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Abstract — Earthquakes are one of the most dangerous 

natural disasters, primarily due to the fact that they often occur 

without an explicit warning, leaving no time to react. This fact 

makes the problem of earthquake prediction extremely 

important for the safety of humankind. Despite the continuing 

interest in this topic from the scientific community, there is no 

consensus as to whether it is possible to find the solution with 

sufficient accuracy. However, successful application of machine 

learning techniques to different fields of research indicates that 

it would be possible to use them to make more accurate short-

term forecasts.  

This paper reviews recent publications where application of 

various machine learning based approaches to earthquake 

prediction was studied. The aim is to systematize the methods 

used and analyze the main trends in making predictions. We 

believe that this research will be useful and encouraging for both 

earthquake scientists and beginner researchers in this field. 

Keywords — earthquake prediction, data mining, time series, 

neural networks, seismology 

I. INTRODUCTION 

At present, many processes and phenomena affecting 
different areas of human life have been studied enough to 
make predictions. Risk analysis makes it possible to determine 
whether the event is likely to occur at given period of time, as 
well as promptly respond to this event or even prevent it. 
However, even in the modern world there are events that we 
cannot influence. Such events, in particular, include natural 
disasters: tsunamis, tornadoes, floods, volcanic eruptions, etc. 
Human beings cannot stop the impending threat; but 
precautionary measures and rapid response are potentially 
able to minimize the economical and human losses.  

However, not all natural disasters are equally well studied 
and “predictable”. Earthquakes are one of the most dangerous 
and destructive catastrophes. Firstly, they often occur without 
explicit warning and therefore do not leave enough time for 
people to take measures. In addition, the situation is 
compounded by the fact that earthquakes often lead to other 
natural hazards such as tsunamis, snowslips and landslides. 
They may even cause industrial disasters (for instance, 
Fukushima Daiichi nuclear disaster was initiated by the 
Tōhoku earthquake that occurred near Honshu Island on 11 
March 2011 and was the most powerful earthquake ever 
recorded in Japan [1]). 

All these facts make the problem of earthquake prediction 
critical to human security. Since the end of XIX century, 
researchers in seismology and related branches of science 
have tried to discover so-called precursors, anomalous 
phenomena that occur before seismic events. Many possible 
precursors have been studied, including foreshocks (quakes 
which occur before larger seismic events), electromagnetic 
anomalies called “earthquake lights”, changes of groundwater 
levels and even unusual animal behaviour. In some cases 
precursor appearance led to timely evacuation of civilians [2]. 

It is important to note that it is hard to use precursors for short-
term forecasting, as they are they are not only characteristic of 
earthquakes (for instance, unusual lights in atmosphere may 
appear before geomagnetic storms or have a technogenic 
origin). Furthermore, different precursors preceded the 
quakes, which had different nature, occurred in different 
seismic zones and even seasons. 

Thus, optimistic attitude towards the possibility of timely 
detection of earthquake hazards, which emerged in the 1970s 
because of a number of successful “predictions”, have been 
replaced by skepticism [3]. This happened primarily because 
of numerous high-profile cases of wrong predictions [4]. 
Another reason was that no statistically significant precursors 
were found [5]. 

Currently there is no general methodology for earthquake 
prediction. Moreover, there is still no consensus in science 
community on whether it is possible to find a solution of this 
problem. However, rapid development of machine learning 
methods and successful application of these methods to 
various kinds of problems indicates that these technologies 
could help to extract hidden patterns and make accurate 
predictions.  

These tendencies fully explain the amount of papers where 
the applicability of various machine learning algorithms to the 
the tasks of earthquake science is studied. Some of them are 
focused on precursor study: for instance, in paper [6] random 
forest algorithm is applied to acoustic time series data emitted 
from laboratory faults in order to estimate the time remaining 
before the next “artificial earthquake”. Another application is 
discovering patterns of aftershocks which are small quakes 
that follow a large earthquake (referred to as a mainshock) and 
occur in the same area. One of the most recent examples is 
paper [7], where an artificial neural network in trained on 
more than 130.000 mainshock-aftershock pairs in order to 
model aftershock distribution and outperforms the classic 
approach to this task. However, although these fields of 
research are both very interesting and potentially helpful for 
solving the problem of earthquake prediction, the task 
formulated in the papers differs from the original one defined 
by seismologists (the definition is given in Section II), and 
therefore the results of these studies cannot be fully compared 
with the others. 

However, despite the undoubted relevance of the problem, 
the whole time the research have been conducted, only a few 
authors have tried to systematize knowledge from various 
sources. In particular, one recent survey on a similar topic was 
found, published in CRORR Journal in 2016 [8]. The paper 
reviews using artificial neural networks for short-term 
earthquake forecasting. However, it is focused only on a single 
aspect of the problem: the authors mostly discussed various 
architectures and topologies of neural network models used to 
solve the problem. Therefore, the paper refers mainly to a 
limited group of specialists. The main objective of our review 



is, on the contrary, to try to narrow the gap between 
seismology and computer science, as well as to encourage 
further research in this area. That is why this paper will 
attempt to cover all the main parts of a process of making 
predictions, including the search and preprocessing of 
earthquake data, the principles of feature extraction, as well as 
the methods of assessing the performance of machine-learning 
based predictors. 

II. DESCRIPTION OF THE TASK 

Despite words “forecast” and “prediction” are often used 
interchangeably, in earthquake science it is customary to 
distinguish them. Particularly, in [9] the idea was expressed 
that an earthquake prediction implies greater probability than 
an earthquake forecast; in other words, a prediction is more 
definite than a forecast, it requires greater accuracy. 
Therefore, it is worth noting that in this study we will deal 
mainly with earthquake prediction, since it seems to be more 
important from a practical point of view. 

According to [10], the following information is required 
from the prediction of an earthquake in its simplest 
interpretation: 

 a specific location; 

 a specific time interval; 

 a specific magnitude range. 

Importantly, all of these parameters should be defined in 
such a way that one could objectively state that some future 
earthquake does or does not satisfy the prediction. It is 
necessary for both using and evaluating predictions. In 
particular, it is required to define “location” clearly and 
determine the exact spatial boundaries of the area, since an 
earthquake does not occur at a point. 

Besides, the prediction is more useful and statistically 
verifiable if it includes the probability that the event that meets 
all above-mentioned criteria will occur [11]. That is, a 
prediction should specify where, when, how big the predicted 
earthquake is, and how probable is that it will occur in actual. 

However, despite the importance of the problem of 
earthquake prediction and the existence of precise criteria that 
its solution should satisfy, there is still no general method for 
predicting earthquakes with sufficient accuracy. One of the 
main reasons is that it is extremely hard to build an accurate 
model of the process of earthquake occurrence. That is due to 
several reasons: 

 Not all factors that may play roles in earthquake 
occurrence are discovered; 

 Even well-known factors, such as the accumulated 
stress or seismic energy release rate, cannot be directly 
measured (or it is too hard to do it); 

 The relationships between the occurrence of new 
earthquakes and these seismic features are shown to be 
complicated and highly non-linear. 

All this leads to the use of increasingly complex 
methodologies when trying to model earthquakes. Some of 
them will be described below.  

III. DATASETS 

When a specific field is researched in terms of machine 
learning, the first question is where to find data. As for 
earthquake datasets, various organizations and research 
institutions are constantly monitoring seismic activity of all 
over the world. There are some open-source national 
databases and earthquake catalogs, such as seismicity catalogs 
of Seismological Institute, National Observatory of Athens  
(http://www.gein.noa.gr/en/seismicity/earthquake-catalogs, 
Greece), “Earthquakes of Russia” database of Geological 
Survey, Russian Academy of Sciences (http://eqru.gsras.ru/, 
Russia), earthquake list of National Institute of Geophysics 
and Volcanology (http://cnt.rm.ingv.it/en, Italy) et al. There 
are also public earthquake catalogs provided by international 
organizations, which contain earthquake data from all over the 
world. Some examples are USGS catalog 
(https://earthquake.usgs.gov/earthquakes/search/), EMSC 
earthquake database (https://www.emsc-csem.org/) and 
ANSS Composite catalog by Northern California Earthquake 
Data Center (http://www.ncedc.org/anss/). 

Speaking about the structure of earthquake data, it is 
usually presented in the form of a table, each record of which 
corresponds to a certain seismic event. The sets of attributes 
are different for data published in different catalogs, but the 
most common ones are: 

 time of an event’s occurrence; 

 geographical coordinates of an epicenter;  

 depth of a hypocenter;   

 magnitude value, which characterizes the overall 
“size” of an event and is obtained from measurements 
of seismic waves recorded by a seismograph; 

 magnitude scale used when computing the magnitude 
value. Several scales have been defined, some of 
which are easier to compute but have limited 
applicability, as they cannot satisfactorily measure the 
strength of the largest events. However, all commonly 
used scales yield approximately the same values for 
any given seismic event. 

It should be noted that the number of records in all public 
databases is also different for different countries. It depends 
not only of seismic activity, but also of development of 
earthquake monitoring systems in these regions. For example, 
Japan is known to be the country with the biggest amount of 
earthquakes recorded. However, according to USGS, the most 
seismically active place in the world is Indonesia, and Japan 
has the densest seismic network, which helps them to record 
more earthquakes [12].  

Different level of completeness of earthquake catalogs 
leads researchers to the need to assess the quality of data they 
have. There are many different methods of evaluation, one of 
which is based on Gutenberg-Richter’s law [13] – an empirical 
law that describes the relationship between earthquake 
magnitude (M) and frequency of occurrence of events (N) for 
a given region and a time range. It is expressed as:  

 log10 𝑀 = 𝑎 − 𝑏𝑁 

i.e. the frequency rises exponentially with decreasing 
magnitude. This relation is remarkably resistant in space and 
time, so data from complete catalogs should also correspond 

http://www.gein.noa.gr/en/seismicity/earthquake-catalogs
http://eqru.gsras.ru/
http://cnt.rm.ingv.it/en
https://earthquake.usgs.gov/earthquakes/search/
https://www.emsc-csem.org/
http://www.ncedc.org/anss/


to it. The study is performed by plotting magnitude 
distribution. The point where curve starts to deviate from 
exponential behavior is chosen as a so-called «cut-off 
magnitude» (it is stated that some events of a magnitude below 
this threshold value are missing, so the catalog is incomplete). 
Therefore, the events of magnitude lower than the cut-off 
value are removed from the dataset. The illustrations of 
Gutenberg-Richter law for some frequently studied seismic 
zones are given in Fig. 1, 2 and 3. 

IV. PERFORMANCE MEASURES 

In this section, the definition is given for the performance 
measures that are used in literature to evaluate the prediction 
models. 

The simplest metrics used for quality assessment are: 

 True Positive (TP): The number of outcomes 
where the model predicted an earthquake and it 
actually occurred. 

 False Positive (FP): The number of outcomes 
where an earthquake was predicted but did not 
occur in actual.  

 True Negative (TN): The number of outcomes 
where the model predicted no earthquake and 
there was no earthquake in actual. 

 False Negative (FN): The number of outcomes 
where the model predicted no earthquake but it 
actually occurred. 

These measures are summarized in a so-called confusion 
matrix where all possible outcomes are depicted: 

TABLE I.  THE CONFUSION MATRIX FOR EARTHQUAKE PREDICTION 

MODELS 

 Occurred Didn’t occur 

Was predicted TP FP 

Wasn’t predicted FN TN 

 

There are also some other common criteria derived from 
the above-mentioned ones. Two of the most common 
statistical measures are sensitivity (denoted by  𝑆𝑛 , also 
called 𝑃𝑂𝐷, that stands for probability of detection), or a rate 
of actual positives predicted correctly, and specificity (denoted 
by  𝑆𝑝 ), or a rate of actual negatives predicted. They are 

defined as shown in Eq. 2 and Eq. 3, respectively: 

 𝑆𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

 𝑆𝑃 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

Two other important evaluation measures are  𝑃1 , or a 
positive predictive value, and  𝑃0 , or a negative predictive 
value. 𝑃1 is the percentage of true positives out of all positive 
predictions, as mentioned in Eq. 4, and 𝑃0 is the percentage of 
true negatives out of all negative predictions of a model, as 
shown by Eq. 5.: 

 𝑃1 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 𝑃0 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 

Some observed papers also define the criteria called false 
alarm ratio (denoted by 𝐹𝐴𝑅) and frequency bias (𝐹𝐵), as 
shown by Eq. 6 and Eq. 7, respectively: 

 𝐹𝐴𝑅 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
= 1 − 𝑃1 

 𝐹𝐵 =
𝑇𝑃+𝐹𝑃

𝑇𝑃+𝐹𝑁
 

Accuracy is also computed from four elements of the 
confusion matrix. It indicates the percentage of number of 
accurate predictions out of all predictions made by the model. 
Accuracy is defined as follows: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

When earthquake prediction problem is formulated as a 
binary classification task, another performance criteria used 
are R score and Matthew’s correlation score (denoted by 
𝑀𝐶𝐶). They are proposed as balanced evaluation measures 
and are defined as shown in Eq. 9 and Eq. 10, respectively: 

 𝑅 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

(𝑇𝑃+𝐹𝑁)(𝐹𝑃+𝑇𝑁)
 

 

Fig. 1. The illustration of seismic activity (left) and a magnitude distribution 

plot (right) for a region of South California. 

 

 

 

 

 

Fig. 2. The illustration of seismic activity (left) and a magnitude distribution 

plot (right) for a region of Chile. 
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FIG. 2. THE ILLUSTRATION OF SEISMIC ACTIVITY (LEFT) AND A MAGNITUDE 

DISTRIBUTION PLOT (RIGHT) FOR A REGION OF CHILE 

 

 

 

 

Fig. 3. The illustration of seismic activity (left) and a magnitude distribution 

plot (right) for a region of Hindukush. 

 

 



 𝑀𝐶𝐶 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 

Finally, in some papers where regression approach is 
applied to earthquake prediction, such standard measures as 
mean absolute (𝑀𝐴𝐸) and relative errors (𝑅𝐸) are used. They 
are computed as follows: 

 𝑀𝐴𝐸 =
1

𝑛
 ∑ |𝑦̂𝑖 − 𝑦𝑖|𝑛

𝑖=1  

 𝑅𝐸 =
1

𝑛∗max (𝑦𝑖)
 ∑ |𝑦̂𝑖 − 𝑦𝑖|𝑛

𝑖=1  

V. REVIEW OF EXISTING APPROACHES 

This section reviews a number of publications where 
application of machine learning methods to the task of 
earthquake prediction on various temporal and spatial 
intervals have been studied. Due to the fact that, as mentioned 
above, the processes of earthquake occurrence are considered 
to be stochastic and non-linear, most recent researches in this 
area are devoted to the applicability of neural networks to this 
problem. Another machine learning techniques, specifically, 
various regression and classification algorithms are also 
reviewed. 

A. E.I. Alves (2006) 

Reference [14] was one of the first in proposing artificial 
neural networks (ANN) for earthquake forecasting. The 
author, E.I. Alves, was inspired by successful application of 
similar approaches to the tasks of financial forecasting, which, 
as he thought, are similar to seismic activity in terms of the 
chaotic nature of both systems. Financial oscillators such as 
moving averages (MA), moving averages convergence-
divergence (MACD), relative strength index (RSI), etc. were 
used as input data. The forecast was to indicate time and 
geographical coordinates of an earthquake within spatial and 
temporal windows, as well as intensity range on Modified 
Mercalli Intensity scale (denoted by MMI [15]). The proposed 
method was tested on data of the region of Azores, Portugal. 
E. I. Alves stated that it forecasted earthquakes correctly in 
July 1998 (MMI = 8) and in January 2004 (MMI = 5). 
However, no statistical measures were computed, so we 
cannot evaluate the performance of this approach objectively. 
Though time windows were too wide (the month of the 
seismic event was forecasted to within ± 5 months), the results 
were “encouraging” and demonstrated the potential of using 
neural networks to predict earthquakes. 

B. A. Panakkat & H. Adeli (2007), H. Adeli & A. Panakkat 

(2009)  

H. Adeli and A. Panakkat, the authors of [16] and [17], 
formulate the problem of earthquake prediction as a 
classification task where the magnitude ranges of the largest 
seismic event in a pre-defined time window (for instance, 1 
month) are the output classes. So, the proposed methods are 
used to predict the magnitude of the biggest earthquake 
(within 0.5) in a pre-defined region in the following month. 

Reference [16], published in International Neural Systems 
in 2007, defines eight so-called seismicity indicators – 
mathematically computed features, which can be used to 
evaluate the seismic potential of a region. These parameters 
are based of two models of magnitude temporal distribution. 
The first one is Gutenberg-Richter inverse power law that was 
described in section “Datasets”. Another one is characteristic 

model, which is based on the fact that some seismic zones 
exhibit periodic trends in release of seismic energy through 
large earthquakes. Due to the importance of these indicators 
for the formation of an approach to the study of the subject of 
earthquake prediction, their description is provided in Table 
II. 

TABLE II.  THE DESCRIPTION OF ADELI & PANAKKAT’S SEISMICITY 

INDICATORS 

Symbol Description Mathematical expression 

𝑻𝜽 Elapsed time 𝑇 = 𝑡𝑛 − 𝑡1 

𝐌𝐦𝐞𝐚𝐧 
Mean 

magnitude 𝑀𝑚𝑒𝑎𝑛 =
∑ 𝑀𝑖

𝑛
𝑖=1

𝑛
 

𝒅𝑬𝟏/𝟐 

The rate of 
square root of 

seismic 

energy 

𝑑𝐸1/2 = ∑𝐸1/2/𝑇 

( 𝐸 =  10(11.8 + 1.5𝑀)𝑒𝑟𝑔𝑠 ) 

𝜷 

b-value (the 

slope of 

Gutenberg-
Richter 

curve) 

𝛽 =
𝑛∑(𝑀𝑖 log 𝑁𝑖) − ∑𝑀𝑖 ∑ log 𝑁𝑖

(𝛴𝑀𝑖)2 − 𝑛𝛴𝑀𝑖
2 

 

𝜼 
Mean square 

deviation 

𝜂 =
∑(log10 𝑁𝑖 − (𝑎 − 𝑏𝑀𝑖))2

𝑛 − 1
 

( 𝑏 = 𝛽  ;  𝑎 =
𝛴(log10 𝑁𝑖 + 𝑏𝑀𝑖)

𝑛
 ) 

𝚫𝑴 
Magnitude 

deficit 

Δ𝑀 = 𝑀𝑚𝑎𝑥,𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑀𝑚𝑎𝑥,𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 

(𝑀𝑚𝑎𝑥,𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =
𝑎

𝑏
 ) 

𝝁 

Mean time 

between 
characteristic 

events 

𝜇 = ∑(𝑡𝑖 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑖𝑐)/𝑛𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 

𝑐 
Coefficient of 

variation 
𝑐 =

𝑆𝑇𝐷 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑡𝑖𝑚𝑒𝑠

𝜇
 

 

The logical consequence was paper [17] published in 
Neural Networks in 2009. In this paper, the authors proposed 
the architecture of a probabilistic neural network (PNN) as a 
solution for the same problem that was formulated in [16]. 
Adeli and Panakkat also used the same set of seismicity 
indicators as input data for training the network. The model 
was tested on data for South California seismic zone (33.8-
35.4 N° and 114.75-119.25 W°) and yielded good prediction 
accuracies for events of magnitude 4.5 to 6.0 (R score values 
between 0.62 and 0.78). However, PNN did not perform 
satisfactorily for quakes of magnitudes greaten than 6.0, 
yielding R scores in range from 0.0 to 0.5.   

Thus, studies [16] and [17] complement each other: the 
authors propose using RNN for predicting earthquakes of 
large magnitude, while PNN may be used for small and 
moderate earthquakes. The researches of Adeli and Panakkat 
have laid the foundation for a scientific approach to assessing 
the potential seismic hazard for different regions: the set of 
eight seismicity indicators proposed by them was used in 
various studies by researchers from all over the world. 

C. J. Reyes et al.(2013) 

In paper [18], published in Applied Soft Computing in 
2013, another method for earthquake prediction using ANN is 
proposed. The system is designed to provide two kinds of 
predictions: a) the probability that an earthquake larger that a 
threshold magnitude happens in five days and b) the 
probability that a seismic event within a pre-defined 
magnitude range might occur. The input for the proposed 
predictor was based on b-value from Gutenberg-Richter’s law 
(defined in Table 2); moreover, new seismic parameters were 



firstly defined. These parameters are based on Bath’s law [19] 
and Omori-Utsu’s law [20], which describe the relations 
between main shock and aftershocks, based on their 
magnitude and frequency of occurrence, respectively. Four 
seismic regions of Chile were analyzed: Talca (35-36 S° and 
71-72 W°), Santiago (33-34 S° and 71-72 W°), Pichilemu (34-
34.5 S° and 72-72.5 W°) and Valparaíso (32.5-33.5 S° and 71-
72 W°). A different feed-forward backpropagation ANN was 
applied to each area, though they all shared the same 
architecture. The prototype predicted an earthquake each time 
when predicted probability was higher than a pre-defined 
threshold value (the thresholds were adjusted to reduce the 
number of false alarms). Evaluation of proposed methods was 
conducted using performance measures computed from TP, 
TN, FP and FN. Comparative analysis was performed using 
standard methods of classification such as K nearest neighbors 
(KNN), support vector machines (SVM) and classification via 
K-means clustering. Despite the individual setting of 
parameters, the performance of proposed ANN varied greatly 
depending on the region: the 𝑃0 values were 17.4% for Talca, 
41.7% for Santiago, 86.7% for Pichilemu and 87% for 
Valparaíso. 

D. G. Cortés et al. (2018) 

In study [21], which was published in Computers & 
Geosciences in 2018, an attempt to predict magnitude of the 
largest seismic event within the next seven days was made.  

The problem of earthquake prediction was treated as a 
regression task: four regressors (generalized linear models, 
gradient boosting machines, deep learning and random forest) 
and ensembles for them were applied. Seismicity indicators 
proposed by Panakkat & Adeli [16] and Reyes et al. [18] were 
used as input data. The main feature of the study is that the 
problem was observed in context of big data analytics: a total 
1 GB of data processed by means of a cloud-based information 
were used for training and testing regression models. In order 
to evaluate the effectiveness of proposed approaches, mean 
absolute (MAE) and relative (RE) errors were used as 
performance measures. Besides, due to the specifics of the 
task, the time spent on training models was also taken into 
account. The most effective regressor was random forest (RF), 
yielding a mean absolute error of 0.74 on average. RF was also 
one of the fastest, taking only 18 minutes to train the 
regression models on all data. Particularly, the most accurate 
predictions of RF were made for moderate earthquakes 
(magnitudes within a range on [4, 7); MAE<=0.26), while 
regression ensembles performed better on extreme magnitude 
ranges ([0, 3) and [7, 8]). Based on these results, the authors 
concluded that using more complex regressor ensembles 
would improve the accuracy of predictions for quakes of large 
magnitude. 

E. M. Moustra et al. (2011) 

The main purpose of study [22] published in Expert 
Systems and Applications in 2011 was to evaluate the 
accuracy of ANN for earthquake prediction using different 
inputs. More specifically, the paper highlights two main areas 
of research. The first case study concerned prediction of the 
largest seismic event of the following day using only time 
series earthquake magnitude data, and the second one 
concerned the use of so-called Seismic Electric Signals (SES) 
to predict the magnitude of the next seismic event as well as 
time lag. For the first case, a feed-forward backpropagation 
neural network was used. An input file contained maximum 
magnitude value for each day. The model was trained using 

an earthquake catalog for Greece, and performance was 
evaluated with accuracy rate, which was calculated based on 
MAE. The average accuracy rate was 80.55% for all events, 
but only 52.81% for what Moustra et al. considered “outliers” 
(earthquakes of magnitude greater than 5.2). In order to 
improve the performance on major quakes, the authors trained 
the ANN it two phases (at first on outliers, then on all training 
dataset), and the resulting accuracy rate was 58.02%. 

The case study that concerned earthquake prediction using 
SES consisted of two major parts. It is noteworthy that at the 
time of the study only 29 samples of SES were recorded and 
published by VAN team in Greece. Despite this, the authors 
of [22] tried using an ANN to study the connection between 
SES and the occurrence of earthquakes. Due to the fact that 29 
samples were clearly not enough to train neural networks, 
Moustra et al. had decided to construct the missing data for the 
rest of seismic events from the catalog. In first case, SES were 
generated randomly for all events; in second one the ANN was 
used to construct missing data using magnitude time series. 
The accuracy rate of magnitude prediction was slightly more 
than 60% on the first dataset, and the ANN found no 
correlation between SES and the time lag. Using data 
constructed by the ANN improved the performance 
significantly: the accuracy rates that resulted from the 
prediction of both magnitude and time lag were 83.56% for 
magnitude and 92.96% for time lag. The results have led the 
authors to conclusion that training models on the appropriate 
data is a key factor that may influence the resulting 
performance greatly. 

F. K. Asim et al. (2017) 

In paper [23], which was published in Natural Hazards in 
2017, the problem of earthquake prediction is studied as a 
binary classification task. Predictions were made for events of 
magnitude greater than or equal to 5.5 on monthly basis. Eight 
seismicity indicators proposed by Adeli & Panakkat [16] were 
used as input to different machine learning classifiers. These 
included recurrent neural network (RNN), pattern recognition 
neural network (PRNN), random forest (RF) and LPBoost 
ensemble of decision trees. In addition to the accuracy of 
predictions, Asim et al. identified such performance measures 
as sensitivity and specificity, true and false predictive values 
as the main criteria for comparison of the above-mentioned 
approaches. The classifiers were used to predict earthquakes 
in the Hindukush region. LPBoost ensemble tended to take the 
lead in accuracy with the value of 65%. This classifier also 
performed better in terms of sensitivity towards earthquake 
occurrence, yielding 91% of 𝑆𝑛  value. The authors also 
highlighted the result of PRNN, which produced the least false 
alarms as evidenced by a high level of positive predictive 
value equal to 71%. Having analyzed the results, the authors 
stated that every observed system had shown satisfactory 
results somehow or other. 

G. K. Asim et al. (2018) 

An earthquake prediction system (EPS) named EP-
GPBoost was described in paper [24], which was published in 
Soil Dynamics and Earthquake Engineering in 2018. This 
system is a classifier based on a combination of genetic 
programming (GP) and a boosting algorithm named 
AdaBoost. An application of these instruments to the problem 
of earthquake prediction had never studied before this paper. 
Another novelty of the approach is a methodology of 
computation and simultaneous usage of seismicity indicators, 
which is based on idea of obtaining maximum information 



about geological properties of observed regions (instead of 
choosing appropriate parameters for each zone individually). 
A total of 50 features was calculated, based on such geological 
concepts as Gutenberg-Richter’s law, release of seismic 
energy, foreshock frequency, etc. Some of these parameters 
were computed via different approaches (for example, the 
above-mentioned b-value, which is a slope of a Gutenberg-
Richter curve, was computed using two methods, namely, 
least square regression analysis (as shown in Table 2) and 
maximum likelihood method). As a result, a system for 
predicting seismic events of magnitude equal or greater than 
5.0 for the next 15 days was proposed. The study of the 
applicability of EP-GPBoost was performed using data from 
previously used seismic zones, namely, Chile (32.5–36 S°, 70 
–72.5 W°), Hindukush (35-39 N°, 69 –74.6 E°) and Southern 
California (32 –36.5 N°, 114.75 –121 W°). The experiments 
have shown outstanding performance in all three observed 
regions both in terms of low false alarm ratio (the precision 
values were 74.3%, 80.2% and 84.2% for Hindukush, Chile и 
Southern California, respectively) and in terms of other 
metrics considered for evaluation, such as MCC and R score. 
The best results were obtained for the region of South 
California (the authors stated that the reason was the quality 
and completeness of the corresponding earthquake catalog). 
However, the results of all the regions exhibit improvement 
when compared to the previous studies [16][18][23].  

H. K. Asim et al. (2018) 

Reference [25], published in PLOS ONE in 2018, was 
written by the authors of the previous research. In this paper 
Asim et al. also used the approach to usage of seismicity 
indicators proposed in [24]. This time, 60 seismic parameters 
was computed using various concepts of seismology. Again, 
some specific features were calculated via different 
approaches to retain the most complete information about the 
observed seismic zones. As in their previous research, the 
authors aim to predict the earthquakes of magnitude equal to 

or greater than 5.0 for the next 15 days. The proposed system 
is multistep, unlike previous other predictors proposed in 
literature which are mainly simple. The system is a 
combination of different machine learning algorithms, and on 
each step, one algorithm uses the knowledge obtained through 
learning of a previous one. Firstly, two-step feature selection 
is used to choose the most relevant parameters for training a 
model. Specifically, relevance and redundancy checks are 
performed (Minimum Redundancy Maximum Relevance 
criteria, denoted as mRMR, is applied). The resulting set of 
parameters is passed to a support vector regressor (SVR), and 
the trend predicted by SVR is then used as a part of input data 
for a hybrid neural network (HNN). A HNN proposed in [25] 
is a combination of three different ANNs and EPSO algorithm 
for weight optimization. The resulting system called SVR-
HNN was applied to previously studied regions of Hindikush, 
Chile and Southern California. The performance was 
evaluated with such measures as  𝑃0 , 𝑃1 ,  𝑆𝑛 ,  𝑆𝑝 , accuracy, 

MCC and R score. The results were also compared with ones 
described in previous researches on these seismic zones. The 
resulting values of performance measures (for instance, R 
score increased from 0.27 to 0.58 for Hindukush, from 0.344 
to 0.603 for Chile, 0.623 from 0.5107 to 0.623 for Southern 
California) showed that proposed multistep methodology 
improved prediction performance in comparison with 
individual machine learning techniques. 

All reviewed papers are summarized in Table III. An 
analysis of all the above-mentioned works revealed a number 
of trends in studying the problem of earthquake prediction. 
Some of these trends and common approaches are described 
below. 

VI. DISCUSSION 

This section identifies the main tendencies in earthquake 
prediction using machine learning techniques and highlights 
the areas that should be the subjects of further research. 

TABLE III.  SUMMARY OF ALL STUDIES REVIEWED 

Ref. Seismic zone Data sources 
ML methods 

observed 
Features Evaluation techniques 

[14] Azores (Portugal) - ANN Financial oscillators - 

[16] 

South California, 

San-Francisco bay 
(USA) 

SCEC catalog 
LMBP; RNN; 

RBFN 

Seismic indicators based on 

GR law and characteristic 
distribution 

𝑆𝑛, FAR, FB, R score 

[17] 
South California 

(USA) 
SCEC catalog PNN [16] 𝑆𝑛, FAR, R score  

[18] Chile 
University of Chile’s 
National Service of 

Seismology 

feed-forward 

ANN 

Seismic indicators based on 
GR law, Bath’s law and 

Omori-Utsu’s law 

𝑃0, 𝑃1, 𝑆𝑛, 𝑆𝑝 

[21] California (USA) 
ANSS Composite 

Earthquake Catalog, NCEDS 
GLM; GBM; DL [16], [18] MAE, RE 

[22] Greece 

Seismological Institute, 

National 

Observatory of Athens 
(SINOA), VAN team 

ANN 
Two approaches to modeling 

SES for all seismic data 
Accuracy rate based on MAE 

[23] Hindukush (Pakistan) 

Center for 

Earthquake Studies 

(Pakistan), USGS 

LMBP-RNN; 

PRNN; RF; 

LPBoost 

[16] 𝑃0, 𝑃1, 𝑆𝑛, 𝑆𝑝, accuracy 

[24] 

Hindikush (Pakistan), 

Chile, South 

California (USA) 

USGS catalog GP, AdaBoost 
50 seismic indicators used 

simultaneously 

𝑃0, 𝑃1, 𝑆𝑛, 𝑆𝑝, accuracy, MCC, R 

score 

[25] 
Hindikush (Pakistan), 

Chile, South 

California (USA) 

USGS catalog 
mRMR criteria, 

SVR, HNN, 

EPSO  

60 seismic indicators used 

simultaneously 

𝑃0, 𝑃1, 𝑆𝑛, 𝑆𝑝, accuracy, MCC, R 

score 

IN THE FIELD OF EARTHQUAKE PREDICTION 



First of all, the definition of an earthquake prediction given 
by seismologists implies giving the exact definition of time 
and place of earthquake occurrence as well as its magnitude 
(as defined in the section “Description of the task”). However, 
most of the studies observed are focused on wider aim of 
predicting magnitude for a limited area and temporal range. 
(The summary of temporal, spatial and magnitude limits used 
in reviewed papers when formulating the problem are given in 
Table IV.) That is explained by extreme complexity of the 
process of earthquake occurrence. urther research in this area 
should be directed towards attempts to simultaneously predict 
magnitude, time and place of seismic events’ occurrence. 

TABLE IV.  THE SUMMARY OF ALL THE APPROACHES TO LIMITING THE 

PREDICTIONS’ ACCURACY USED IN REVIEWED PAPERS 

Ref. Time 

ranges 

Geographical 

boundaries 

Magnitude ranges 

[14] ± 5 

months 

The latitude of an 

epicenter is predicted 
to within 1° 

- 

[16] 1 

month 

Two pre-defined 

regions: South 

California (32-36 N°, 
114-120 W°); San-

Francisco bay (37.5-40 
N°, 116-123.5 W°) 

The magnitude is 

predicted to the nearest 

0.5  

[17] 15 

days 

One pre-defined 

region: South 

California (33.8-35.4 
N°, 114.75-119.25 W°) 

The magnitude is 

predicted to the nearest 

0.5 

[18] 5 days The coordinate ranges 

varied from 0.5° × 0.5° 
to 1° × 1° 

The probability that the 

magnitude will exceed 
the threshold value or 

will be in a pre-defined 

range is predicted  

[21] 7 days The coordinates of an 

epicenter are predicted 

to within a cell of 0.5° 

× 0.5° 

- 

[22] 1 days The pre-defined region 

of Greece 

- 

[23] 1 

month 

The pre-defined region 

of Hindukush 

The occurrence of events 

of magnitude ≥ 5.5 is 
predicted 

[24] 15 

days 

Southern California 

(32-36.5 N°, 114.75-
121 W°), Chile (32.5-

36 S°, 70-72.5 W°), 

Hindukush (35-39 N°, 
69–74.6 E°) 

The occurrence of events 

of magnitude ≥ 5.5 is 
predicted 

[25] 15 

days 

Southern California 

(32-36.5 N°, 114.75-
121 W°), Chile (32.5-

36 S°, 70-72.5 W°), 

Hindukush (35-39 N°, 
69–74.6 E°) 

The occurrence of events 

of magnitude ≥ 5.5 is 
predicted 

 

As for data processing, most of the papers reviewed use 
the approach of feature extraction based on seismic 
characteristics of a region. As every seismic zone has its 
unique parameters, it is obvious that these parameters need to 
be considered for building an exact model. This 
“personalized” approach is especially noticeable in some of 
the studies where various zones were observed: the results 
show that some approaches performed better on one region 
and worse on the other. There were also researches where 
different architectures or even methods were applied for 
modeling different seismic zones because of their differences. 
In addition, the principles of feature selection and usage are 
changing over time: in papers published in 2018 a new 

approach is proposed, which is based on simultaneous use of 
a large number of seismic indicators for building and training 
the predicting models.  

It is also noteworthy that a number of researches outlines 
low false alarm generation as an important criterion of 
performance evaluation. Many authors indicate that 
earthquake prediction is a delicate issue where false alarms 
lead to particularly negative consequences, such as 
economical losses and panic among the civilians, which can 
be critical because it may cause distrust of the system. 
Therefore, in some cases we can even sacrifice the sensitivity 
of a model in favor of reducing a number of false alarms. 

Speaking about the performance of proposed models, it is 
worth noting that it is hard to compare approaches proposed 
in different papers, because the researchers use different 
performance measures for assessing the quality of predictors. 
That is why one cannot objectively state that one model is 
better than the other is. However, some conclusions can still 
be made. First of all, the accuracy of predictions as well as 
other performance measures increase with the research on the 
field of earthquake prediction (it is noticeable based on the 
repeatedly studied regions of Southern California, Chile and 
Hindukush, where similar performance measures have been 
used). It is also worth noting that in some papers a tendency is 
observed concerning the decrease of accuracy with increasing 
magnitude threshold. That is, the larger the earthquake, the 
harder it is to predict. Given the fact that large earthquakes 
represent the greatest threat to society, it is necessary to make 
bigger efforts in the task of predicting earthquakes of high 
magnitude (equal to or greater than 5.5). 

The models proposed in most of the papers reviewed were 
tested on data for different regions obtained from different 
earthquake catalogs. We think that this is a major issue. As 
shown in a number of papers, an approach may perform 
differently on zones with different seismic properties, and that 
is another reason why it is near to impossible to compare the 
methods proposed in different studies. As a solution, we 
propose to create a «benchmark» dataset, which researchers 
can use in comparative purposes for different algorithms. The 
dataset may contain open-source data on seismic zones used 
in previous studies, such as Chile, Hindukush and Southern 
California. Besides, we think that it is necessary to 
complement the dataset with records from other seismic zones 
from different parts of the world, for instance, Europe and East 
Asia. We believe that testing the approaches on unified data 
from regions with different magnitude distributions and other 
seismological properties will help to carry out a more detailed 
study of their applicability. The exact geographical boundaries 
of regions from the proposed «benchmark» dataset and cut-off 
magnitudes chosen for these regions based of the study of 
Gutenberg-Richter curves (as described in section “Datasets”) 
are listed in Table V. The visualization of seismic activity and 
magnitude distribution of these regions is shown in Fig 1-5. 

TABLE V.  RANGES OF COORDINATE BOUNDARIES OF REGIONS 

PROPOSED AS PARTS OF THE DATASET 

Seismic zones 
Latitude 

range 

Longitude 

range 

Cut-off 

magnitude 

Central Japan 34-39 N° 136.5-142 E° 4.5 

Chile 32.5-36 S° 70-72.5 W° 4.0 

Hindukush 35-39 N° 69-74.6 E° 4.5 

Sicily, Italy 36-39 N° 12-16 E° 2.5 

South California 32-36.5 N° 114.75-121 W° 3.0 



 

VII. CONCLUSION 

In this research, the main approaches in application of 
machine learning methods to a problem of earthquake 
prediction are observed. The main open-source earthquake 
catalogs and databases are described. The definition of main 
metrics used for performance evaluation is given. A detailed 
review of published works is presented, which highlights the 
way of development of scientific methods in this area of 
research. Finally, during the discussion of the results achieved, 
further directions of research in the field of earthquake 
prediction are proposed. These are: 

 Creating a “benchmark” earthquake dataset, which can 
be used to assess the quality of various predictor 
systems. The dataset includes frequently observed 
seismic zones and seismically active areas of East Asia 
and Europe, such as Central Japan and Sicily Island. 
The performance of previously proposed methods can 
also be evaluated using the «benchmark» dataset. 

 Focusing on the most complex and important task of 
predicting earthquakes of high and extreme 
magnitudes (equal to or greater than 5.5). 

 Making attempts to solve the problem of earthquake 
prediction in its original form, as determined by 
earthquake scientists; namely, the simultaneous 
specification of time, place and magnitude of seismic 
events with a certain probability. 
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Fig. 4. The illustration of seismic activity (left) and a magnitude distribution 

plot (right) for a region of Central Japan. 

 

 

 

 

Fig. 5. The illustration of seismic activity (left) and a magnitude distribution 

plot (right) for a region of Sicily Island. 
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