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Abstract—The deep learning revolution has an impact on
almost all parts of our life, it brought us improved momental ma-
chine translators, modern human-like conversation voice assistant
like Siri, Alexa, Alisa. This revolution had become truth because
of deep learning methods which improved multiple processing
layers to learn a hierarchical representation of data, and have
achieved the state-of-the-art results in many lives domains. In this
paper, we are focusing on one of the most famous NLP (Natural
language processing) problems which is slot filling to approach
the state-of-the-art results on the ticketing problem to make the
Spoken Dialogue systems work more efficiently. We propose a
hybrid architecture, as a combination of a Recurrent Neural
Network and a Convolutional Neural Network models, for Slot
Filling in Spoken Language Understanding. In particular, our
network model is built from stacked units of 1-dimensional CNN
(Convolutional Neural Network) across the temporal domain,
which are used to train an RNN (Recurrent neural network) layer
to model dependencies in the temporal domain. Experimental
tests show extensive comparisons between different models for
NER (Named Entities Recognition). Results demonstrate the
effectiveness of hybrid models that combine benefits from both
RNN and CNN architecture compared over distinct RNN and
CNN models and also compared with other traditional models.
Experimental results show that our model achieves F1-score of
95.11 on benchmark ATIS dataset.

Index Terms—SLU, slot-filling, Hybrid CNN and RNN, Deep
learning

I. INTRODUCTION

The methodological revolution in spoken language research
had been started about 20 years ago when the machine learning

algorithms started to take place in the programmer society.
However, the last five years brought the real change after
the new deep learning architectures, which leds to a new
level of solutions and the Spoken Dialogue Systems (SDS)
is one of the fields which had really improved recently. SDS
and chatbots are taking a wider place day by day in the
scientific conferences as a case study. They already have great
commercial potential according to the changing of the way
humans interact with machines. The improvement of deep
learning in general, and the Natural Language Processing
(NLP) researchers in special, led to place a lot of difficult
problems under the microscope, and the research teams over
the world trying to test different architecture models to get the
state-of-the-art results to solve these problems. In our days,
the importance of chatbots has increased, most websites tend
to have their own chatbots to communicate with customers
and facilitate their work. The goal of such bots is to know
users needs and give responses in their natural language. This
will lead to a better understanding of the users queries when
communicating with the users in a natural way throw these
chatbots. It will also help to ask the users about whatever
missing points they have to bring the best accurate answers,
such assistants could help disabled people and bring more
solutions to the market to build a more intelligent world.
The implementation of a voice assistant comes with different
parts, as speech to text and text to speech models, but the
most challenging part comes in the task of NLP to extract



the needs of the user and to know his intent from the
conversation. The processing pipeline comes here into two
parts, intent classification and slot filling after the intent is
known. At this stage, the bot needs to generate a response
to the user and give feedback about whatever missing data
there are. The whole system that organizes this process is the
dialogue manager which processes the users input, extract the
meaning and generates the desired response. From a research
perspective, the design of spoken dialogue systems provides a
number of significant challenges, as these systems depend on
solving several difficult NLP and decision making tasks, and
combining these into a functional dialogue system pipeline [1].
Intent detection and slot filling are usually processed sepa-
rately. Intent detection can be treated as a semantic utterance
classification problem, and popular classifiers like support
vector machines (SVMs) [2] and deep neural network meth-
ods [3] can be applied. Slot filling can be treated as a se-
quence labeling task. Popular approaches to solving sequence
labeling problems include maximum entropy Markov models
(MEMMs) [4], conditional random fields (CRFs) [5], and
recurrent neural networks (RNNs) [6] [7] [8]. Joint model
for intent detection and slot filling has also been proposed
in literature [9] [10]. Such joint model simplifies the spoken
language understanding (SLU) system, as only one model
needs to be trained and fine-tuned for the two tasks.
This work focuses on the slot-filling part by building a model
that extracts information from text in a reliable way. Before
the era of deep learning the task of Named Entity Recognition
(NER) was solved using grammars-based models and rule-
based approaches, these models have proven to achieve good
results in terms of precision but fail to capture all human-
text varieties and thus the recall will be bad. Probabilistic ap-
proaches came with models built on HMM, which were state-
of-art for many years and achieved an impressive achievement.
With the recent revolution, many deep learning methods has
replaced traditional previous ones and pushed state-of-art for
these tasks in. Recurrent Neural Networks (RNN) models have
replaced models based on HMM, that is RNN achieved the
same task in a simpler way and deep RNNs are able to
capture complex representations for the input. The problem
with such models was that they need to handle the input token-
by-token in sequence. Therefore, such structures could not be
parallelized and the models will be slow to train and inference
if the neural network structure is deep. Convolution Neural
Networks (CNN) added a way to extract relations between
tokens by mixing them in a way similar to extracting n-
grams in the traditional NLP tasks. Such architectures that
contain CNN could be optimized by parallelization so adding
a convolutional layer could reduce the complexity and control
the size of the neural network. In this paper, we discuss
different approaches to solve slot filling for ticketing task
as a NER problem, and showed different architectures that
contain distinct RNN, CNN or hybrid architectures ones.
We conducted many experiments with different values of the
hyper-parameters and different optimization methods.

II. RELATED WORK

Rule-based approaches are done manually, at first you all
needed roles should be written need to achieve the goal, this
operation is time-consuming and therefore not so efficient,
it will be notable that the recall is not very nice because
its so difficult to write all the varieties, but the positives of
ruled-based approaches the precision will be quite high [11].
The most widely used formal system for modeling constituent
structure in English and other natural languages is the Context-
Free Grammar or CFG. A context-free grammar consists of
a set of rules or productions, each of which expresses the
ways that symbols of the language can be grouped and ordered
together, and a lexicon of words and symbols [12].
In machine learning methods, we need a dataset of text with
markup, in this dataset, each word should be assigned to a
tag, this problem is known as slots filling problem. The first
which we should do is making some Feature engineering, for
example, see whether the word is capitalized or it is a name of
a city, some cities consists of two words, maybe you check the
previous or the next words (context). Probabilistic modeling
and Conditional Random Field not only assume that features
are dependent on each other but also considers the future
observations while learning a pattern [21]. This combines the
best of both HMM and MEMM. In terms of performance,
it is considered previously to be the best method for entity
recognition problem. Another paper studied the comprehensive
investigations of RNNs for the task of slot filling in SLU.
They implemented and compared several RNN architectures,
including the Elman-type and Jordan-type networks with their
variants [18]

III. DEEP LEARNING METHODS

A. Recurrent Neural Network RNN

Recurrent Neural Networks “Fig. 1” are used for sequence
modeling, it accepts input xt at time step t and a hidden state
ht and use this hidden state to produce output yt, and this
hidden state will be passed to the next time step. So, we can
think of the hidden state as a summary of the previous inputs
to the neural network, we use activation function such as tanh
or ReLU to calculate hidden state. Output yt is the prediction
of the next tag, it would be a vector of probabilities across our
vocabulary, the following formulas explain the general form
of RNN:

ht = f(Uxt +Wht−1) (1)

yt = softmax(V ht) (2)

Long Short Term Memory (LSTM) and Gated Recurrent
Units (GRU) are used as RNN units, these units can capture
long term dependency. The LSTM does have the ability to
remove or add information to the cell state, carefully regulated
by structures called gates. Gates are a way to optionally let
information through. They are composed out of a sigmoid
neural net layer and a pointwise multiplication operation [19].



Fig. 1. General form of Recurrent Neural Network

The sigmoid layer outputs numbers between zero and one, de-
scribing how much of each component should be let through.
A value of zero means let nothing through, while a value of
one means let everything through! An LSTM has three of
these gates “Fig. 2”, to protect and control the cell state. The
following formulas explain how does LSTM cell work:

ft = σ(Wf [ht−1, xt] + bf ) (3)

it = σ(Wi[ht−1, xt] + bi) (4)

Ct = tanh(Wc[ht−1, xt] + bc) (5)

Ct = ft.Ct−1 + it.Ct (6)

ot = σ(Wo[ht−1, xt] + bo) (7)

ht = ot.tanh(Ct) (8)

Fig. 2. LSTM unit

GRU has a simpler design “Fig. 3” it was introduced by
Cho, et al. (2014) [20], The key difference between a GRU
and an LSTM is that a GRU has two gates (reset and update
gates) whereas an LSTM has three gates (namely input, output
and forget gates) [13]. The GRU unit controls the flow of
information like the LSTM unit, but without having to use a
memory unit. It just exposes the full hidden content without
any control. GRU is relatively new but computationally more
efficient. The following formulas describe the GRU mecha-
nism:

zt = σ(Wz.[ht−1, xt]) (9)

rt = σ(Wr.[ht−1, xt]) (10)

ht = tanh(W.[r.ht−1, xt]) (11)

htt = (1− zt).ht−1 + zt ∗ ht (12)

Fig. 3. GRU unit

In our experiments, we used both GRU and LSTM units
and compared between them. Other sequence architectures
like Encoder-decoder architecture could be used to solve this
task, at first the whole input will be encoded into hidden
representation (encoder), and then this hidden representation is
used to produce sequence of tags (decode). Some architectures
use attention mechanism to give attention to parts of the input
sequence and use these information to produce the output
token.

B. Convolution Neural Network for sequences
RNNs operate sequentially, the output for the second in-

put depends on the first one and so we cant parallelize
an RNN. Convolutions have no such problem, each patch
a convolutional kernel operates on is independent of the
other, meaning that we can go over the entire input layer
concurrently. Convolutions grow a larger receptive beld as we
stack more and more layers. That means that by default, each
step in the convolutions representation views all of the input
in its receptive field, from before and after it “Fig. 4”. In
our experiments we used 1D convolution to mix the tokens
and extract relations between the consequence tokens, it is
equivalent to n-gram relation where n is the size of the used
filter, for example: if we care about the last 3 tokens we use
filter size 3. Using CNN will result in some benefits, it runs
faster than RNN and beats RNN in some tasks. If we divide
convolution output into two parts, A and B, one of which will
gate the other through element-wise multiplication, where A
is liner and B through sigmoid, we get GLU (gated linear
unit). Here we increased receptive field as it is shown in the
following formula:

A = (X.W + b) (13)

B = σ(X.V + c) (14)

ht(x) = A⊕B (15)

ht(x) = (X.W + b)⊕ σ(X.V + c) (16)



Fig. 4. Convolution Neural Network for sequences

C. Hybrid model CNN RNN

This model combines the benefits of both CNN and RNN,
where RNN helps to capture the dependencies between tokens
in the users query, using LSTM or GRU units will have
resulted in a model that captures long-range dependencies
between tokens using memory cell in their architecture. CNN
will help with mixing the consequence tokens and extract
relations between them [14]. In the task of slot filling, the
hybrid architecture contains several convolution layers stacked
with the same padding and the output of these layers will be
the input for RNN layers as in Fig. 5, we can also stack several
RNN layers. After these RNN layers, there will be a dense
layer with softmax activations, this layer represents the output
of the network.

IV. EXPERIMENTS

A. Dataset

ATIS (Airline Travel Information System) corpus (Tur et
al., 2010) is one of the main data resources used in many
studies over the past two decades for SLU research in spoken
dialog systems e.g. [15] [16] [17]. Two primary tasks in SLU
are intent determination (ID) and slot filling (SF). The dataset
contains audio recordings of people making flight reservations.
The training set contains 4,478 utterances and the test set
contains 893 utterances. We use another 500 utterances for
development set. There are 120 slot labels and 21 intent types
in the training set [22].
The IOB format (inside, outside, beginning) is a common
tagging format for tagging tokens in a chunking task in
computational linguistics, The B- prefix before a tag indicates
that the tag is the beginning of a chunk, and an I- prefix before
a tag indicates that the tag is inside a chunk. The B- tag is
used only when a tag is followed by a tag of the same type
without O tokens between them. An O tag indicates that a
token belongs to no chunk.
The Table I shows an example in the ATIS dataset , with
the annotation of slot/concept, named entity, intent as well
as domain. The latter two annotations are for the other two
tasks in SLU: domain detection and intent determination. We
can see that the slot filling is quite similar to the NER task,

TABLE I
ATIS DATASET EXAMPLE

Sentence show me flights from Moscow to London Today
Slots/Concepts O O O O B-fromLoc O I-toLoc B-departDate
Named Entity O O O O S-city O I-city O
Intent Find Flight
Domain Airline Travel

following the IOB tagging representation, except for a more
specific granularity.

1) Training Details: In training, we compared between dif-
ferent models for NER (Named Entities Recognition) system,
all the models were trained using 100 epochs. We tuned our
models using different dropout values (0.1, 0.25, 0.5) and
we used different optimization methods (ADAM, RMSProb,
SGD). For the embedding layer, we represent each token by a
vector of size 100, and for our choice for the convolution
layer we used 64 filters of size 5 and used ReLU as an
activation function. The hidden size of the GRU/LSTM unit
is 100 “Fig. 5”.
Our architecture will go as following, input layer which is
a sequence of tokens represented by indices using bag of
words, embedding layer will represent each token with a
vector, the vector size is a hyperparameter for the network,
this embedding layer is followed by one of the main choices
of the layers discussed above, recurrent neural network, con-
volutional neural network or a hybrid model which contains
layer of CNN followed by layer of RNN.

2) Evaluation Metrics: For evaluation, we computed preci-
sion, recall and F1 score for training and validation sets, and
we picked the model with the best value of the F1 score.
For Slot filling, the error rate can be computed in two ways:
The more common metric is the F-measure using the slots as
units. This metric is similar to what is being used for other
sequence classification tasks in the natural language processing
community, such as parsing and named entity extraction. In
this technique, usually the IOB schema is adopted, where each
of the words is tagged with their position in the slot: beginning
(B), in (I) or other (O). Then, recall and precision values are
computed for each of the slots. A slot is considered to be
correct if its range and type are correct. The F-Measure is
defined as the harmonic mean of recall and precision:

F1-Score = 2× Recall × Precision
Recall + Precision

(17)

where:
Recall =

#correct slots Found
#true slots

(18)

Precision =
#correct slots Found

#found slots
(19)

B. Results

During evaluation process we focused on the difference
between the use of different architectures of neural networks,
we compared also between different optimization methods for
the best neural network structure and at the end we included



Fig. 5. Hybrid model CNN/RNN

TABLE II
COMPARISON BETWEEN DIFFERENT DEEP LEARNING STRUCTURES

Structure description Precision Recall F1-score Average
Hybrid structure Convolution1D
and RNN/GRU with dropout 0.25

94.47 95.61 95.04 94.89 ±0.15

Convolution1D structure with
dropout 0.25

91.75 90.57 91.16 91.01 ±0.1

RNN/GRU structure with dropout
0.25

93.02 93.12 93.07 92.48 ±0.42

a comparison based on the type of recurrent unit used in the
model. We concluded the experiments 25 times, and we took
the mean of the samples and calculated the standard error. We
reported our results in the tables.
Our results show that hybrid architectures perform better than
other pure RNN or pure CNN models Table II, when we
used dropout 0.25 and RMSProb optimization method , we
got F1-score 95.04 for hybrid model compared with 91.16 for
convolution model and 93.07 for recurrent model.
Our results show also that the use of RMSProb resulted in the

best models according to F1-score metrics Table III, under the
same dropout 0.25 and hybrid model, we got F1-score equals
to 95.04 for RMSProb compared with 94.83 when we used
ADAM optimization model, and 94.44 when we used SGD.
Result show that the effect the Hybrid structure Convolution1D

TABLE III
COMPARISON BETWEEN HYBRID STRUCTURES BASED ON OPTIMIZATION

MODEL

Structure description Precision Recall F1-score Average
Hybrid structure Convolution1D
and RNN/GRU with dropout 0.25;
RMSProp

94.47 95.61 95.04 94.89 ±0.15

Hybrid structure Convolution1D
and RNN/GRU with dropout 0.25;
ADAM

94.71 94.95 94.83 94.67 ±0.23

Hybrid structure Convolution1D
and RNN/GRU with dropout 0.25;
SGD

94.22 94.65 94.44 94.23 ±0.16

and RNN/GRU without dropout using RMSProp optimizer is
giving the best F1-score 95.11 comparing with different levels
of dropout on the same architecture Table IV Based on the
recurrent unit used in our experiments, GRU based hybrid
methods with F1-score 95.04 compared with LSTM based
hybrid models with F1-score 94.67, GRU units improved
the score by 0.37% Table V. Our results show that the
hybrid CNN/RNN-based models outperform Bi-dir. Jordan-
RNN baseline by 1.13% on the ATIS benchmark Table VI.



Fig. 6. Best Model Architecture, convolution layer with RNN layer of GRU
units without dropout

TABLE IV
COMPARISON BETWEEN HYBRID STRUCTURES BASED ON THE USED

RECURRENT UNIT

Structure description Precision Recall F1-score Average
Hybrid structure Convolution1D
and RNN/GRU with dropout 0.25;
RMSProp

94.47 95.61 95.04 94.89 ±0.15

Hybrid structure Convolution1D
and RNN/LSTM with dropout
0.25; RMSProp

94.36 95.17 94.76 94.40 ±0.35

TABLE V
COMPARISON BETWEEN DIFFERENT DEEP LEARNING STRUCTURES BASED

ON DROPOUT VALUE

Structure description Precision Recall F1-score Average
Hybrid structure Convolution1D
and RNN/GRU without dropout;
RMSProp

94.98 95.47 95.11 94.69 ±0.47

Hybrid structure Convolution1D
and RNN/GRU with dropout 0.1;
RMSProb

94.29 95.31 94.82 94.42 ±0.28

Hybrid structure Convolution1D
and RNN/GRU with dropout 0.25;
RMSProp

94.47 95.61 95.04 94.89 ±0.15

Hybrid structure Convolution1D
and RNN/GRU with dropout 0.5;
RMSProp

93.3 94.6 93.95 93.25 ±0.43

TABLE VI
COMPARISON BETWEEN HYBRID STRUCTURES BASED ON THE USED

RECURRENT UNIT

Models Precision Recall F1-score
Jordan-RNN [18] 92.76 93.87 93.31
Bi-dir. Jordan-RNN [18] 93.82 94.15 93.98
Hybrid structure (Our) 94.98 95.47 95.11

V. CONCLUSION

This paper addresses the problem of slot filling in Spoken
Language Understanding. In particular, we focused on slot
tagging without paying attention to the other intent classi-
fication part. We formulated our learning architecture as a
hierarchy of spatial CNN features followed by the RNNs to
model dependencies in the temporal domain. Experimental
results on the ATIS dataset consistently demonstrated the
effectiveness of the proposed approach. It is good to mention
that combined models that solve the two tasks at the same
time could be implemented and these models had proven to
lead to better performance. But still, in the way to implement
a full chatbot, we will need to generate human-like text in
response to users input. In future work, we intend to explore
the incorporation of attentional mechanism in our model,
which could provide additional information to the slot label
prediction, and learn our architecture using another data-sets
to generalize the results.
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