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Abstract—This paper presents a novel approach to planning
a path for unmanned aerial vehicles (UAVs) for searching lost
targets under uncertainty. A new basic approach for fast and
effective solutions is developed which outperforms standard local
hill climbing (LHC) approach. This can be improved using a
clusterization of probabilities in the area. The idea allows us to
simplify the problem of planning a UAV path to a problem of
choosing several clusters. Finally, the proposed method is com-
pared with other methods in simulated scenarios. The comparison
shows its high efficiency to solve searching problems.

Index Terms—unmanned aerial vehicles (UAVs), path planning,
object detection, probability distribution

I. INTRODUCTION

Unmanned aerial vehicles are gaining popularity both in
civilian and military fields. They can be used for wildlife mon-
itoring, target tracking, reconnaissance, surveillance, search
and rescue, area patrolling and battle damage assessment.
For many of these mission time is critical and should be
minimized. Minimizing time in this paper means minimizing
length of UAV paths.

Most of the problems mentioned above cannot be solved
optimally in polynomial time. The complexity of a general
searching problem is NP-hard [1]. This paper focuses on
effective solutions which means that the proposed method can
be only a suboptimal heuristic polynomial-time solution.

II. PROBLEM FORMULATION

There are various types of UAVs with different characteris-
tics, but we will have the following assumptions:

o UAVs can maintain a constant height above the ground;

o UAVs have a gimballed camera;

o at some constant height, UAVs see below using the
camera a square of size a on the ground;

o UAVs travel with known constant speed;

e UAVs can make a 90-degree turn if necessary.

In the paper, we supposed that the area of search is
discretized into N = W x H squares of size r which means
that flying above the center of a square at known constant
height a UAV can see it fully. For each square (4, 5) (denoted
by the number of its column and row) the probability that the
target is in this square is known and equal to p; ; € [0,1].
See Fig. 1 for the example of such discretization with known
probabilities.

Fig. 1: Example of a probability grid [2]

A typical size of a probability grid for a search problem
is tens of thousands squares [3]. The total probability in the
search area should be equal to 1 and thus
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We denote a UAV path as R = (Ry,...Ry), where
R, e {1,...,W} x {1,...,H}, the initial cell where the
drone is located as S € {1,...,W} x {1,...,H} and the
length of the path as L.

Then the search problem then can be formulated as follows:
Given probability grid with known probabilities p; ;, the initial
position of an UAV S and maximum length of the path L we

should:
max%nize Z Dy
(z,y)ER
subjectto R; =S
k—1
and Z distance(R;, Ri+1) < L,

i=1
where distance(a,b) is Euclidean distance between centers
of cells a and b.

In other words, we want to find a path that

¢ Vvisits some squares and collects probabilities from them
by performing a scan;

« has a length no more than L;

e maximizes probability collected.

Note that there is no benefit from visiting (scanning) the same
square twice.



III. RELATED WORK

This problem is a special case of Orienteering problem [4]
with a grid structure instead of a general case of a graph.
Orienteering problem is a more complex version of traveling
salesman problem (TSP), is known to be NP-hard and has no
fully polynomial approximation scheme unless P=NP [5].

The considered problem may be solved with mixed integer
linear programming (MILP) [6], genetic algorithm [7] and ant
colony optimization [8]. Nevertheless, these approaches are
effective only for a small number of nodes (less than 100).

The basic approach for fast solutions of this problem usually
is local hill climbing [9]. It is a greedy solution in which in
each step a UAV flies to one of neighbours of its current cell
choosing the cell with the maximum probability. However, the
main problem of this approach is that the drone can’t leave
an area of local maximum and fly to a better area unless it
covers the area fully (see Fig. 2).
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Fig. 2: Example of a problem of LHC when a drone can’t get
to an area of high probability. The more green a cell is the
more probability it contains. The route is blue and the initial
UAV position is a purple square.

Different authors tried to overcome the problem. Lanillos
et al. supposed to calculate not only real probability the drone
collects flying in a direction but also expected probability that
it can collect there [10]. Moreover, he uses receding horizon
optimization (RHC) to increase the number of steps the drone
look ahead and to make routes more locally optimal. Yao et al.
clusterize an area to detect areas of high probability [11]. In
each of the clusters, he builds routes separately using RHC and
then joins them. To use clustering the probability distribution
is supposed to be good, i.e. we can clearly see subareas of
high and low probability. Lin et. al proposes using of global
warming effect optimization which allows the drone to ignore
cells with low probability [3].

IV. PROPOSED ALGORITHM

A. Issues of analogs

As it was stated before, effective (fast) solutions for the
problem are usually based on local hill climbing algorithm.
However, as a consequence, these algorithms ([10][11][3])
have the following issues (Fig. 3):

« Final routes visit a lot of cells twice. Visiting a cell more
than once doesn’t increase the probability of detecting. It

doesn’t always mean that the solution is non-optimal but
can be usually avoided in such a way that the resulting
route will have higher probability collected;

¢ A solution may miss cells with high probability because
in some moment visiting them is locally non-optimal,
but visiting them in future may be valuable. Local hill
climbing algorithm is unlikely to visit these cells in future
because in each step in chooses the next cell only from
four adjacent cells.
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Fig. 3: Example of problems in solutions generated by algo-
rithms based on local hill climbing. In black circles there are
cells that are visited twice. In purple circles there are cells
with high probability that are skipped by the solution. In the
yellow circle there are cells that can be skipped instead of
cells in purple circles.

B. Basic idea

Lemma. Any area of cells consisting of connected cells of
double size (i.e. consisting of four small cells) may be covered
with a hamiltonian cycle which goes through centers of small
cells.

The proof of the lemma may be found in [12].

The algorithm to get the hamiltonian cycle is simple:

1) Build a spanning tree on cells of double size (Fig. 4). It

can be built because the area is connected.

2) A path along the spanning tree is a hamiltonian cycle

needed (Fig. 5)
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Fig. 4: (a) Area of cells of double size. (b) A spanning tree
on cells of double size.[12]

This lemma brings us to the following idea: Instead of
building a path we will build an area of cells of double size.
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Fig. 5: A path along the spanning tree [12]

To maintain connectivity we may add to the area only cells
that are neighboring to it. As in local hill climbing, we can
use greedy algorithms, i.e. among all possible cells of double
size add the one that contains more probability (this can be
done effectively by using, e.g., a heap data structure). Note
that at every step we preserve connectivity of an area of cells
of double size and it is the only constraint needed to use the
lemma.

After building the area we will build a hamiltonian cycle
using the lemma and it will be the final route of a UAV. Note
that as we will build a hamiltonian cycle we know how many
cells we need to add to the area not to exceed the constraint
on the length of the final route.

C. Improvement with clustering

This idea may be improved by the use of clustering.

Suppose we have detected all clusters (subareas of high
probability). If we join centers of all clusters and the starting
position of a drone by an area of cells of double size (e.g,
using minimal spanning tree (MST) or Steiner tree, Fig. 6)
and then run our greedy algorithm then the area will grow
accurately in clusters (Fig. 7).
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Fig. 6: Clusters joined by an area of cells of double size

In some cases (when the constraint on the length of the
route is tight) it is better to join not all cluster but only a few
of them. To choose what clusters to join we may iterate over
all possibilities (if there are a small number of clusters, which
is a pretty common case) or just try to pick the nearest cluster

Fig. 7: Area after the end of the greedy algorithm

step by step (increasing complexity of an algorithm in a linear
of the number of clusters time).
Then combining two ideas we get the following algorithm:

1) Choose what clusters to join.

2) Join them and the starting position of a UAV with an
area of cells of double size.

3) Grow the area step by step while not exceeding the
constraint on the route length.

4) Get the hamiltonian cycle from the area using the
lemma.

The total complexity of steps 2-4 is O(Llog N) if using a
heap to pick the cell with the highest probability effectively.
We will call the algorithm "cluster area-growth algorithm".

V. EXPERIMENTS

The proposed cluster area-growth algorithm was imple-
mented and compared with local hill climbing algorithm and
lhc-gw-conv algorithm from [3] (with global warming effect).

The comparison was performed on several test areas. Some
of the areas were generated using several Gaussian distri-
butions and some of these areas were obtained from height
maps of real locations (because the form of those maps and
real probability maps are similar). For every area, there were
several measurements with different constraints on the length
of the route (L). In the cells, there are total probabilities
collected by solutions in given constraints on a particular test.

As it can be seen in Table I the proposed algorithm
outperformed other algorithms almost in every case. Basic
local hill climbing approach gives dramatically worse results in
all tests. The proposed solution gained worse result only when
constraint on the length of the route is tight. It is because other
solutions were not obliged to return the drone to its starting
position (i.e. to form a cycle). As a result, their routes got the
opportunity to cover more clusters or to cover more distant
clusters (see Fig. 8 and Fig. 9). However, as the constraint
increases the proposed solution becomes to get better and
better results in comparison with other solutions (see Fig. 10
and Fig. 11), because of the absence of those issues mentioned
above.



TABLE I: Results of testing

Test #1 Test #2

L=3000 | L=7000 | L=15000 | L=3000 | L=7000 | L=15000

proposed 14% 31.2% [601% |8.1% 19.3% |40%

lhc 133% |23.7% |43.3% 6.2% 16.5% |35.2%

Ihc-gw-conv | 14.1% |30.8% |55.8% |8.6% 19.1% |38.2%

Test #3 Test #4

L=3000 | L=7000 | L=15000 | L=3000 | L=7000 | L=15000

proposed 19.6% |39.9% (66.8% (24.4% [50.3% |84%

lIhc 192% |36.8% |62.2% 23.9% | 42% 71.7%

lhc-gw-conv | 19.4% | 38.7% | 65% 242% |48.7% |78.1%
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Fig. 8: Test 1 with constraint L = 3000, proposed
solution

Fig. 9: Test 1 with constraint L = 3000, lhc-gw-
conv
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Fig. 11: Test 1 with constraint L = 15000, lhc-
gw-conv

VI. CONCLUSION

The proposed solution has following next advantages:

o The idea simplifies the problem of building a path over an
area to a problem of choosing several clusters (number of
clusters is far less than the number of cells in the area);

« The solution can not visit the same cell twice because we
have a hamiltonian cycle;

o The solution does not miss probabilities because an area
can grow in all directions (not only 4 adjacent cells may
be added);

o As aresult, it has better efficiency (according to the tests);

« It always returns a drone to the starting position which
is good when the constraint on the length of the route is
due to limited battery charge of a UAV.

We compared the solution with other solutions in simulated
scenarios to show its high efficiency. The ideas from the paper
may be also used in other search problems to simplify them
and get more practical solutions. In future work this approach
can be improved by considering the number of turns in the
path (which should be also minimized).
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