
On the Hardness of Synthesizing Boolean Nets

Ronny Tredup and Christian Rosenke

Universität Rostock, Institut für Informatik, Theoretische Informatik,
Albert-Einstein-Straße 22, 18059, Rostock

Abstract. Boolean Petri nets are differentiated by types of nets based on
which of the interactions nop, inp, out, set, res, swap, used, and free they
apply or spare. From the 256 thinkable types only a few have yet been
explicitly defined, as for instance contextual nets {nop, inp, out, used, free}
and trace nets {nop, inp, out, set, res, used, free}. The synthesis problem
relative to a specific type of nets τ is to find, for a given transition system
A, a boolean τ -net with state graph isomorphic to A. It is known to be
NP-hard for elementary nets systems {nop, inp, out} and tractable for
flip-flop nets {nop, inp, out, swap}. This paper presents a general reduction
scheme for the NP-hardness of boolean net synthesis and identifies 67
new types with a hard synthesis problem.

1 Introduction

Boolean Petri nets have been widely regarded as a fundamental model for
concurrent systems. These Petri nets allow at most one token per place in every
reachable marking. Accordingly, a place p can be regarded as a boolean condition
which is true if p contains a token and is false if p is empty, respectively. A place
p and a transition t of a boolean Petri net are connected by one of the following
(boolean) interactions: no operation (nop), input (inp), output (out), set, reset
(res), inverting (swap), test if true (used), and test if false (free). An interaction
defines which pre-condition p has to satisfy to activate t and it determines p’s
post-condition after t has fired: inp (out) mean that p has to be true (false) to
allow t’s firing and if t fires then p become false (true). The interaction free (used)
says that if t is activated then p is false (true) and t’s firing as no impact on p.
The other interactions nop, set, res, swap are pre-condition free, that is, neither
true nor false prevent t’s firing. Moreover, nop means that the firing of t has no
impact and leaves p’s boolean value unchanged. By res (set), t’s firing determine
p to be false (true). Finally, swap says that if t fires then it inverts p’s boolean
value.

Boolean Petri nets are differentiated by types of nets τ accordingly to the
boolean interactions they allow. Since we have eight interactions to choose
from, this results in a total of 256 different types. Yet, research has explicitly
defined seven of them: Elementary net systems {nop, inp, out} [10], Contextual
nets {nop, inp, out, used, free} [7], event/condition nets {nop, inp, out, used} [2],
inhibitor nets {nop, inp, out, free} [9], set nets {nop, inp, set, used} [6], trace nets
{nop, inp, out, set, res, used, free} [3], and flip flop nets {nop, inp, out, swap} [11].

71

Type of net τ Complexity status Quantity
τ = {nop, res} ∪ ω, ω ⊆ {inp, used, free} polynomial time 8
τ = {nop, set} ∪ ω, ω ⊆ {out, used, free} polynomial time 8
τ = {nop, swap} ∪ ω, ω ⊆ {inp, out, used, free} polynomial time 16
τ = {nop} ∪ ω, ω ⊆ {used, free} polynomial time 4
τ = {nop, inp, free} or τ = {nop, inp, used, free} NP-complete 2
τ = {nop, out, used} or τ = {nop, out, used, free} NP-complete 2
τ = {nop, set, res} ∪ ω, ∅ 6= ω ⊆ {used, free} NP-complete 3
τ = {nop, inp, out} ∪ ω, ω ⊆ {used, free} NP-complete 4
τ = {nop, inp, res, swap} ∪ ω, ω ⊆ {used, free} NP-complete 4
τ = {nop, out, set, swap} ∪ ω, ω ⊆ {used, free} NP-complete 4
τ = {nop, inp, set} ∪ ω, ω ⊆ {out, res, swap, used, free} NP-complete 24+8
τ = {nop, outres} ∪ ω, ω ⊆ {inp, set, swap, used, free} NP-complete 24+8

Fig. 1. Summary of the complexity results for boolean net synthesis. Grey colored area:
Results of [14] reestablishing the result for flip flop nets [11]. Green colored area: Results
of this paper. The last two rows intersect in eight supersets of {nop, inp, out, set, res} and
the eighth row includes the already investigated elementary net systems [1]. Altogether,
this paper discovers 67 new types with an NP-hard synthesis problem.

This paper is devoted to a computational complexity analysis of the boolean
net synthesis problem subject to a target type of nets. Synthesis relative to a
specific type of nets τ is the challenge to find for a given transition system (TSs,
for short) A, a boolean τ -net N whose state graph is isomorphic to A if it exists.
The complexity of boolean net synthesis has originally been investigated for
elementary net systems [1], where it is NP-complete to decide if general TSs can
be synthesized. In [15, 12] this has been confirmed even for strongly restricted
input TSs. On the contrary, [11] shows for flip flop nets, simply extending
elementary net systems by swap, synthesis is doable in polynomial time. Inspired
by these results, it is the (global) goal of our research to obtain a dichotomy
result that fully characterizes which synergies of interactions make synthesis
intractable or tractable, respectively. After resolving the complexity of synthesis
for elementary nets [1, 15, 12] and flip flop nets [11], the next big step towards a
complete characterization of boolean net synthesis is taken in [14]. Here, besides
the already investigated flip flop nets, 42 further boolean types of nets are covered
at one blow, cf. Figure 1. Besides the 128 practically less relevant types without
nop, there are 84 nop-afflicted boolean types of nets left where the synthesis’
complexity has not been settled, yet.

In this paper, we tackle 67 of them with a common NP-hardness proof scheme
and, additionally, reestablish the result for elementary net systems [1]. Except flip
flop nets, our result covers all types of nets previously considered in the literature.
In particular, we show that synthesis is hard for all types that are a superset
of {nop, inp, out} that excludes swap and for all supersets of {nop, inp, set} and
{nop, out, res}, cf. Figure 1.

Aside from the actual identification of 67 new types with hard net synthesis,
this paper’s contribution is also a very generic reduction scheme for NP-hardness

72

proofs of boolean net synthesis. This methodology significantly generalizes prelim-
inary methods that we developed in [15, 12] to derive the hardness of synthesizing
elementary net systems from strongly restricted TSs. Unlike those premature
approaches, the present solution abstracts from individual types of nets and
bases on the throughout analysis of properties gained by available interactions.
Moreover, the approach from [14], although again slightly similar, is incompatible
with the generic scheme in this paper.

To develop the generic reduction scheme, we deal with the synthesis problem’s
decision version, called feasibility. The reason is that complexity analysis rather
works with decision problems than search problems. Instead of really finding a net
N with state graph isomorphic to a given TS, it is sufficient for feasibility to just
decide if the target type contains N . If feasibility is NP-complete, then synthesis
is an NP-hard computational problem with no obvious efficient solutions.

To simplify our argumentation is it meaningful to detach our notions from
Petri nets and focus on TSs. For this purpose, we use the well known equality
between feasibility and the conjunction of the state separation property (SSP)
and the event state separation property (ESSP) [2], which are solely defined on
the input TSs. The presented polynomial time reduction scheme translates the
NP-complete cubic monotone one-in-three 3-SAT problem [8] into the ESSP of
the considered 68 boolean net types. As we also make sure that given boolean
expressions ϕ are transformed to TSs A(ϕ) where the ESSP relative to the
considered type implies the SSP, we always show the NP-completeness of the
ESSP and feasibility at the same time. Instead of 68 individual proofs, our scheme
covers all cases by just three reductions following a common pattern.

Due to space limitation, we are not able to present all proofs. However, all
omitted proofs are given in the technical report [13].

2 Preliminary Notions

This section provides short formal definitions of all preliminary notions used in
the paper. A transition system (TS, for short), A = (S,E, δ) is a directed labeled
graph with nodes S, events E and partial transition function δ : S × E −→ S,
where δ(s, e) = s′ is interpreted as s e s′. An event e occurs at a state s, denoted
by s e , if δ(s, e) is defined. An initialized TS A = (S,E, δ, s0) is a TS with
a distinct state s0 ∈ S. TSs in this paper are deterministic by design as their
state transition behavior is given by a (partial) function. Initialized TSs are also
required to make every state reachable from s0 by a directed path.

x nop(x) inp(x) out(x) set(x) res(x) swap(x) used(x) free(x)
0 0 1 1 0 1 0
1 1 0 1 0 0 1

Fig. 2. All interactions in I. An empty cell means that the column’s function is undefined
on the respective x. The entirely undefined function is missing in I.

73

A (boolean) type of net τ = ({0, 1}, Eτ , δτ) is a TS such that Eτ is a subset
of the boolean interactions: Eτ ⊆ I = {nop, inp, out, set, res, swap, used, free}. The
interactions i ∈ I are binary partial functions i : {0, 1} → {0, 1} as defined in the
listing of Figure 2. For all x ∈ {0, 1} and all i ∈ Eτ the transition function of τ
is defined by δτ (x, i) = i(x). Notice that I contains all possible binary partial
functions {0, 1} → {0, 1} except for the entirely undefined function ⊥. Even if a
type τ includes ⊥, this event can never occur, so it would be useless. Thus, I is
complete for deterministic boolean types of nets, and that means there are a total
of 256 of them. By definition, a (boolean) type τ is completely determined by
its event set Eτ . Hence, in the following we will identify τ with Eτ , cf. Figure 3.
Moreover, for readability, we group interactions by enter = {out, set, swap},
exit = {inp, res, swap}, keep+ = {nop, set, used}, and keep− = {nop, res, free}.

0 1
nop
free
res

nop

res, swap

out, swap

0 1nop
nop
used
set

inp, swap

set, swap

Fig. 3. Left: τ = {nop, out, res, swap, free}. Right: τ̃ = {nop, inp, set, swap, used}. τ and
τ̃ are isomorphic. The isomorphism φ : τ → τ̃ is given by φ(s) = 1− s for s ∈ {0, 1},
φ(i) = i for i ∈ {nop, swap}, φ(out) = inp, φ(res) = set and φ(free) = used.

A boolean Petri net N = (P, T,M0, f) of type τ , (τ -net, for short) is given
by finite and disjoint sets P of places and T of transitions, an initial marking
M0 : P −→ {0, 1}, and a (total) flow function f : P × T → τ . The meaning of
a boolean net is to realize a certain behavior by firing sequences of transitions.
In particular, a transition t ∈ T can fire in a marking M : P −→ {0, 1} if
δτ (M(p), f(p, t)) is defined for all p ∈ P . By firing, t produces the next marking
M ′ : P −→ {0, 1} where M ′(p) = δτ (M(p), f(p, t)) for all p ∈ P . This is denoted
by M t M ′. Given a τ -net N = (P, T,M0, f), its behavior is captured by a
transition system A(N), called the state graph ofN . The state set of A(N) consists
of all markings that, starting from initial state M0, can be reached by firing a
sequence of transitions. For every reachable marking M and transition t ∈ T
with M t M ′ the state transition function δ of A is defined as δ(M, t) = M ′.

Boolean net synthesis for a type τ is going backwards from input TS A =
(S,E, δ, s0) to the computation of a τ -net N with A(N) isomorphic to A, if such
a net exists. In contrast to A(N), the abstract states S of A miss any information
about markings they stand for. Accordingly, the events E are an abstraction of
N ’s transitions T as they relate to state changes only globally without giving the
information about the local changes to places. After all, the transition function
δ : S × E → S still tells us how states are affected by events.

To prove net synthesis of τ -nets NP-hard, we show the NP-completeness of the
corresponding decision version: τ -feasibility is the problem to decide the existence
of a τ -net N with A(N) isomorphic to the given TS A. To describe feasibility

74

without referencing the searched τ -net N , in the sequel, we introduce the τ -state
separation property (τ -SSP, for short) and the τ -event state separation property
(τ -ESSP, for short) for TSs. In conjunction, they are equivalent to τ -feasibility.
The following notion of τ -regions allows us to define the announced properties.

A τ -region of a given A = (S,E, δ, s0) is a pair (sup, sig) of support sup : S →
Sτ = {0, 1} and signature sig : E → Eτ = τ where every transition s e s′ of A
leads to a transition sup(s) sig(e) sup(s′) of τ . While a region divides S into the
two sets sup−1(b) = {s ∈ S | sup(s) = b} for b ∈ {0, 1}, the events are cumulated
by sig−1(i) = {e ∈ E | sig(e) = i} for all available interactions i ∈ τ . We also
use sig−1(τ ′) = {e ∈ E | sig(e) ∈ τ ′} for τ ′ ⊆ τ .

For a TS A = (S,E, δ, s0) and a type of nets τ , a pair of states s 6= s′ ∈ S is τ -
separable if there is a τ -region (sup, sig) such that sup(s) 6= sup(s′). Accordingly,
A has the τ -SSP if all pairs of distinct states from A are τ -separable. Secondly, an
event e ∈ E is called τ -inhibitable at a state s ∈ S if there is a τ -region (sup, sig)
where sup(s) sig(e) does not hold, that is, the interaction sig(e) ∈ τ is not defined
on input sup(s) ∈ {0, 1}. A has the τ -ESSP if for all states s ∈ S it is true that
all events e ∈ E that do not occur at s, meaning ¬s e , are τ -inhibitable at s.
It is well known from [2] that a TS A is τ -feasible, that is, there exists a τ -net N
with A(N) isomorphic to A, if and only if A has τ -SSP and the τ -ESSP. Types
of nets τ and τ̃ have an isomorphism φ if s i s′ is a transition in τ if and only if
φ(s) φ(i) φ(s′) is one in TS τ̃ . By the following lemma, we benefit from the eight
isomorphisms that map nop to nop, swap to swap, inp to out, set to res, used to
free, and vice versa:

Lemma 1 (Without proof). If τ and τ̃ are isomorphic types of nets then a
TS A has the (E)SSP for τ if and only if A has the (E)SSP for τ̃ .

3 Main Result

Theorem 1 (Main result). Let τ1 = {nop, inp, out}, τ2 = {nop, inp, res, swap},
τ̃2 = {nop, out, set, swap}, τ3 = {nop, inp, set} and τ̃3 = {nop, out, res}. If τ =
τ ′ ∪ ω for τ ′ ∈ {τ1, τ2, τ̃2} with ω ⊆ {used, free} or τ ⊇ τ3 or τ ⊇ τ̃3 then
τ -feasibility is NP-complete.

In total, Theorem 1 covers 68 types, cf. Figure 1, including the elementary
net systems [1]. It is straight forward that τ -feasibility is a member of NP for all
considered type of nets τ : By definition, there are at most |S|2 pairs of states
(s, s′) to separate and at most |E| · |S| pairs (e, s) of event and state where e
has to be inhibited at s. In a non-deterministic computation, one can simply
guess and check in polynomial time for all pairs the region that separates s
and s′, respectively inhibits e at s, or reject the input if such a region does not
exist. Hence, for the proof of Theorem 1 it remains to prove τ -feasibility to be
NP-hard for all types of nets. Although this demands for 68 NP-hardness proofs,
we manage to reduce it to three. Every reduction bases on one scheme using the

75

cubic monotone one-in-three-3-SAT problem, (P1, for short), which has been
shown to be NP-hard in [8]:

cubic monotone one-in-three-3-sat (P1)
Instance: negation-free boolean expression ϕ = {ζ0, . . . , ζm−1}
of three-clauses ζ0, . . . , ζm−1 with variable set V (ϕ), every vari-
able occurs in exactly three clauses
Question: Is there a subset M ⊆ V (ϕ) such that |M ∩ ζi| = 1
for i ∈ {0, . . . ,m− 1}?

Starting from a common construction principle, we choose one of our three reduc-
tions by a turn-switch σ. In every switch position σ1, σ2, σ3, the chosen reduction
works for multiple boolean types based on mutually shared interactions and
isomorphisms. Before we set out the details, the following subsection introduces
our way of easily combining gadget TSs for our NP-completeness proofs.

3.1 Unions of Transition Systems

If A0 = (S0, E0, δ0, s
0
0), . . . , An = (Sn, En, δn, sn0) are (initialized) TSs with pair-

wise disjoint states (but not necessarily disjoint events) we say that U(A0, . . . , An)
is their union. By S(U), we denote the entirety of all states in A0, . . . , An and
E(U) summarizes all events. For a flexible formalism, we allow to build unions
recursively: Firstly, we allow empty unions and identify every TS A with the union
containing only A, that is, A = U(A). Next, if U1 = U(A1

0, . . . , A
1
n1), . . . , Um =

(Am0 , . . . , Annm
) are unions (possibly with Ui = U() or Ui = Ai) then U(U1, . . . , Um)

is the union U(A1
0, . . . , A

1
n1 , . . . , A

m
0 , . . . , A

n
nm

).
We lift the concepts of regions, SSP, and ESSP to unions U = U(A0, . . . , An) as

follows: A τ -region (sup, sig) of U consists of sup : S(U)→ Sτ and sig : E(U)→
Eτ such that, for all i ∈ {0, . . . , n}, the projections supi(s) = sup(s), s ∈ Si
and sigi(e) = sig(e), e ∈ Ei provide a region (supi, sigi) of Ai. U has the τ -SSP
if for all different states s, s′ ∈ S(U) of the same TS Ai there is a τ -region
(sup, sig) of U with sup(s) 6= sup(s′). Moreover, U has the τ -ESSP if for all
events e ∈ E(U) and all states s ∈ S(U) with ¬s e there is a τ -region (sup, sig)
of U such that ¬sup(s) sig(e) . Naturally, U is called τ -feasible if it has the
τ -SSP and τ -ESSP. To merge a union U = U(A0, . . . , An) into a single TS,
we define the joining A(U): If s0

0, . . . , s
n
0 are the initial states of U ’s TSs then

A(U) = (S(U)∪⊥, E(U)∪�∪	, δ,⊥0) is a TS with additional connector states
⊥ = {⊥0, . . . ,⊥n} and fresh events � = {�0, . . . ,�n}, 	 = {	1, . . . ,	n} joining
the individual TSs of U by δ as defined in Figure 4.

δ(s, e) =

si
0, if s = ⊥i and e = �i,

⊥i+1, if s = ⊥i and e = 	i+1,

δi(s, e), if s ∈ Si and e ∈ Ei,

⊥0 ⊥1 . . . ⊥n

A0 A1 An

	1 	2 	n

�0 �1 �n

Fig. 4. Left: A(U)’s transition function δ. Right: An abstract representation of A(U).

76

Hence, A(U) puts the connector states into a chain of the events from 	 and
links the initial states of TSs from U to this chain using events from �. The
following lemma certifies the validity of the joining operation for the unions and
the types of nets that occur in our reduction scheme.

Lemma 2. Let τ be a type of nets such that nop, inp ∈ τ and τ ∩ enter 6= ∅. If
U = U(A0, . . . , An) is a union of TSs A0, . . . , An where, for every event e in
E(U), there is at least one state s in S(U) with ¬s e then U has the τ -(E)SSP
if and only if A(U) has the τ -(E)SSP.

Notice that Lemma 2 does not cover all types mentioned in Theorem 1.
However, this is not necessary as every type τ from Theorem 1 missed by
Lemma 2 is indirectly covered in the Lemma by an isomorphic type τ̃ .

3.2 The General Reduction Scheme

Our general scheme can be set up to a specific reduction by the turn switch σ.
In each of its three positions, σ covers a whole collection of net types. Therefore,
we simply understand the positions σ1, σ2, σ3 as the type sets managed by the
respective reductions:

σ1 = {τ1 ∪ ω | ω ⊆ {used, free}} ∪ {τ3 ∪ ω | ω ⊆ {out, res, used, free}
σ2 = {τ3 ∪ {swap} ∪ ω | ω ⊆ {out, res, used, free}}
σ3 = {τ2 ∪ ω | ω ⊆ {used, free}}

The input of our scheme is the switch position σ ∈ {σ1, σ2, σ3} and an instance
ϕ of P1. The result is a union Uσϕ of gadget TSs satisfying the conditions of
Lemma 2, that is, Uσϕ is τ -feasible if and only if A(Uσϕ) is τ -feasible for all τ ∈ σ.
Moreover, the union Uσϕ satisfies the following properties:

1. The variables V (ϕ) are a subset of E(Uσϕ), the union events.
2. Event k ∈ E(Uσϕ) is to inhibit at state h0,6 ∈ S(Uσϕ) and there are events
V = {v0, . . . , v3m−1} ⊆ E(Uσϕ) and W = {w0, . . . , w3m−1} ⊆ E(Uσϕ).

3. If τ ∈ σ and (sup, sig) a τ -region inhibiting k at h0,6 then one of the
following conditions is true:
(a) sig(k) = inp and V ⊆ sig−1(enter) and W ⊆ sig−1(keep−),
(b) sig(k) = out and V ⊆ sig−1(exit) and W ⊆ sig−1(keep+).

4. If (sup, sig) is a region of Uσϕ satisfying Condition 3.a or Condition 3.b
then M = {X ∈ V (ϕ) | sig(X) 6= nop} is a one-in-three model of ϕ.

5. If ϕ has a one-in-three model M and τ ∈ σ then there is a τ -region
(sup, sig) with sig(k) = inp and sup(h0,6) = 0. Especially, (sup, sig)
inhibits k at h0,6 and satisfies Condition 3.a.

6. If τ ∈ σ and k is τ -inhibitable at h0,6 then Uσϕ has the τ -ESSP and the
τ -SSP.

A polynomial time reduction scheme with these properties proves Theorem 1 as
the following implications are justified:

77

ϕ is one-in-three satisfiable 5.=⇒ k is τ -inhibitable at h0,6 in Uσϕ
6.=⇒ Uσϕ

has the τ -ESSP & τ -SSP def.=⇒ Uσϕ is τ -feasible def.=⇒ Uσϕ has the τ -ESSP
def.=⇒ k is τ -inhibitable at h0,6 in Uσϕ

3./4.=⇒ ϕ is one-in-three satisfiable.

Especially, ϕ is one-in-three satisfiable if and only if Uσϕ is τ -feasible. By Lemma 2,
this proves NP-hardness of τ -feasibility for all τ in the positions σ1, σ2, σ3.
Secondly, every remaining type τ̃ of Theorem 1 is isomorphic to one of the
already covered cases τ . Hence, by Lemma 1, this also proves NP-hardness of
τ̃ -feasibility which, by feasibility being in NP, justifies Theorem 1.

In the sequel, we develop the reduction of Uσϕ and show that it satisfies
Condition 1-Condition 5. Notice that this proves ϕ is one-in-three satisfiable if
and only if k is inhibitable at h0,6. Due to space limitation, the proof that Uσϕ
also has Condition 6 is moved to the technical report [13].

3.3 Details for Condition 2 and Condition 3

To satisfy Condition 2, every union Uσϕ implements the following transition system
H that provides the event k, the state h0,6, where ¬h0,6

k , and the events
of Z = {z0, . . . , z3m−1}, V = {v0, . . . , v3m−1} and W = {w0, . . . , w3m−1} (the
colored areas are to be explained later):
h0,0 h0,1 h0,2 h0,3 h0,4 h0,5 h0,6

h3m−1,0 h3m−1,1 h3m−1,2 h3m−1,3 h3m−1,4 h3m−1,5 h3m−1,6

h3m,0 h3m,1 h3m,2 h3m,3 h3m,4 h3m,5 h3m,6

h6m−1,0 h6m−1,1 h6m−1,2 h6m−1,3 h6m−1,4 h6m−1,5 h6m−1,6

...
...

r0

r3m−2

r3m−1

...
...

r3m

r6m−2

k z0 v0 k q0 z0

k z3m−1 v3m−1 k q3m−1 z3m−1

k w0 p0 k y0 w0

k w3m−1 p3m−1 k y3m−1 w3m−1

c0

c3m−2

c3m−1

c3m

c6m−2

So far Condition 2 is already satisfied. For Condition 3 we observe that,
by definition, there are basically four interactions possibly useful for sig(k):
inp, out, used, free. The other interactions res, set, swap, nop are defined on both
0 and 1 and, hence, not suitable to inhibit events. H alone generally does not
guarantee that a region (sup, sig) inhibiting k at h0,6 satisfies Condition 3. Thus,
to achieve this goal other gadgets are necessary. By theirs different types (having

78

different interactions), it depends on σ which gadgets are necessary. We proceed
step by step and develop the construction for σ1, σ2 and σ3 in the given order. In
the sequel, if not explicitly stated otherwise, by (sup, sig) we refer to a τ -region
of Uσϕ , τ ∈ σ, that inhibits k at h0,6. The union Uσ1

ϕ implements additionally the
following two TSs F0, F1:

F0 = f0,0 f0,1 f0,2 f0,3 f0,4
k n0 z0 k

F1 = f1,0 f1,1 f1,2
q0 k

We argue that every region (sup, sig) of Uσ1
ϕ satisfies Condition 3: If sig(k) =

used then, by definition of used we get sup(s) = sup(s′) = 1 for every transition
s k s′. Hence, we have sup(f0,3) = sup(f1,1) = sup(h0,4) = 1. By definition
of inp, res we have that e s and sig(e) ∈ {inp, res} implies sup(s) = 0. Hence,
by z0 f0,3 and q0 f1,1 we have that sig(z0), sig(q0) 6∈ {inp, res}. Moreover, we
observe that swap 6∈ τ for all τ ∈ σ1. Thus, sig(z0), sig(q0) ∈ keep+ such that
sup(h0,4) = sup(h0,5) = sup(h0,6) = 1 which contradicts ¬sup(h0,6) sig(k) . Hence,
sig(k) 6= used. Similarly, one argues that sig(k) 6= free implies that sup(h0,6) = 0,
again a contradiction. Hence, we have that sig(k) = inp and sup(h0,6) = 0 or
sig(k) = out and sup(h0,6) = 1.

As a next step, we show that sig(k) = inp and sup(h0,6) = 0 implies sig(v0) ∈
enter and sig(z0) ∈ keep−: By sig(k) = inp and k h0,1 and h0,3

k we have
that sup(h0,1) = 0 and sup(h0,3) = 1. By z0 h0,6, sup(h0,6) = 0 and swap 6∈ τ
we have that sig(z0) ∈ keep−. Moreover, by sup(h0,1) = 0 and sig(z0) ∈ keep− it
is sup(h0,2) = 0 which, by h0,2

v0 h0,3 and sup(h0,3) = 1, implies sig(v0) ∈ enter.
Notice, that this reasoning purely bases on sig(k) = inp and sup(h0,6) = 0.
Similarly, one argues that sig(k) = out and sup(h0,6) = 1 implies sig(v0) ∈ exit
and sig(z0) ∈ keep+. Uσ1

ϕ uses for every i ∈ {0, . . . , 6m − 2} the following TS
Gc,ci to transfer the support-value sup(h0,6) to the states h1,6, . . . , h6m−1,6:

Gc,ci = gc,ci,0 gc,ci,1

gc,ci,2 gc,ci,3

ci

k

ci

k

By doing so, it transfers the outcome of the latter observation to the events
v1, . . . , v3m−1 and w0, . . . , w3m−1: If sig(k) = inp, then we have sup(gc,ci,0) =
sup(gc,ci,0) = 1 and sup(gc,ci,2) = sup(gc,ci,3) = 0, that is, sig(ci) = nop. Symmetrically,
if sig(k) = out then sig(ci) = nop. Hence, if sig(k) = inp and sup(h0,6) = 0 then
sup(hi,6) = 0 for all i ∈ {0, . . . , 6m− 1}. Perfectly similar to the discussion for
z0 and v0 we obtain that V ⊆ sig−1(enter) and W ⊆ sig−1(keep−), respectively.
Symmetrically, sig(k) = out and sup(h0,6) = 1 imply V ⊆ sig−1(exit) and
W ⊆ sig−1(keep+). Hence, Uσ1

ϕ satisfies Condition 3.
Unfortunately, if σ ∈ {σ2, σ3} then the introduced gadgets F0, F1 (alone) are

not powerful enough to ensure Condition 3. This is mainly due to the interaction
swap. However, we tackle this problem by the application of other gadgets. While,
due to theirs different interaction sets, σ2 and σ3 have different requirements,

79

both of Uσ2
ϕ and Uσ3

ϕ implement for every i ∈ {0, . . . , 6m − 2} the gadget Gc,ci
and for i ∈ {0, . . . , 3m− 1} following gadget TSs G ,q

i and G ,y
i :

G ,q
i = g ,qi,0 g ,qi,1

g ,qi,2 g ,qi,3

k

qi

k

G ,y
i = g ,yi,0 g ,yi,1

g ,yi,2 g ,yi,3

k

yi

k

Here and in the sequel, the purpose of underscore-labeled edges is essentially to
ensure reachability of the TSs. Every underscore represents an arbitrary unique
event occurring only at this edge. For the sake of readability we do not define
these events explicitly. Again for readability, we define Q = {q0, . . . , q3m−1} and
Y = {y0, . . . , y3m−1}. Moreover, Uσ2

ϕ adds the TS F0 (originally introduced for
σ1) and the next TS Gn,0 while Uσ3

ϕ uses also F0 and the following TS F2:

Gn,0 = gn,0,0 gn,0,1

gn,0,2 gn,0,3

n0

k k

F2 = f2,0 f2,1

f2,2 f2,3

n0

k k

That Uσ2
ϕ and Uσ3

ϕ differ in Gn,0 and F2, respectively, is mainly due to
the fact that the interactions of theirs types have different requirements to
satisfy Condition 5 and Condition 6. To argue for Uσ3

ϕ ’s and Uσ4
ϕ ’s functionality,

respectively, we firstly show that sig(k) ∈ {inp, out} for (sup, sig): If sig(k) = used
then s k s′ implies sup(s) = sup(s′) = 1. Applying this to F2, G

n,
0 and G ,q

0 we
obtain that sig(n0), sig(q0) ∈ keep+. By sig(n0) ∈ keep+ and sup(f0,1) = 1 we
obtain sup(f0,2) = 1 which, by sup(f0,3) = 1, implies sig(z0) ∈ keep+. Finally,
by sup(h0,3) = 4 and sig(z0), sig(q0) ∈ keep+, we get sup(h0,6) = 1 which
contradicts ¬ sup(h0,6) sig(k) . Similarly, the assumption sig(k) = free yields the
same contradiction. Thus, sig(k) ∈ {inp, out}.

We argue that sig(k) = inp and sup(h0,6) = 0 implies V ⊆ sig−1(enter)
and W ⊆ sig−1(keep−): By sig(k) = inp we get again sig(ci) = nop and, thus,
sup(hi,6) = 0 for all i in question. Moreover, by sig(k) = inp we get sup(s) = 0
for all k s. Applying this to G ,q

i and G ,y
i yields Q,Y ⊆ sig−1(keep−). By

Q,Y ⊆ sig−1(keep−) and sup(hi,4) = 0 (for all i ∈ {0, . . . , 6m − 1}) we get
sup(hi,5) = 0 which, by sup(hi,6) = 0, implies W,Z ⊆ sig−1(keep−). Finally, by
Z ⊆ sig−1(keep−) and sup(hi,1) = 0 we conclude sup(hi,2) = 0 implying with
sup(hi,3) = 1 that sig(vi) ∈ enter for every i ∈ {0, . . . , 3m−1}: V ⊆ sig−1(enter).
Symmetrically, sig(k) = out and sup(h0,6) = 1 implies W ⊆ sig−1(keep+) and
V ⊆ sig−1(exit). Hence, Uσ2

ϕ and Uσ3
ϕ satisfy Condition 3.

3.4 Details for Condition 1 and Condition 4

Essential for the realization of Condition 1 and Condition 4 is the observation
that for every τ -region R = (sup, sig) and path P = s e1 . . . en s′ the image
R(P) = sup(s) sig(e1) . . . sig(en) sup(s′) is a path in τ . Moreover, if sup(s) 6=
sup(s′) = 0 then there has to be an event ei mapped to an interaction of
τ that allows a state change in τ : sig(ei) 6∈ {nop, used, free}. Our target is

80

to exploit this observation in the following way: Firstly, represent every clause
ζi = {Xi,0, Xi,1, Xi,2} by a path Pi,0 = ti,0,2

Xi,0 ti,0,3
Xi,1 ti,0,4

Xi,2 ti,0,5. Secondly,
ensure that region (sup, sig) (inhibiting k at h0,6) requires sup(ti,0,2) 6= sup(ti,0,5)
for every i ∈ {0, . . . ,m−1}. Thirdly, ensure that there is exactly one variable event
X ∈ {Xi,0, Xi,1, Xi,2} whose image sig(X) allows the necessary state change in
τ and that both of the others are mapped to nop. Such a region implies that
M = {X ∈ V (ϕ) | sig(X) 6= nop} is a one-in-three model of ϕ as two different
clauses ζi, ζj are represented by different paths Pi,0, Pj,0. Let’s discuss the case
that region (sup, sig) satisfies sup(ti,0,2) = 1 and sup(ti,0,5) = 0. Unfortunately,
generally there are many possibilities for the signature of the variable events
Xi,0, Xi,1, Xi,2 and not even one of them need to be mapped to nop. For example,
sig(X) = res or sig(X) = swap for X ∈ {Xi,0, Xi,1, Xi,2} would be possible, too.

We attack this problem as follows: Firstly, instead of one path for ζi we
apply the following three forward-backward paths Pi,0, Pi,1, Pi,2 which for every
variable event X ∈ {Xi,0, Xi,1, Xi,2} use an additional mirror event x:

Pi,0 = ti,0,2 ti,0,3 ti,0,4 ti,0,5

Xi,0 Xi,1 Xi,2

xi,0 xi,1 xi,2

Pi,1 = ti,1,2 ti,1,3 ti,1,4 ti,1,5

Xi,1 Xi,2 Xi,0

xi,1 xi,2 xi,0

Pi,2 = ti,2,2 ti,2,3 ti,2,4 ti,2,5

Xi,2 Xi,0 Xi,1

xi,2 xi,0 xi,1

Notice that, by the arbitrariness of i, we have for everyX ∈ {X0, . . . , Xm−1} =
V (ϕ) its unique mirror event x ∈ {x0, . . . , xm−1}. Moreover, by definition, if
s X s′ is a an edge (of any forward-backward path) then s x s′ is too. The
paths Pi,0, Pi,1, Pi,2 are similar but the variable events are once and twice left-
shifted, respectively. Secondly, we ensure that (sup, sig) also satisfies sup(ti,1,2) =
sup(ti,2,2) = 1 and sup(ti,1,5) = sup(ti,2,5) = 0, that is, sup synchronizes the
states ti,0,2, ti,1,2, ti,2,2 and the states ti,0,5, ti,1,5, ti,2,5, respectively. As a result,
we have for every variable event X ∈ {Xi,0, Xi,1, Xi,2} an edge X s such that
sup(s) = 0. Consequently, we have that sig(X) 6∈ {out, set, used}, as i x and
i ∈ {out, set, used} requires x = 1. Moreover, we also have for every variable
event an edge s X such that sup(s) = 1, such that sig(X) 6= free. This leaves
nop, inp, res, swap as remaining candidates for sig(X).

As a matter of fact, the construction already ensures that a variable event
X ∈ {Xi,0, Xi,1, Xi,2} with sig(X) ∈ {inp, res} implies that sig(Y) = nop for
Y ∈ {Xi,0, Xi,1, Xi,2}\{Y }. We explicitly justify this claim only for X = Xi,0 as,
by symmetry, the cases X = Xi,1 and X = Xi,2 are quite similar: By sig(Xi,0) ∈
{inp, res} we have sup(ti,0,3) = 0 which by sup(ti,0,2) = 1 and ti,0,2

xi,0 ti,0,3
implies sig(xi,0) ∈ {out, set, swap}. Again by sig(Xi,0) ∈ {inp, res} we have
sup(ti,2,4) = 0 implying with sig(xi,0) ∈ {out, set, swap} that sup(ti,2,3) = 1. By
ti,2,2

Xi,2 ti,2,3, sup(ti,2,2) = sup(ti,2,3) = 1 and sig(Xi,2) ∈ {nop, inp, res, swap}
we conclude sig(Xi,2) = nop. Furthermore, by sup(ti,1,5) = 0 and sig(xi,0) ∈
{out, set, swap} we have sup(ti,1,4) = 1. By sig(Xi,2) = nop, ti,1,3 Xi,2 ti,1,4

81

and sup(ti,1,4) = 1 we obtain that sup(ti,1,3) = 1. Finally, by sup(ti,1,2) =
sup(ti,1,3) = 1, ti,1,2 Xi,1 ti,1,3 and sig(Xi,1) ∈ {nop, inp, res, swap} we obtain
sig(Xi,1) = nop.

So far, we have already argued that for types τ with swap 6∈ τ the following
is true: A τ -region that synchronizes ti,0,2, ti,1,2, ti,2,2 and ti,0,5, ti,1,5, ti,2,5 as
announced ensures that there is exactly one variable event of Xi,0, Xi,1, Xi,2 with
a signature different from nop. This concerns the types which are covered by σ1.

For the types τ with swap ∈ τ , covered by σ2 and σ3, it remains to ensure
the following: If X ∈ {Xi,0, Xi,1, Xi,2} and sig(X) = swap then sig(Y) = nop
for Y ∈ {Xi,0, Xi,1, Xi,2} \ {X}. Unfortunately, the previous construction (alone)
can not afford this. However, we overcome this problem by another enhancement
which we develop in the sequel.

Notice that, by the former discussion, sig(X) = swap already implies sig(Y) 6∈
{inp, res} for Y ∈ {Xi,0, Xi,1, Xi,2}\{X}. Hence, its simple maths that if sig(X) =
swap then either all variable events are mapped to swap or exactly one of
them: Either we have three changes in τ to get from 1 to 0 or exactly one.
Moreover, it is easy to see that if sig(X) = swap for all X ∈ {Xi,0, Xi,1, Xi,2}
then sig(x) = swap for all x ∈ {xi,0, xi,1, xi,2}. Thus, it is sufficient to prevent
that any x is mapped to swap. To do so, the union Uσ2

ϕ installs for every mirror
event xi ∈ {x0, . . . , xm−1}, that is, especially for xi,0, xi,1, xi,2, the gadget TS
Gx,i which is defined in Figure 5.4. As (sup, sig) satisfies sig(k) ∈ {inp, out} we
have sup(gx,i,0) = sup(gx,i,1) which implies sig(xi) 6= swap for i ∈ {0, . . . ,m− 1}.
Similarly, the union Uσ3

ϕ installs for every i ∈ {0, . . . ,m− 1} the gadget TS G ,x
i

which is defined in Figure 5.8. The reason for these differences between Uσ2
ϕ and

Uσ3
ϕ is again due to theirs different types and the target to satisfy Condition 5

and Condition 6. We will give a detailed explanation later.
Altogether, we have argued that a reduction with these features ensures, that

the existence of (sup, sig) implies that M = {X ∈ V (ϕ) | sig(X) 6= nop} is a one-
in-three model of ϕ. Moreover, an analogous argument shows that sup(ti,0,2) =
sup(ti,1,2) = sup(ti,2,2) = 0 and sup(ti,0,5) = sup(ti,1,5) = sup(ti,2,5) = 1 also
implies that exactly one variable event (per clause) has a signature different
from nop. But how can we ensure that the states ti,0,2, ti,1,2, ti,2,2 and the states
ti,0,5, ti,1,5, ti,2,5 become synchronized? To achieve this, we enhance Pi,0, Pi,1, Pi,2
as follows: If σ ∈ {σ1, σ2} then we enhance Pi,0, Pi,1, Pi,2 to Ti,0, Ti,1, Ti,2 in
accordance to Figure 5.1- Figure 5.3, respectively. Ti,0, Ti,1 and Ti,2 apply the
event k and the events v3i, v3i+1, v3i+2 and w3i, w3i+1, w3i+2. To make it clear:
Besides the corresponding gadgets introduced in Section 3.3, Uσ1

ϕ and Uσ2
ϕ

(additionally) implement the TSs Ti,0, Ti,1 and Ti,2 for every i ∈ {0, . . . ,m− 1}.
Moreover, Uσ2

ϕ implements also Gx,i for every i ∈ {0, . . . ,m− 1}.
The region (sup, sig) uses the latest enhancement as follows: As already dis-

cussed in the former section, sig(k) = inp (and sup(h0,6) = 0) imply V ⊆
sig−1(enter) and W ⊆ sig−1(keep−). Moreover, by sig(K) = inp, we have
sup(ti,0,1) = sup(ti,1,1) = sup(ti,2,1) = 0. Altogether, this implies sup(ti,0,2) =
sup(ti,1,2) = sup(ti,2,2) = 1 and sup(ti,0,5) = sup(ti,1,5) = sup(ti,2,5) = 0.

82

Moreover, if sig(k) = out then V ⊆ sig−1(exit), implying sup(ti,0,2) =
sup(ti,1,2) = sup(ti,2,2) = 0, and W ⊆ sig−1(keep+), implying sup(ti,0,5) =
sup(ti,1,5) = sup(ti,2,5) = 1. As discussed, this implies a one-in-three model of ϕ.

For Uσ3
ϕ we need a slightly different construction: The union Uσ3

ϕ imple-
ments for every i ∈ {0, . . . ,m − 1} instead of Ti,0, Ti,1, Ti,2 the transition sys-
tem T ′i,0, T

′
i,1, T

′
i,2 defined in Figure 5.4-Figure 5.6, respectively. T ′i,0, T ′i,1, T ′i,2

also implement Pi,0, Pi,1, Pi,2 but switch the position of v3i, v3i+1, v3i+2 with
w3i, w3i+1, w3i+2, respectively. By symmetry, the arguments that Uσ3

ϕ satisfies
Condition 4 are similar to the ones for Uσ1

ϕ and Uσ2
ϕ .

Altogether, we have argued that Uσϕ satisfies Condition 1 and Condition 4
for σ ∈ {σ1, σ2, σ3}. In the next section we talk about the fifth condition. By
doing so, we also justify for why Uσ3

ϕ ’s construction different to Uσ2
ϕ . An essential

reason for this is that we have to fulfill both: Condition 4 and Condition 5.

1) ti,0,0

ti,0,1

ti,0,2 ti,0,3 ti,0,4 ti,0,5

k

v3i w3i

Xi,0 Xi,1 Xi,2

xi,0 xi,1 xi,2

2) ti,1,0

ti,1,1

ti,1,2 ti,1,3 ti,1,4 ti,1,5

k

v3i+1 w3i+1

Xi,1 Xi,2 Xi,0

xi,1 xi,2 xi,0

3) ti,2,0

ti,2,1

ti,2,2 ti,2,3 ti,2,4 ti,2,5

k

v3i+2 w3i+2

Xi,2 Xi,0 Xi,1

xi,2 xi,0 xi,1

4) gx,
i,0 gx,

i,1

gx,
i,2 gx,

i,3

xi

k k

5) ti,0,0

ti,0,1

ti,0,2 ti,0,3 ti,0,4 ti,0,5

k

w3i v3i

Xi,0 Xi,1 Xi,2

xi,0 xi,1 xi,2

6) ti,1,0

ti,1,1

ti,1,2 ti,1,3 ti,1,4 ti,1,5

k

w3i+1 v3i+1

Xi,1 Xi,2 Xi,0

xi,1 xi,2 xi,0

7) ti,2,0

ti,2,1

ti,2,2 ti,2,3 ti,2,4 ti,2,5

k

w3i+2 v3i+2

Xi,2 Xi,0 Xi,1

xi,2 xi,0 xi,1

8) g ,x
i,0 g ,x

i,1

g ,x
i,2 g ,x

i,3

k

xi

k

Fig. 5. (1-3) Ti,0, Ti,1, Ti,2, (4) Gx,
i , (5-7) T ′

i,0, T
′
i,1, T

′
i,2, (8) G ,x

i . (1-3,5-7): The colored
areas mark the supports of the three possible regions for Condition 5 as described in
Section 3.5: red: Xi,0 ∈ M , green: Xi,1 ∈ M and blue: Xi,2 ∈ M . The (initial) states
ti,0,0, ti,1,0 and ti,2,0 are mapped to 1 for all cases. (4,8): The colored areas define the
support of (sup, sig) for Condition 5 as given in Section 3.5.

83

3.5 Details for Condition 5

For Condition 5, we start from a given one-in-three model M of ϕ and show
that Uσϕ allows a region (sup, sig) such that sig(k) = inp and sup(h0,6) = 0 and
V ⊆ sig−1(enter) and W ⊆ sig−1(keep−).

For a start, let’s restrict to σ1, σ2 and the TSs Ti,0, Ti,1Ti,2 implemented by
Uσ1
ϕ , Uσ2

ϕ and Gx,i used by Uσ2
ϕ where i ∈ {0, . . . ,m − 1}: We define sig(k) =

inp, sig(v3i), sig(v3i+1), sig(v3i+2) ∈ enter and sig(w3i), sig(w3i+1), sig(w3i+2) ∈
keep−, i ∈ {0, . . . ,m− 1}. This requires sup(ti,0,2) = sup(ti,1,2) = sup(ti,2,2) = 1
and sup(ti,0,5) = sup(ti,1,5) = sup(ti,2,5) = 0. That is, for every Ti,0, Ti,1, Ti,2
we have a path from 1 to 0 labeled by Xi,0, Xi,1, Xi,2 and a path from 0 to 1
labelled by xi,0, xi,1, xi,2. For the former path, we define sig(X) = inp if X ∈M
and sig(X) = nop if Y ∈ V (ϕ) \M . Accordingly, for the latter path we let
sig(x) ∈ enter if sig(X) = inp and, otherwise sig(x) = nop, cf. Figure 5.1-
Figure 5.3: The red area sketches the case sig(Xi,0) = inp, the green area
sig(Xi,1) = inp and the blue area sig(Xi,2) = inp. States within the corresponding
colored area are mapped to 1 the others to 0, respectively. If σ = σ1 then, by
Figure 5.1-Figure 5.3 and by recalling that every variable occurs exactly three
times in exactly three clauses, it is easy to see that this yields a well defined
region. Considering Ti,0, Ti,1, Ti,2 alone, this is also true for σ2. However, for σ2
we also need to take the TSs Gx,0 , . . . , Gx,m−1 into account. Here, by sig(k) = inp
we have that sup(gx,i,0) = sup(gx,i,1) = 1 such that sig(xi) ∈ keep+. Hence, we need
that sig(xi) ∈ enter ∩ keep+, that is, sig(xi) = set. Fortunately, all types τ ∈ σ2
has the property set ∈ τ . We argue that (sup, sig) is extendable to Uσ1

ϕ and Uσ2
ϕ

and their other TSs: With the help of the colored areas of the introduced TSs we
extend (sup, sig) as follows. For every implemented gadget TS, the red colored
area refers to states s such that sup(s) = 1, otherwise, sup(s) = 0. If s e s′

where s is in a red colored area and s′ is not, define sig(e) = inp. Similarly, if s′
is in a red colored area and s is not, define sig(e) ∈ enter. Finally, if either both
of s, s′ are red or both not then define sig(e) = nop. One easily verifies that this
yields a well defined region such such that Uσ1

ϕ , Uσ2
ϕ satisfy Condition 5.

Unfortunately, as set 6∈ τ for τ ∈ σ3 this region can not exist for σ3 which
is one reason why σ3 needs another construction. For Uσ3

ϕ we obtain a corre-
sponding region as follows: We define sig(k) = inp and V ⊆ sig−1(enter) and
W ⊆ sig−1(keep−) which requires sup(ti,0,2) = sup(ti,1,2) = sup(ti,2,2) = 0 and
sup(ti,0,5) = sup(ti,1,5) = sup(ti,2,5) = 1. That is, for every T ′i,0, T

′
i,1, T

′
i,2 we

have a path from 0 to 1 which is labeled by Xi,0, Xi,1, Xi,2 and a path from 1
to 0 labelled by xi,0, xi,1, xi,2. For the former path, we define sig(X) = swap if
X ∈ M and sig(X) = nop if Y ∈ V (ϕ) \M , cf. Figure 5.4-Figure 5.7. Accord-
ingly, for the latter path we let sig(x) = res if sig(X) = swap and, otherwise
sig(x) = nop. We take the TSs G ,x

0 , . . . , G ,x
m−1 into account and, by sig(k) = inp

we have sup(g ,xi,2) = sup(g ,xi,3) = 0 which is compatible with sig(xi) = res. The
extension of (sup, sig) to the remaining gadgets of Uσ3

ϕ works analogously to Uσ2
ϕ ,

where border-crossing events from 0 to 1 are mapped to swap (instead of set).
Altogether, we have proven that Uσϕ satisfies Condition 5 for σ ∈ {σ1, σ2, σ3}.

84

4 Concluding Remarks

In this paper we present a proof scheme to show the NP-hardness of synthesis,
for 68 boolean Petri net types. Together with our previous work from [14], this
already makes 111 out of 256 boolean net types where the complexity of synthesis
has been figured out. In fact, with respect to the practically more relevant nop-
afflicted types of nets, there are only 17 cases left open. However, in view of our
main target (dichotomy result) it remains for future work to characterize the
synthesis complexity for all the remaining 145 types.

The NP-hardness results of the investigated synthesis problems motivates the
search for (fixed-parameter) tractable special cases. There are at least two ways
to (possibly) obtain such cases: Firstly, one can put (structural) restrictions on
the τ -net N to be synthesized (the output) and require, for example, that N
has to be free-choice or a marked graph [4]. To investigate the impact of such
output-restrictions on the complexity of boolean net synthesis is certainly an
interesting direction for further research.

Secondly, one can put restrictions on the TS from which N is to synthesize
(the input). One of the most obvious parameters here is the TS’s state degree g,
that is, the maximum number of ingoing and outgoing edges at a state. Actually,
TSs of benchmarks of the digital hardware design community often have a low
state degree [5]. However, our result show that it is very unlikely that feasibility
is (fixed-parameter) tractable for parameter g: All gadget TSs have at most two
ingoing and at most two outgoing edges per state, that is g ≤ 2, and this property
is preserved by the joining-operation for A(Uσϕ). Clearly, this leaves us with the
question if synthesis becomes tractable if g ≤ 1. On the one hand, that this can
not generally be true has been shown in [15]. On the other hand, one observes
that our reduction’s functionality heavily bases on the ability to prevent a res-,
set- and swap-signature of certain events. The core gadgets here are Ti,0, Ti,1, Ti,2
(implementing the paths Pi,0, Pi,1, Pi,2) and the TSs Gx,i and G ,x

i . These gadgets
are reliant on the possibility to have two ingoing and outgoing edges per state.
Hence, the case g ≤ 1 is an object worth to study in future work, at least for the
discussed types satisfying τ ∩ {set, res, swap} 6= ∅.

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is np-complete. Theor. Comput. Sci. 186(1-2), 107–134 (1997).
https://doi.org/10.1016/S0304-3975(96)00219-8

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. Texts
in Theoretical Computer Science. An EATCS Series, Springer (2015).
https://doi.org/10.1007/978-3-662-47967-4

3. Badouel, E., Darondeau, P.: Trace nets and process automata. Acta Inf. 32(7),
647–679 (1995). https://doi.org/10.1007/BF01186645

4. Best, E.: Structure theory of petri nets: the free choice hiatus. In: Advances in Petri
Nets. Lecture Notes in Computer Science, vol. 254, pp. 168–205. Springer (1986).
https://doi.org/10.1007/BFb0046840

85

5. Cortadella, J.: Private correspondance (2017)
6. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Step semantics of

boolean nets. Acta Inf. 50(1), 15–39 (2013). https://doi.org/10.1007/s00236-012-
0170-2

7. Montanari, U., Rossi, F.: Contextual nets. Acta Inf. 32(6), 545–596 (1995).
https://doi.org/10.1007/BF01178907

8. Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete &
Computational Geometry 26(4), 573–590 (2001). https://doi.org/10.1007/s00454-
001-0047-6

9. Pietkiewicz-Koutny, M.: Transition systems of elementary net systems with inhibitor
arcs. In: ICATPN. Lecture Notes in Computer Science, vol. 1248, pp. 310–327.
Springer (1997). https://doi.org/10.1007/3-540-63139-9 43

10. Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Petri Nets. Lec-
ture Notes in Computer Science, vol. 1491, pp. 12–121. Springer (1996).
https://doi.org/10.1007/3-540-65306-6 14

11. Schmitt, V.: Flip-flop nets. In: STACS. Lecture Notes in Computer Science, vol. 1046,
pp. 517–528. Springer (1996). https://doi.org/10.1007/3-540-60922-9 42

12. Tredup, R., Rosenke, C.: Narrowing down the hardness barrier of syn-
thesizing elementary net systems. In: CONCUR. LIPIcs, vol. 118, pp.
16:1–16:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018).
https://doi.org/10.4230/LIPIcs.CONCUR.2018.16

13. Tredup, R., Rosenke, C.: Towards completely characterizing the com-
plexity of boolean nets synthesis. CoRR abs/1806.03703 (2018),
http://arxiv.org/abs/1806.03703

14. Tredup, R., Rosenke, C.: The complexity of synthesis for 43 boolean petri net types.
In: Theory and Applications of Models of Computation. Theoretical Computer
Science and General Issues, vol. 11436. Springer International Publishing (2019).
https://doi.org/10.1007/978-3-030-14812-6

15. Tredup, R., Rosenke, C., Wolf, K.: Elementary net synthesis remains np-complete
even for extremely simple inputs. In: Petri Nets. Lecture Notes in Computer Science,
vol. 10877, pp. 40–59. Springer (2018). https://doi.org/10.1007/978-3-319-91268-4 3

86

