
The DSL for composing functions for FaaS platform
Nikita Gerasimov

Mathematics and Mechanics Faculty
Saint Petersburg University

St. Petersburg, Russia
n.gerasimov@2015.spbu.ru

Abstract—This article describes the problems that occur when
using the Function as a Service model: the complexity of the
centralized description of the separate function interaction within
the whole system and the possibility of dependent components
interface divergence during a process of their development. We
propose a domain-specific language called Anzer as a solution
to these problems which enables to describe the types of data
transmitted, the composition of functions, the semantics of their
interaction and logic of error handling. To check the consistency
and compliance of the declared and implemented types, software
has been produced making it possible to automate the creation
of new functions and maintain their integration with others at
all stages of system development and support. The language and
software in combination with each other prevent errors associated
with a mismatch between input data format expected by the
function and actually transmitted one. All this enables to simplify
and speed up the process of developing systems based on the
concept of Function as a Service.

Index Terms—serverless, faas, static typing, function composi-
tion, domain-specific language

I. INTRODUCTION

The development of the Internet, the emergence of a large
amount of data and process control automation have led to
an increase in the software modularity. An earlier approach to
partitioning programs into components was service-oriented
architecture (SOA), which is characterized by getting partic-
ular sets of functions separated into independent modules.
Each module is responsible for a certain range of tasks. The
interaction is carried out either using enterprise service bus or
RPC API.

The next iteration of the development of modular distributed
software architectures is microservice architecture. The ap-
proaches are very similar at first glance, but the difference
is in details. Microservices usually tend to perform much
fewer functions and have fewer dependencies, which simplifies
scaling [1]. In addition, they provide one or more API methods
rather than complex RPC interfaces covering most of the
subject area.

Microservice architecture imposes certain requirements on
the infrastructure: deploy automation, automation of testing,
infrastructure for service discovery.

Without preliminary preparation of such an environment,
developing large systems in such a paradigm leads to greater
costs than developing a monolithic system [2].

In 2014 Amazon introduced AWS Lambda serverless plat-
form (serverless computing platform) within Amazon Web
Services cloud platform. The main logical unit in it is a

function, which, in fact, is also a microservice, but with some
differences [3]:

• A microservice is a standalone application having nec-
essary libraries. A function is code that implements
only necessary logic. Function start, its initialization,
connection to a database are carried out by a platform,
which means a function itself is not self-sufficient.

• A microservice can be run separately, and a function can
often be started only within a framework of a serverless
platform.

• A microservice typically runs in daemon mode, respond-
ing to incoming requests. A function is often run only
when it is requested to execute it.

In summary, a function is similar to a microservice but often
is not self-sufficient, does not store the state, uses capabilities
of the platform to run and communicate. Such peer-to-peer
computing platform called FaaS (Function as a Service).

In addition to Amazon, cloud FaaS platform services are
provided by Google (“Google CloudFunctions”), Microsoft
(“Azure Functions”) and IBM (“IBM Cloud Functions” based
on the “Apache OpenWhisk” platform). In addition to cloud
providers, there are self-hosted solutions: Apache OpenWhisk,
Fission, OpenFaaS and other.

Simple applications with a web interface, or IoT (Internet of
things) systems, often use separate, independent functions to
perform actions when certain events occur. However, systems
in the FaaS platform can be built through the composition of
functions. For example, in a subsystem that processes data, one
component passes intermediate results to another in a chain.
One of the obvious applications of such a composition is ETL
(Extract, Transform, Load) processes. Using a FaaS platform
it is easy to implement a similar data conversion scheme if
each step is allocated to one or more functions. The functions
work in parallel, independently, do not store the state, return
result of the work or an error message.

The benefits of serverless computing:

1) No need for infrastructure support (in case of using
cloud-based FaaS solution providers).

2) No need to implement supporting code, such as logging,
connecting to databases etc.

3) Simple scaling of individual components rather than a
system as a whole.

4) No downtime costs because functions run on demand.



5) The need for a competent division of logic into modules,
based on the concept definition.

The use of the solution mentioned above also has its
drawbacks:

1) Lower transparency of the system compared to a mono-
lithic application.

2) Difficulties with debugging of functions and a system as
a whole.

3) There is no commercial solutions or standards in the
field of systems testing that built in the FaaS platforms.

4) An unresolved issue of resources caching that should
be initialized each time the function runs (for example,
database connections).

Another problem that may arise during the development
and support of such a system is the control of interaction and
compatibility of individual functions within the whole system.
To solve this problem some FaaS cloud service providers
make it possible to describe the order of functions run or
their compositions. However, existing platforms do not provide
proper type checking. There is a situation when a monolithic
application is divided into separate logical blocks smaller
even than microservices, and there is no way to guarantee
these blocks will work together consistently and correctly.
Condition may occur in which some of the components of
the system provide the updated interfaces, and dependent
components wait for outdated interfaces; that situation will
result in an error in the process of operation. This fact is
a disadvantage of serverless solutions in comparison with
traditional methods of systems development: monolithic and
service-oriented approaches.

In the article, we consider existing solutions for function
composition in the FaaS platforms (sec. II), suggest a way to
describe the composition of functions and automatically check
their compatibility by means of DSL (sec. III) and a software
complex that extends opportunities of the FaaS platform
“Apache OpenWhisk” [4]. The use of such an extension is
assumed to reduce number of errors associated with mismatch
between function types during developing.

II. ALTERNATIVE SOLUTIONS

Serverless computing is a young approach, not yet widely
known and not widely used. As a result, there are only a few
solutions providing the composition of functions.

Amazon provides AWS State Machine with its own lan-
guage, Amazon States Language describing a sequence of
functions to run (AWS Step Functions) within a specific
task [5]. Language and platform capabilities enable:

1) Define the order which functions should be started in.
2) Handle errors.
3) Set the number of data processing retries in case of error.
4) Run multiple processes in parallel.
5) Set the conditions for the launch of certain functions

based on transmitted data.
Sequences of invoking functions are not functions them-

selves, they are state descriptions made by an external envi-
ronment.

In addition to Amazon, IBM provides the ability to de-
scribe the composition of functions using a developed Java-
Script library and “IBM Composer” functionality built in IBM
CloudFunctions [5]. The solution also makes it possible to
describe conditions, number of function retries and some other
features. An important difference between IBM Composer and
AWS State Machine is that composition in the former is also
a function that can participate in composition.

Microsoft provides 2 mechanisms for the composition of
functions in its “Azure Functions” platform: “Azure App
Logic” and “Azure Durable Functions”. Just as “IBM Com-
poser”, the mechanisms are built in the platform and provide
an opportunity to describe conditions, cycles, number of
retries, etc. [5].

If choosing among serverless self-hosted platforms, Fission
and Fn enable to describe processes as the composition of
functions using “Fission Workflows” and “Fn Flow” respec-
tively [6]. These mechanisms also make it possible to describe
the composition using conditional statements.

Project StdLib with FaaSlang provides a completely differ-
ent way of using serverless technology. StdLib is platform-
agnostic API gateway and serverless framework for FaaS
enabling user to easily change serverless provider. FaaSlang
provides an approach to specify a function’s input and output
types. However, StdLib with FaaSlang does not ensure that the
realized function fulfils its interface declarations. Moreover,
the current state of the project does not support any language
except JavaScript.

None of the solutions found enables to make sure in the
minimal form that the function will start in the scheme of
operation with parameters that are passed to it, i.e. to check in
advantage the compatibility of the data types of the interacting
components. Therefore, we need a new alternative solution to
describe the composition of functions which should provide
the following features:

1) To describe the composition of functions, namely:
• To describe the composition of one function with

another, when the result of the first is passed to the
second.

• To describe error handling mechanism.
2) Make it possible to define the types of arguments and

results for the functions involved in the composition and
check their compatibility.

To meet paragraph 2 from the list of requirements, it is also
necessary to have an extension for the FaaS platform which
will manage functions building and deploying to ensure the
type safety of the entire project because:

• If a function implements an interface different from
the one the function declares, its compilation will be
impossible.

• If the composition of a new version of the function is
impossible with operating ones, its deployment will not
happen.

We propose a domain-specific language called “Anzer”1

1https://github.com/tariel-x/anzer



as well as software that includes the language analyzer, the
system of function building, interaction with the FaaS platform
and the user interface as a solution to the problem mentioned
above.

In addition, it is assumed that the language should not be
highly specialized for use with a single FaaS platform. This
means that the software package to be developed should be
sufficiently versatile and modular to be able to adapt it to the
new framework with minimal modifications.

III. THE LANGUAGE OF FUNCTIONS COMPOSITION

Functions in the FaaS platforms are triggered in case of
need, perform the programmed action and pass the result
forward, not keeping the state. This feature partly creates
an affinity between the functions mentioned above and the
concept of functions from some functional programming lan-
guages.

In addition, if we consider a set of functions as a single
monolithic program, then, in the absence of a global runtime
environment and variable changes, drawing an analogy with
imperative programming languages is impossible. Functional
approach, on the contrary, is characterized by the composition
of independent functions, which means the result of the
calculation of the previous function is applied to the next
one. Also, programs written in a pure functional style do not
contain mutable variables, and functions can be easily moved
from one program to another.

Listed properties create an affinity between a functional
programming style and systems built using the FaaS platforms.
In this regard, the concepts of such functional programming
languages as Haskell and PureScript were taken as a basis for
the proposed language.

A. Type system

The implemented language supports both basic types (string,
boolean etc.) and custom user-defined record types, as shown
in listing 1.

Listing 1. User-defined types
type Address = {

house :: Integer
street :: Maybe String
city :: MinLength 10 String
country :: String

}
type Addresses = List Address

Also, the language supports extension of basic and user-
defined types with the help of type constructors. List is the
type constructor, that is, the function that converts Address
type into List Address which is an array of addresses.
MinLength cconstructor defines a string with minimum
length of 10. One can use Maybe constructor to determine
that a field may not be present in the data being passed. The
type with the applied constructors is the new type. There are
more type constructors defined by the language.

Anzer language type system supports subtype polymor-
phism. Let us assume there is a function a waiting for input

data of type A, but it is transmitted data B. If type A and
provided type B are actually different, and the function will
handle B correctly, it can be concluded that B can be subtype
or type equivalent to the type A.

For example, listing 2 describes type A, which contains a
string type field named f1. It also describes type B, which
contains the same string field f1 and, optionally, an integer
field f2. Since type B contains the same fields of the same
type as A, we can say that A <: B.

Listing 2. A and B subtype
type A = {

f1 :: String
}
type B = {

f1 :: String
f2 :: Integer

}

That is, B is subtype of A if every term B can be safely
used in the context where A is expected (1) [7].

Γ ` x : A A <: B

Γ ` x : B
(1)

Inheritance is reflective: A <: A and transitive. For instance,
listing 3 shows an example of A, B and C, for which the
following equation is true: A <: B, B <: C and A <: C.

Listing 3. Transitivity
type A = {

f1 :: String
}
type B = {

f1 :: String
f2 :: String

}
type C = {

f1 :: String
f2 :: String
f3 :: String

}

Moreover, depth subtyping is true, i.e. the types of each
corresponding field of a composite type may vary, but should
be in terms of inheritance, as in the listings 4 and 5.

Listing 4. Inheritance in depth
type A = {

f1 :: String
}
type B = {

f1 :: MinLength 10 String
}

Listing 5. Inheritance in depth
type A = {

f1 :: {
sf1 :: String

}
}
type B = {

f1 :: {
sf1 :: String



sf2 :: String
}

}

Rearranging of fields in the description of the user-defined
type does not affect subtyping.

If there are two types A and B for which A <: B and
B <: A are true, such types should be considered equivalent.

It should be noted that the application of some constructors
to any type forms its subtype. For example, let A be a base
string type, that is type A = String, and type B be a base
string type with the applied string maximum length constraint
constructor type A = MaxLength 10 String. Then, A <:
B is true. B. Language defines constructors List, Maybe and
Either, which do not form a subtype due to their higher
complexity.

Applying different constructors or the same constructor
with a different parameter to any type leads to
the appearance of two new different types. For
example, type A = MaxLength 10 String and
type A = MaxLength 20 String can not be considered
in terms of inheritance or equivalence.

B. Functions

The types in Anzer are used to describe function’s argu-
ments and results of its operation. A function is either a
reference to a repository with its source code or a synonym for
the composition of other functions. Therefore, Anzer does not
provide writing application logic, making it possible only the
type-safe composition of functions having been implemented
in other languages. An example of the system description is
shown in the listing 6.

Listing 6. An example of the system description in Anzer
type RawAddress = MinLength 10 String
type Address = {

street :: Maybe MinLength 10 String
city :: MaxLength 20 String
country :: String

}

github.com/u/parse[go]::
RawAddress -> Address

isp github.com/u/isprovider[go]::
Address -> Bool

detect :: RawAddress -> Bool
detect = isp . parse

invoke (
detect,

)

The record github.com/user/parse in the example
is the reference to the repository with the function’s source
code, and RawAddress -> Address is the description of
input or output data. The record isp . parse defines the
composition of isp and parse functions, and detect is
the function defined as the composition of the other two.

The invoke keyword determines, which functions will
be deployed in the FaaS platform. In this case, detect is

synonymous with the composition of other functions: isp and
parse, hence the latter will be deployed. At the end of the
isp operation there will be an event created in the system and
containing result of its operation, by means of which parse
function will be launched and will receive this result.

C. Error handling

To handle errors you can use the type construc-
tor Either a b = Left a | Right b which specifies
that the function returns data of either type a or type b.
For example, Either Error Result defines an algebraic
data type which means that the result can be either an Error
type or the Result type. There is no predefined error type.

The composition of functions which returns the result
Either Error Result with functions expecting only the
Result type is performed using Either monad. Its defini-
tion and use are similar to that of the Haskell programming
language [8]. Construction Either in Anzer defines 2 oper-
ations: >>= and return.

Operation >>= (bind) is the higher-order function of
Anzer, takes some data and another function as arguments
and is defined as follows:

Right a >>= f = f a
Left a >>= f = Left a

Given example shows that if the first function argument
>>= is of type Right a, where a is a user-defined data
type, then >>= converts data of type Right a into type a.
Then, the function f passed by the second argument is applied
to the given data, and the result of this application is the result
of the operation >>=.

If the first binding argument is of Left a type, the
operation returns the data passed to it unchanged.

Thus, using the >>= operation it is possible to bind
functions returning an error message instead of operation result
with functions expecting only correct data, not an error. At the
same time, once generated, the error will reach composition’s
end without changes.

Another operation of Either monad is return function,
which can be defined as follows: return a = Right a.
As you can see from the definition, return casts user-defined
data of type a to type Right a by means of the Right
constructor. With the help of this operation you can bind
functions that return type a instead of Right a.

Since Anzer is the domain-specific language, not a general-
purpose language, unlike Haskell or other similar functional
languages, there is no provision for creating custom type
constructors, monads, or higher-order functions.

IV. ANZER PLATFORM

One composition language would not be enough to achieve
the goal, so the proposed solution also includes a specialized
platform, the tasks of which include:

• Type checking in the description of the function compo-
sition in Anzer.

• Functions building using a specialized library to ensure
compliance of the declared and implemented types.



• Deployment of new versions of functions in the selected
FaaS platform.

A. General organization

To ensure compliance of the declared and implemented
types, a specialized library is used that encapsulates all in-
teraction with the FaaS platform. In addition, the proposed
solution has a built-in code generator that prepares the basic
structures or interfaces based on the data types described in the
Anzer language. After generating a function basis, developer
only needs to implement the business logic of an application.

When you deploy a function in the platform, generating
additional function code based on the description in the Anzer
language comes first. Additional code is required to confirm
that the function implementation matches the description. If
the implementation does not match the description declared in
the Anzer file, the implementation language compiler would
report an error.

The schematic representation of the system consisting of
Anzer, the FaaS platform and functions is shown in figure 1.

The square with the caption “Anzer-λ” in the scheme
shows a component implementing the logic of the application
directly. This part is implemented by developer by means of
the selected programming language. Arguments for launching
in the function’s code and the return of the work result are
available using the Anzer library. The library, in turn, interacts
with the selected FaaS platform.

The square with the caption “λ” directly shows a container
with an executable file launched by the FaaS platform. The
data bus is the part of the FaaS platform.

The rectangle labelled “Anzer Platform” indicates that the
functions are managed through the appropriate user interface.
Despite this, it remains possible to use standard tools of the
selected FaaS platform.

The typical process of creating a new system in the FaaS
platform using the proposed solution is as follows:

1) Describing required data types.
2) Generating a necessary function’s basis in terms of the

described types by means of Anzer user interface.
3) Implementing the function’s operating logic.
4) Deploying a function in the version control system and

describing functions in Anzer according to the same
scheme as that of types.

5) Deploying the implemented functions via the Anzer user
interface. What happens alongside:

a) Verification of function composition availability
based on the specified types.

b) Based on the described types generation of missing
code to work within the target FaaS platform.

c) Compilation (if possible) of the implemented func-
tion and the code generated in step 5.b.

d) In case of the successful container’s compilation
here comes the deployment of the functions in the
FaaS platform.

The languages for which there is a compiler or static anal-
yser with the possibility of static type checking in the code can

Figure 1. Schematic representation of the system.

be used as the languages of the function implementation. Such
languages can be, for example, C++, Go, Java, TypeScript or
PHP.

B. User interface

The user interface of the solution is a set of utilities with
CLI (Command line interface) interface. The utilities use
a document in Anzer language to generate the basis of a
function, to build it and to deploy it in the FaaS platform.

For instance, calling anzer g −i scheme.anz
−o ∼/go/src/a/a.go −f parse generates a basis
for the function parse which is shown in the listing 6.

Calling anzercli build −−anz listing2.anz
parse builds a container from source code of the parse
function.

V. IMPLEMENTATION AND TESTING

A. Implementation

Project Apache OpenWhisk [4] has been selected as the
first supported FaaS platform due to ease of deployment,
adequate performance [10] and the availability of the required
functionality to implement the proposed solutions [9]. The
proposed solution is implemented by means of Golang pro-
gramming language which was chosen due to having necessary
competence. Having Golang supported by main suppliers of
serverless cloud services (AWS Lambda Functions Azure,
Google CloudFunctions) enabled to use it as the first language
supported by the Anzer platform.

The developed software includes:
• CLI user interface;
• Anzer parser and interpreter;
• A component to work with OpenWhisk:

– A client for the OpenWhisk HTTP API;
– A library for Golang that encapsulates the work with

the FaaS platform.
Package of functions, i.e. a collection of bound functions

and triggers, is created for each document in Anzer language
with the help of the OpenWhisk client. A trigger, by means of



which a function can be called, is created for each function.
In the case of function composition, the code required to
generate an event for calling the next function is generated
automatically. Rules for calling functions for HTTP events,
database events etc. can be configured by OpenWhisk built-in
tools.

A partial example of a template that could be generated by
the command from Chapter IV-B is shown in the listing 7.

Listing 7. Generated Go-template
type TypeIn struct {

Price float64 ‘json:"price"‘
Text string ‘json:"text"‘

}
type TypeOut struct {

Desc string ‘json:"desc"‘
Name string ‘json:"name"‘
Price float64 ‘json:"price"‘

}
func Handle(input TypeIn) TypeOut {

var out TypeOut
return out

}

It is notable that there is no line length check in the given
sample code. The specified data type requirement is checked
by the Anzer interpreter, but checking in the function code
is yet to be implemented. After generating the template, you
should implement business logic in the Handle function.

The code required to work in OpenWhisk will be generated
at the stage of function deployment. Due to the use of
interfaces in it, it is impossible to change the format of the
transmitted data without editing the Anzer document.

B. Comparison with analogues

Comparison with analogues was made using criteria
from [5]:

1) ST-safeness [11]: the solution meet the criterion as:
• The function composition is a new function.
• The composition of functions does not incur addi-

tional costs of computing power and, as a conse-
quence, financial costs.

• In the proposed solution, the following function is
called asynchronously, that is, the execution time of
all functions in the composition is not summed.

2) Programming model: functional-like DSL.
3) Parallel execution support: not supported at the moment.
4) State management: the presented solution uses the Open-

Whisk platform that, in turn, uses the Apache Kafka
message broker in the data transmission channel between
functions. Therefore, the maximum size of the transmit-
ted state is equal to the maximum size of the message
in Apache Kafka.

5) Software packaging and repositories: the source code of
functions is stored in Git repositories.

6) Architecture: uses an OpenWhisk architecture consisting
of a controller and a message queue.

7) Overhead: absent as Anzer is not a component of the
FaaS platform and responsible only for configuring the
interaction between functions.

8) Billing model: not applicable.
There is no type safety in the list of criteria because no

alternative solutions matching this criterion have been found.
According to the criteria of the article [5], the proposed

solution is not inferior to the alternative. However, if we
take into account possibilities presented by Anzer, it is less
functional, which means it is impossible to use it to build
complex systems yet.

It should also be noted that the Anzer platform does not
increase the system’s consumption of machine resources and
the same goes for the operating time of functions, as in fact
it only adjusts the connection between them.

C. Testing

The proposed solution is being in the process of testing.
Currently, Anzer is used in several simple systems, one of
which is used to simplify the process of passing code-review.
The system consists of 3 functions. Two functions perform
specific actions and return a result by a repository management
system event. The third one receives an action result and sends
a text message to a chat.

An example of the scheme used in testing is shown in the
listing 8. The Hook type describes a small part of the query
that is automatically sent by the project management system
Gitlab when certain events occur. The Event type contains
validated information about edits in the code in the repository.
The Assignment type is used to transfer information about
the person assigned to control the current edits in the code.

The validate function, in accordance with its name,
checks the incoming query and, using Gitlab API, determines
the programming language used in the repository. The assign
function appoints the person responsible for checking code
edits based on the programming language of the repository.
The notify function sends an appointment notification to the
chat.

Listing 8. The example of using Anzer
type Hook = {

user :: {
username :: String
}
repository :: {
name :: String
homepage :: String
}

}
type Event = {

author :: String
repository :: String
language :: String

}
type Assignment = {

reviewer :: String
repository :: String

}



github.com/u/validate[go]::
Hook -> Event

github.com/u/assign[go]::
Event -> Assignment

github.com/u/notify[go]::
Assignment -> Bool

assign_mr = validate . assign . notify
invoke (

assign_mr,
)

The given example is the very simple system not using even
a possibility to handle errors. Nevertheless, its construction
made it possible to verify the viability of the approach at the
minimum level.

To apply the platform and Anzer language to the real-
world problems, for example, building ETL systems, a number
of language and platform improvements are required, for
instance:

1) The support of the conditional operator present in alter-
native means of composition is required. In the Anzer
language, it could be a pattern-matching analogue from
functional programming languages.

2) Using the project as a tool to create full-fledged com-
mercial products requires the development of specialized
tools for function debugging and testing.

In general, the use of Anzer together with the accompanying
software facilitates creation of new systems and support of
existing ones, while not affecting the system requirements for
hardware resources and performance.

VI. CONCLUSION

The article considers the problem of function interaction
interface divergence in the FaaS platforms. When you develop
a system using this approach, you may experience a situation
where some components wait or return data in an updated
format that is incompatible with outdated components. One of
the reasons for this problem is the lack of tools to describe
and verify the type checking of interacting functions.

As a solution, this article proposes domain-specific lan-
guage Anzer created to easily describe the types of data
transmitted, the type-safe composition of functions within
the whole system, the semantics of their interaction and the
logic of error handling. The developed software enables to
automate the creation of new functions and maintain their
integration with others at all stages of system development and
support. Together language and software prevent errors due to
mismatch between input data format expected by a function
and actually transmitted one. All this makes it possible to
simplify and speed up the process of developing systems based
on the concept of Function as a Service.

The extensive use of the type system in describing the
functions interaction distinguishes the proposed solution from
the alternatives, but there are several unresolved problems:

1) A possibility to select a function for a composition based
on the actually transmitted data type is needed. In the
current implementation, in case of using an algebraic

type function, for instance, Left a | Right b, the
final function is obliged to process both variants. For
full use it is necessary to implement an analogue of the
pattern matching operation in functional languages.

2) In addition to pattern matching, “if-then” construction
working with data will simplify the description of com-
plex interaction schemes.

3) Solving problems that are more complex than those
described in the “Testing” section requires the possibility
of local functions testing and debugging.

An important point is to develop the possibility of using
Anzer language along with one of the cloud FaaS platforms,
such as IBM CloudFunctions, AWS Lambda or others, as it is
them whom the most mature alternative composition solutions
are created for.

REFERENCES

[1] N. Kratzke, “A Brief History of Cloud Application Architecturesm”
Applied Sciences, vol. 8, 2018, pp. 1368-1368.

[2] R. Rodger, The tao of microservices. New York: Manning publications,
2018, pp. 17-19.

[3] E. van Eyk, L. Toader, S. Talluri, L. Versluis, A. Ut,ă and A. Iosup
“Serverless is More: From PaaS to Present Cloud Computing,” IEEE
Internet Computing, vol. 22, no. 5, 2018, pp. 8-17.

[4] (2019 Jan.) OpenWhisk. [Online]. Available:
http://openwhisk.apache.org

[5] P. Garcia Lopez, M. Sanchez-Artigas, G. Paris, D. Barcelona Pons, A.
Ruiz Ollobarren, and D. Arroyo Pinto, “Comparison of FaaS Orchestra-
tion Systems,” 2018 IEEE/ACM International Conference on Utility and
Cloud Computing Companion (UCC Companion), Zurich, Switzerland,
2018, pp. 148-153.

[6] K. Kritikos and P. Skrzypek “A Review of Serverless Frameworks,” 2018
IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), Zurich, Switzerland, 2018, pp. 161-168.

[7] B. Pierce, Types and Programming Languages. London: MIT Press,
2002, pp. 251–254.

[8] B. Milewski. (2019 Jan.) Basics of Haskell - Error handling. [On-
line]. Available: https://www.schoolofhaskell.com/user/bartosz/basics-
of-haskell/10 Error Handling

[9] S. Mohanty, “Evaluation of Serverless Computing Frameworks Based
on Kubernetes,” Aalto University, 2018.

[10] S. Shillaker (2019 Jan.) A provider-friendly serverless
framework for latency-critical applications. [Online]. Available:
http://conferences.inf.ed.ac.uk/EuroDW2018/papers/eurodw18-
Shillaker.pdf

[11] I. Baldini et al. “The serverless trilemma: function composition for
serverless computing,” in Proceedings of the 2017 ACM SIGPLAN In-
ternational Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward! 2017), New York, NY, USA,
2017, pp. 89-103.


