequences enabled at an arbitrary
reachable marking m, or, equivalently, does no reachable marking m enable an
infinite occurrence sequence without occurrences of t? If this is the case then we
say that transition t eventually stops the Petri net. If t does not stop the net
eventually, then some reachable marking enables an infinite occurrence sequence
without occurrences of t. However, even if t does not stop the net eventually,
there might be occurrence sequences (with or without occurrences of t) leading
to a deadlock.

Apparently, this question is relevant for several applications of Petri nets. For
example, given a robot (or any kind of machine) modeled by a Petri net, can some
component modeled by a particular transition be used as an off switch? As we
know from our computers, immediate stops are not always desirable, but rather
forced shut down processes. A transition t stops a Petri net model eventually if
it enforces a shutdown process which will eventually lead to a marking which
enables no transition, except possibly transition t.

The problem tackled in this article could be solved by any standard mech-
anism involving temporal logics, for example the temporal logic LTL. In [5] it
is shown that the model checking problem for Petri nets and LTL formulas is
decidable, although according algorithms applied to unbounded Petri nets have
a huge complexity. Instead, this article provides a solution which is purely based
on Petri net analysis techniques. A typical advantage of these techniques is that
the user gets more insight to the actual behavior of the net. Often, analysis
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methods tailored for Petri nets are more efficient as analysis techniques based
on a translation to other languages, at least for certain classes of inputs. This
might also be the case for the approach presented in this paper; a detailed study
to identify such classes is, however, still missing and a topic for further research.

Throughout this paper we consider place/transition Petri nets without arc
weights, capacity restrictions or inhibitor arcs. We call these place/transition
Petri nets just nets. For definitions and notations, see any textbook on Petri nets,
e.g. [7] or [4]. As usual, we assume that the sets of places and transitions of a net
are finite. We do, however, consider unbounded nets, i.e., nets with unbounded
places (a place is unbouded if, for any number b, some reachable marking assigns
more than b tokens to the place). We assume the concepts of reachability graph
and tree to be known, and also the concept of coverability graph for unbounded
nets (this concept goes back to [6]). The coverability graph represents aspects
of infinite behavior by finite means, and thus abstracts heavily from behavioral
details. However, it can be used to identify unbounded places. Notice that often
the coverability graph is defined as a result of a non-deterministic algorithm and
is hence not unique. The algorithm constructs the finite reachability graph for
bounded nets and a finite coverability graph otherwise.

Recall that a (reachability or coverability) graph is a directed graph with ini-
tial vertex and arcs labeled by transition names. Vertices of reachability graphs
represent reachable markings of the considered net, whereas vertices of cover-
ability graphs represent so-called ω-markings, which assign to each place either
a non-negative integer, representing its actual token count, or the symbol ω,
representing arbitrarily many tokens.

Notice that every two vertices of a (reachability or coverability) graph can
be connected by two distinct arcs, labeled by two different transition names,
whenever both transitions lead from the same source vertex to the same target
vertex. Recall also that the source vertex and the target vertex of an arc can be
identical.

A path of a graph is a finite nonempty sequence of arcs such that the target
vertex of each (except the last) arc coincides with the source vertex of its sub-
sequent arc. A path is a closed path if the target vertex of its last arc coincides
with the source vertex of its first arc. A closed path is a cycle if moreover no
vertex is source of more than one arc of the path, i.e., the path does not pass
through any vertex more than once.

Let us finally recall some important properties of reachability and coverability
graphs:

– The reachability graph of a net is finite if and only if the net is bounded.

– A coverability graph of a net is always finite.

– Reachability and coverability graphs are deterministic, i.e., no vertex is
source of two distinct arcs with the same label.

– For each finite occurrence sequence of a net enabled at the initial marking,
there is a unique path of the reachabilty / coverability graph starting at the
initial vertex.
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2 Terminating Petri nets

To warm up, we first consider the question whether a net terminates eventually,
i.e., whether all its occurrence sequences are finite.

Obviously, a bounded net terminates if and only if its reachability graph has
no cycles. In fact, if the reachability graph has a cycle, then each occurrence
sequence from the initial marking to any marking represented by a vertex of
the cycle can be extended infinitely, following the arcs of the cycle (remember
that each vertex of the reachability graph represents a reachable marking). Con-
versely, a bounded net has only finitely many reachable markings, because the
set of places of the net is finite. If the net does not terminate, it has an infi-
nite occurrence sequence and therefore finite occurrence sequences of arbitrary
length. Since each finite occurrence sequence corresponds to a directed path
of the reachability graph, each occurrence sequence of sufficient length (choose
the number of reachable markings) corresponds to a directed path that passes
through at least one vertex more than once; thus the reachability graph has a
closed path, and therefore it has a cycle.

Unbounded nets do not terminate anyway. To see this, consider the construc-
tion of the reachability tree. Since the set of transitions is finite, each vertex of
this tree has finitely many immediate successors. By König’s Lemma, the tree
has an infinite path, corresponding to an infinite occurrence sequence.

Hence, an obvious algorithm to check termination of a net first checks bound-
edness, for example by the coverability graph construction. In case the consid-
ered net is bounded, the algorithm constructs the reachabilty graph and checks
whether this graph has a cycle. Actually, this two-step approach is not neces-
sary, because the coverability graph of a bounded net equals its reachability
graph, and cyclicity of this graph is implicitly checked during the coverability
graph construction. A perhaps more elegant algorithm1 first adds a place to the
net which has all transitions of the net in its pre-set and no transition in its
post-set, and then checks boundedness of this place, again by construction of
the coverability graph. Obviously, this additional place is bounded if and only if
the length of all occurrence sequences is bounded. Since the set of transitions is
finite, this is the case if and only if there is no infinite occurrence sequence.

3 Termination After Stopping a Transition –
The Bounded Case

We now come back to the question asked initially: Does a transition t of a net
stop the net eventually? This is the converse of the question: Is there an infinite
occurrence sequence, enabled at some reachable marking, without occurrences
of t? An even simpler formulation of the same property is: Is there an initially
enabled infinite occurrence sequence with only finitely many occurrences of t? In
fact, an infinite occurrence sequence enabled at a reachable marking m is suffix

1 communicated by Karsten Wolf
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of an infinite sequence enabled initially, and the finite prefix up to m can contain
only finitely many occurrences of t. Conversely, assume an infinite occurrence
sequence containing only finitely many occurrences of t. Then the minimal prefix
containing all these t-occurrences leads to a reachable marking which enables the
according infinite suffix without occurrences of t.

For bounded nets, there is thus a very simple algorithmic solution to the
problem whether a transition t eventually stops its net, based on the following
proposition.

Proposition 1. A transition t of a bounded net eventually stops the net if and
only if the reachability graph of the net has no cycle without an arc labeled by t.

Proof. Assume that the reachability graph has a cycle without a t-labeled arc.
Then some initially enabled infinite occurrence sequence starts with a finite
sequence leading to some marking represented by a vertex of this cycle (which
might include occurrences of t) and then runs along the cycle infinitely. Hence
this infinite occurrence sequence has only finitely many occurrences of t.

Conversely, assume that each cycle of the reachability graph has at least one
t-labeled arc. Let m be an arbitrary reachable marking. Each sufficiently long
occurrence sequence enabled at m passes through some marking at least twice,
because the net is bounded. Hence the according path of the reachability graph
passes through some vertex at least twice. The subsequence starting and ending
with that vertex corresponds to a closed path. Each closed path contains all arcs
of at least one cycle, and thus by assumption also an arc labeled by t. Therefore,
the subsequence contains an occurrence of t, and so does the infinite occurrence
sequence. ut

So a very simple algorithm constructs the reachability graph and checks
whether every cycle of this graph contains at least one arc labeled by t. A more
elegant solution is to first delete all t-labeled arcs of the reachability graph (which
does not necessarily lead to a connected graph) and then check for cycles.

4 Termination After Stopping a Transition –
The Unbounded Case

Now we consider the case that the considered net is unbounded. Does it even-
tually terminate, provided a given transition t occurs only finitely often? For
unbounded nets, the reachability graph is infinite, but the coverability graph is
finite. However, unfortunately the coverability graph does not bring immediate
help. Consider the simple example of a net with only one initially unmarked
place, a single input transition i, and a single output transition o, as shown in
Figure 1.

In this example, transition i eventually stops the net, whereas transition o
does not. However, both transitions occur in the coverability graph in quite the
same way, namely as labels of arcs leading from and to the vertex labeled by
[ω]. These are the only cycles of this coverability graph. While the coverability
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Fig. 1. A simple net and its coverability graph

graph does thus not lead to an algorithmic solution, we can solve the problem
considering additional information, as shown below.

Remember that, during the (nondeterministic) construction of the coverabil-
ity graph, we compare new ω-markings with already constructed ω-markings.
When a new vertex of the coverability graph is constructed, the algorithm com-
pares the ω-marking m corresponding to this new vertex with the ω-markings m′

corresponding to vertices which are on paths from the initial vertex (representing
the initial marking) to the new one, according to the graph constructed so far.
If, for all places, the new ω-marking m is identical to m′, then the new vertex is
identified with the vertex corresponding to m′. Otherwise, if m(s) ≥ m′(s) for
each place s (where ω > n for every integer n), then m is modified as follows: For
each place s with m(s) > m′(s), we set m(s) := ω, because the sequence from
the vertex corresponding to m′ to the newly constructed vertex can be repeated
arbitrarily often, leading to an unbounded token growth on the place s. For all
other places s, m(s) remains unchanged.

In the example of Figure 1, the marking reached by the occurrence of transi-
tion i is greater than the initial marking for the only place of the net. Hence, this
place receives an ω-entry for the corresponding ω-marking [ω], represented by
the vertex [ω] of the coverability graph. Further occurrences of transition i are
possible, leading to the same ω-marking, because ω already means “arbitrarily
many”. Observe that transition i of the net can occur infinitely often, no matter
if transition o occurs, whereas o cannot occur arbitrarily often without i, and
in particular there is no infinite occurrence sequence o o o . . . enabled at any
marking, a fact which is not reflected by the coverability graph.

In general, we are looking for infinite occurrence sequences, enabled by some
reachable marking, without occurrences of t. Since occurrence sequences cor-
respond to paths of the coverability graph and sufficiently long occurrence se-
quences have to pass through some vertex more than once, we have a closer look
to closed paths of coverability graphs in the sequel.

Since ω-entries are only added during the construction of the coverability
graph, and are never removed, all ω-markings appearing as vertices in a closed
path of the coverability graph agree on the set of ω-marked places, whereas
the non-negative integers assigned to the other places still represent the token
game. Therefore, cycles and closed paths of coverability graphs do not necessarily
correspond to cyclic behavior, because according occurrence sequences might
increase or decrease the token count of places which have ω-entries in ω-markings
of the path. If the token count of each place is not decreased, then the path can
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be repeated arbitrarily, leading to an infinite occurrence sequence. Otherwise, it
can not.

Consider a path π of the coverability graph of a net and let σπ be the sequence
of labels of arcs of π. We call the path π non-decreasing, if, for each place s, the
number of occurrences of transitions in the pre-set of s in σπ is not smaller than
the number of occurrences of transitions in the post-set of s in σπ, i.e., if at
least as many tokens are added as are removed, and hence the effect of σπ is
non-negative for each place. Otherwise, the effect of transition occurrences in σπ
is negative for some place, and then we call π decreasing.

Proposition 2. Given an unbounded net N and a coverability graph of N , a
transition t stops N eventually if and only if there is no non-decreasing closed
path of the coverability graph without an arc labeled by t.

Proof. Assume that the coverability graph has a non-decreasing closed path π
without an arc labeled by t. Let mπ be the ω-marking corresponding to the
source vertex of the first arc of π. It is well-known that all ω-marked places of
mπ are simultaneously unbounded, i.e., for each number b there is a reachable
marking mb of N satisfying mb(s) ≥ b if mπ(s) = ω and mb(s) = mπ(s) if
mπ(s) 6= ω. Now, choosing b as the length of π, the sequence of labels of π is
an occurrence sequence σπ enabled at mb. This follows from the construction
rule of the coverability graph, which considers places not marked by ω as in
the reachability graph construction. Places marked by ω carry sufficiently many
tokens to allow the occurrences of all transitions in the sequence σπ. Since π is
assumed to be non-decreasing, the marking m′ reached by σπ satisfies m′(s) ≥
mb(s) for each place s. Therefore, σπ can be repeated arbitrarily. Thus, there is
an infinite sequence without occurrences of t, enabled at the reachable marking
mb.

For the converse direction, consider an infinite occurrence sequence σ enabled
at the initial marking of N with only finitely many occurrences of transition t.
Let σ = σ1 σ2 such that σ2 contains no occurrences of t and σ1 is minimal with
this property (i.e., σ1 is empty or ends with t). Let σ2 = t1 t2 t3 . . . and let,
for i ≥ 0, mi be the marking reached by the sequence σ1 t1 . . . ti. By repeated
application of Dickson’s Lemma, we find indices k1, k2, k3, . . . such that, for j > i,
mkj (s) ≥ mki(s) for each place s. By the construction of the coverability graph,
for each finite occurrence sequence enabled at the inital marking, there is unique
path from the initial vertex such that the sequence of labels of its arcs equals the
occurrence sequence. Since the coverability graph is finite, the vertices reached by
the paths corresponding to the sequences σ1 t1 . . . tki (i > 0) cannot be pairwise
different, whence some vertex is visited at least twice. Assume this is the case for
the sequences σ1 t1 . . . tkn and σ1 t1 . . . tkm , where n < m. Then the subsequence
tkn+1 . . . tkm corresponds to a closed path of the coverability graph, which does
not contain an arc labeled by t. By construction, this path is non-decreasing. ut
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Fig. 2. Another simple net and its coverability graph

Figure 2 illustrates that the proposition does not hold when cycles instead of
closed paths are considered.2 The net in this figure is not stopped eventually by
transition i. The only cycles without occurrences of i are the short cycles labeled
by a and b, respectively. Both cycles are decreasing paths, whereas the closed
path with arc labels a and b is non-decreasing (and so are all closed paths starting
at the vertex [ω, ω] with the same number of a-occurrences and b-occurrences).

Proposition 2 provides a characterization of stopping transitions based on
the coverability graph. Unfortunately, this characterization is based on closed
paths of a coverability graph, but there are infinitely many closed paths in gen-
eral. Therefore, this characterization does not immediately lead to a deciding
algorithm.

5 An Algorithm Deciding Whether a Transition Stops an
Unbounded Net Eventually

Throughout this section, let N be an unbounded net and let t be a transition of
N . We refer to the characterization given in Proposition 2 and collect properties
of a non-decreasing closed path π without an arc labeled by t of a coverability
graph of N .

(1) The subgraph of the coverability graph constituted by the arcs of π and the
vertices occurring as sources or targets in these arcs is strongly connected.

Connectedness of the subgraph is obvious. The subgraph is even strongly
connected because π is a closed path.

(2) For each vertex v of the coverability graph, the number of arcs occurring in
π which have v as the source vertex equals the number of arcs in π which
have v as the target vertex (the same arc can occur more than once in π,

2 This was pointed out by an anonymous reviewer, thanks a lot!
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and is in this case also counted more than once).

A simple observation, because π is a closed path.

(3) All ω-markings appearing in the path π (as sources or targets of arcs) have
the same set of places marked by ω. In particular, this holds for the source
and target vertices of each arc in π.

If a place is marked by ω in an ω-marking, then this place is also marked
by ω in a subsequent marking in the coverability graph, by the construction
rule of coverability graphs. The claim follows because π is a closed path.

(4) For each place s marked by ω in the ω-markings of the path π, the number
of occurrences of transitions in arcs of π that belong to the pre-set of s is
not smaller than the number of occurrences of transitions in arcs of π that
belong to the post-set of s.

For places s of N which are not marked by ω, the number of occurrences of
transitions in arcs of π that belong to the pre-set of s equals the number of
occurrences of transitions in arcs of π that belong to the post-set of s by the
construction rule of coverability graphs. For places marked by ω, the claim
follows because π is non-decreasing by assumption.

(5) No arc in π is labeled by t.

This is part of the assumption.

So we obtain as an immediate consequence of Proposition 2:

Proposition 3. If t does not stop the net N eventually, then conditions (1) to
(5) are fulfilled for some path π of a coverability graph of N . ut

All the above conditions (1) to (5) can be viewed as properties of a multi-set
of arcs of the coverability graph, which tells how often (and if at all) an arc
occurs in a suitable path. The following proposition states that the properties
are not only necessary but also sufficient for the existence of a non-decreasing
closed path without occurrences of t.

Proposition 4. Assume a coverability graph of N with arcs {a1, . . . , ak}, and a
mapping f : {a1, . . . , ak} → {0, 1, 2, . . .} (a multiset of arcs) satisfying f(ai) > 0
for at least one arc and moreover the following conditions:

(1) The subgraph of the coverability graph constituted by the arcs ai satisfying
f(ai) > 0 and by the vertices occurring as sources or targets in these arcs is
strongly connected.
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(2) For each vertex v of the coverability graph, the sum of all f(ai) with v being
the source vertex of ai equals the sum of all f(aj) with v being the target
vertex of aj.

(3) For each arc ai with the property that source and target ω-markings of ai
have different sets of ω-marked places, we have f(ai) = 0.

(4) For each place s, the sum of all f(ai) where ai is labeled by a transition in
the pre-set of s is not smaller than the sum of all f(aj) where aj is labeled
by a transition in the post-set of s.

(5) If f(ai) > 0 then ai is not labeled by t.

Then there is a non-decreasing closed path π without arcs labaled by t.

Proof. We show that there exists such a path π such that, for each arc ai, this
arc occurs f(ai) times in π.

First, we construct the following sub-graph of the considered coverabiliy
graph: We delete all arcs ai of the coverablitiy graph satisfying f(ai) = 0, and
then delete all isolated vertices. Since at least one arc ai satisfies f(ai) > 0, this
subgraph has at least one arc and hence at least one vertex. By condition (1), it
is strongly connected.

It is a well-known theorem that a directed multigraph has an Euler Circuit
(which is a closed path in our terminology), if it is connected and every vertex
has the same in- and out-degree. If the multiplicity of arcs of the subgraph is
given by the mapping f , we obtain a directed multigraph. Then the in-degree of
a vertex v of the subgraph is the sum of all f(ai) for arcs ai with target vertex
v, and its out-degree is the sum of all f(ai) for arcs ai with source vertex v. So,
by condition (2), the above theorem can be applied to the subgraph. It proves
that there exists a closed path π such that, for each arc ai, f(ai) provides the
number of occurrences of ai in π. By conditions (3) and (4), π is non-decreasing.
By condition (5), no arc of π is labeled by t. ut
Hence, for deciding if transition t eventually stops the net N , it suffices to con-
struct a coverability graph of N and check whether there exists no non-empty
multiset of arcs satisfying the above conditions.

All conditions of the previous proposition except the first can be expressed
in terms of inequalities. Let again a1, . . . , ak denote the arcs of a coverability
graph of N . Given a path π of this coverability graph, the variables x1, . . . , xk
indicate how often a particular arc appears in the path π. Using this notation,
we rewrite the above conditions (the additional condition (6’) just states that
all xi are non-negative):

(2’) For a vertex v of the coverability graph, let in(v) be the set of arcs with
target v and let out(v) be the set of arcs with source v.
For each vertex v, ∑

ai∈in(v)
xi =

∑

ai∈out(v)
xi .
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(3’) For each arc ai connecting two vertices representing ω-markings with differ-
ent sets of ω-marked places, we have xi = 0.

(4’) For each place s with pre-set •s and post-set s• satisfying m(s) = ω in the
ω-markings appearing in π, we have

∑

u∈•s

∑

λ(ai)=u

xi ≥
∑

u∈s•

∑

λ(ai)=u

xi ,

where λ(a) denotes the label of arc a, i.e., the occurring transition.

(5’) For each arc ai labeled by t, we have xi = 0.

(6’) For i = 1, . . . , k, we have xi ≥ 0 .

It remains to find a solution x1, . . . , xk of the according homogeneous system
of linear inequalities such that not all xi are zero, which additionally satisfies
condition (1), i.e., the multiset of arcs ai constitutes a strongly connected sub-
graph of the coverability graph. Since the inequality system is homogeneous, we
do not have to care about integral solutions, because for any (rational) solution
there is a solution in the integers, derived by multiplication with the common
denominator. However, since the number of solutions of the system of linear
inequalities is potentially infinite, this still does not lead to a feasible algorithm.

Fortunately, all solutions of the inequality system can be represented as linear
combinations (with non-negative coefficients) of a finite basis. See e.g. [1] for an
algorithm to compute such a basis. Let B = {b1,b2, . . . ,bl} be a basis, with
bi = [bi,1, bi,2, . . . , bi,k] for 1 ≤ i ≤ l. Then each solution to the system of
inequalities can be represented as

µ1 · b1 + µ2 · b2 + · · ·µl · bl ,

where all µi are non-negative integers.

The following simple proposition shows that we do not have to consider
all these (infinitely many) solutions, but may restrict on solutions where all
coefficients belong to the set {0, 1}.

Proposition 5. Let µ1 ·b1+· · ·+µl ·bl be a solution of the system of inequalities
(2’) to (6’). Define, for 1 ≤ i ≤ l, µ′i by µ′i := 0 if µi = 0, and µ′i := 1 if µi > 0.

Then µ′1 ·+b1 + µ′2 ·b2 + · · ·µ′l ·bl is a solution of the system of inequalities
(2’) to (6’), too, and the subgraphs generated by both solutions conincide. In
particular, the subgraph generated by the first solution is strongly connected if
and only if the subgraph generated by the second solution is strongly connected.

ut
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Combining Propositions 2,3,4 and 5 yields the main result of this contribu-
tion:

Theorem 1. Transition t does not stop the net N eventually if and only if, for
any coverability graph of N and for any basis B of the solutions of the system
of inequalities (2’) to (6’), the sum of all solutions of a nonempty subset of B
generates a connected subgraph of the coverability graph. ut

An algorithm can directly be derived from this theorem. The worst case
complexity of this algorithm is apparently quite poor, because it requires the
construction of the coverability graph, the construction of a basis of the derived
system of inequalities, and finally it requires to consider all (exponentially many)
subsets of these basis solutions.

6 A Faster Algorithm for Finding Suitable Subsets of
Basis Solutions

Instead of considering all subsets of basis solutions to find a set of solutions
generating a strongly connected subgraph of the coverability graph, such a set
can be found by means of the following efficient divide-and-conquer algorithm:

We define an algorithmic function which, given a set S of solutions of the
system of inequalities, first constructs the generated subgraph of the coverability
graph, i.e., this graph has all arcs ai of the coverability graph which have positive
coefficients in any solution of S. If this subgraph is strongly connected, we are
finished and conclude that the considered transition t eventually stops the net.
Otherwise this subgraph has more than one strongly connected component. For
each strongly connected component, we consider the subset of solutions S′ ⊂ S
with the property that all its positive coefficients refer to arcs of this compo-
nent. If this set S′ is not empty for a strongly connected component, it again
generates a subgraph of the coverability graph. This subgraph is entirely located
within the considered strongly connected component, but it is not necessarily
strongly connected itself. We recursively apply this function, for each strongly
connected component with nonempty according set S′, to this set S′. If the set S′

is empty for all strongly connected components, the algorithm returns to its call-
ing instance. If the algorithm terminates without finding a strongly connected
subgraph generated by a set of solutions, it concludes that no such set exists and
that therefore transition t eventually stops the net.

Initially, the function is applied to a basis B of solutions to the system of
inequalities.

Proposition 6. The algorithm terminates and outputs the correct answer. It
runs in linear time with respect to the size of the basis B.

Proof. The algorithm terminates because the function is only called recursively
for a set S′ if the current set S does not generate a strongly connected graph
and S′ generates a smaller strongly connected subgraph.
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The algorithm only stops before proper termination if it found a stronly con-
nected subgraph generated by a solution, and hence the output that transition
t eventually stops the net is correct.

It remains to show that, if the algorithm reaches its proper end and hence did
not find a set generating a strongly connected subgraph, then no such set exists.
So assume a set S ⊆ B of solutions exists such that the generated subgraph
is strongly connected. Now assume that S ⊂ S′. Then, obviously the subgraph
generated by S is still in one strongly connected component of the subgraph gen-
erated by S′. Therefore, whenever the function is called for some set S′ satisfying
S ⊂ S′, and from this instance it is called for subsets S1,S2, . . ., then the set S
is included in one of the sets Si. Since S is included in B, it will eventually be
found by the algorithm (unless another suitable set of solutions is found before).

Finally, the algorithm runs in linear time with respect to the size of the basis
B because each function call performs a proper split of the set B, and B can be
splitted at most |B| − 1 times. ut

7 Conclusion

We have shown how to decide if a single transition is able to stop an entire
net eventually, i.e., if no infinite occurrence sequences has only finitely many
occurrences of t. The approach can easily be generalized to sets of transitions
(if we stop all transitions of this set at some marking, will the net eventually
terminate?). Another generalization refers to arc weights; the procedure works
for nets with arc weights with only small changes. The usual complement place
construction makes the approach also available for nets with capacity restric-
tions.

Experimental results and comparisons to other approaches, in particular to
model checking algorithms for temporal logics, will be topics of further research.

Another tool for identifying transitions that stop a net is given by transition
invariants, which are closely related to cyclic occurrence sequences, and by tran-
sition sur-invariants, which are related to occurrence sequence with non-negative
effect to all places. Both types of invariants can be derived by linear algebraic
means, see e.g. [2]. These techniques lead to much more efficient algorithms, but
unfortunately provide only sufficient criteria for termination problems.

Yet another approach to solve the problem is to consider cycles in coverability
graphs (see [3]), representing cyclic behavior. The calculation of such cycles
requires, however, by far more effort than the algorithms suggested in the present
contribution.
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