
Construction of polarization kernels of size 16 for

low complexity processing

Grigorii Trofimiuk, Peter Trifonov

ITMO University, Russia

Email: {gtrofimiuk,pvtrifonov}@corp.ifmo.ru

Abstract—An algorithm for construction of binary 16 × 16

polarization kernels with polarization rate 0.51828 which admit
low complexity processing is proposed. The considered processing
algorithm exploits linear relationship of the considered ker-
nels and Arikan transform. The proposed approach relies on
restricted application of elementary row operations to Arikan
transform matrix, which are chosen to have minimal impact on
complexity of the window processing algorithm.

The proposed construction resulted in relatively low number of
kernels, which can be easily checked by computer-based search.
Moreover, simulation results show that polar (sub)codes with
obtained kernels can outperform polar codes with Arikan kernel,
while having lower decoding complexity.

I. INTRODUCTION

Polar codes are a novel class of error-correcting codes,

which achieve the symmetric capacity of a binary-input dis-

crete memoryless channel W , have low complexity construc-

tion, encoding and decoding algorithms [1]. However, the

performance of polar codes of practical length is quite poor.

The reasons for this are the presence of imperfectly polarized

subchannels and the suboptimality of the successive cancel-

lation (SC) decoding algorithm. To improve performance,

successive cancellation list decoding (SCL) algorithm [2], as

well as various code constructions were proposed [3], [4], [5].

Polarization is a general phenomenon, and is not restricted

to the case of Arikan matrix [6]. One can replace it by a

larger matrix, called polarization kernel, which can provide

higher polarization rate. Polar codes with large kernels were

shown to provide asymptotically optimal scaling exponent

[7]. Many kernels with various properties were proposed [6],

[8], [9], [10]. Until recently, polar codes with large kernels

were believed to be impractical due to very high decoding

complexity.

The window processing algorithm for some 16× 16 polar-

ization kernels was introduced in [11]. This approach exploits

the relationship between the considered kernels and the Arikan

matrix. Essentially, the log-likelihood ratios (LLRs) for the

input symbols of the considered kernels are obtained from the

LLRs computed via the Arikan recursive expressions.

In this paper we present a construction method for polar-

ization kernels, which admit efficient decoding by window

based approach. The proposed method construct a class of

polarization kernels, which are expected to be suitable for

given processing method. The kernels are constructed by

performing elementary row operations over Arikan transform

matrix.

We show that with obtained kernels increasing list size in

the SCL decoder provides much more significant performance

gain compared to the case of Arikan kernel, and ultimately

the proposed approach results in lower decoding complexity

compared to the case of polar codes with Arikan kernel with

the same performance.

II. BACKGROUND

A. Channel polarization

Consider a binary-input memoryless channel with transition

probabilities W{y|c}, c ∈ F2, y ∈ Y , where Y is output

alphabet. For a positive integer n, denote by [n] the set of n
integers {0, 1, . . . n− 1}. A polarization kernel K is a binary

invertible l× l matrix, which is not upper-triangular under any

column permutation. The Arikan kernel is given by

Fm =

(
1 0
1 1

)⊗m

,

where ⊗m is m-fold Kronecker product of matrix with itself.

An (n = lm, k) polar code is a linear block code generated

by k rows of matrix Gm = M (m)K⊗m, where M (m) is a

digit-reversal permutation matrix, corresponding to mapping∑m−1
i=0 til

i →
∑m−1

i=0 tm−1−il
i,ti ∈ [l]. The encoding scheme

is given by cn−1
0 = un−1

0 Gm, where ui, i ∈ F are set to some

pre-defined values, e.g. zero (frozen symbols), |F| = n − k,

and the remaining values ui are set to the payload data.

It is possible to show that a binary input memoryless chan-

nel W together with matrix Gm gives rise to bit subchannels

W
(i)
m,K(yn−1

0 , ui−1
0 |ui) with capacities approaching 0 or 1,

and fraction of noiseless subchannels approaching I(W) [6].

Selecting F as the set of indices of low-capacity subchannels

enables almost error-free communication. It is convenient to

define probabilities

W
(i)
m,K(ui0|y

n−1
0) =

W
(i)
m,K(yn−1

0 , ui−1
0 |ui)

2W (yn−1
0)

=
∑

un−1
i+1

n−1∏

i=0

W ((un−1
0 Gm)i|yi). (1)

Let us further define W
(j)
m (uj0|y

n−1
0) = W

(j)
m,K(uj0|y

n−1
0),

where kernel K will be clear from the context. We also need

probabilities W
(j)
t (uj0|y

l−1
0) = W

(j)
1,Ft

(uj0|y
l−1
0) for Arikan

matrix Ft. Due to the recursive structure of Gm, one has

W
(sl+t)
m (usl+t

0 |yn−1
0) =

∑

u
l(s+1)−1
sl+t+1

l−1∏

j=0

W
(s)
m−1(θK [u

l(s+1)−1
0 , j]|y

(j+1) n
l
−1

j n
l

) (2)

where θK [u
(s+1)l−1
0 , j]r = (u

l(r+1)−1
lr Gm)j , r ∈ [s + 1].

A trellis-based algorithm for computing these values was

presented in [12].

At the receiver side, one can successively estimate

ûi =

{
argmaxui∈F2 W

(i)
m (ûi−1

0 .ui|y
n−1
0), i /∈ F ,

the frozen value of ui i ∈ F .
(3)

This is known as the successive cancellation (SC) decoding

algorithm.

B. Rate of polarization

Let W : {0, 1} → Y be a symmetric binary-input discrete

memoryless channel (B-DMC) with capacity I(W). By defi-

nition,

I(W) =
∑

y∈Y

∑

x∈{0,1}

1

2
W (y|x) log

W (y|x)
1
2W (y|0) + 1

2W (y|1)
.

Also, let Z(W) ∈ [0, 1] denote the Bhattacharyya parameter

of W , i.e., Z(W) =
∑

y∈Y

√
W (y|0)W (y|1).

Consider polarizing transformK⊗m, where K is an l×l po-

larization kernel, and bit subchannels W
(i)
m,K(yn−1

0 , ui−1
0 |ui),

induced by it. Let Z
(i)
m = Z(W

(i)
m,K(yn−1

0 , ui−1
0 |ui)) be a Bhat-

tacharyya parameter of i-th subchannel, where i is uniformly

distributed on the set [lm]. Then, for any B-DMC W with

0 < I(W) < 1, we will say that an ℓ × ℓ matrix K has

polarization rate E(K) if [6]

(i) For any fixed β < E(K),

lim inf
n→∞

Pr[Zn ≤ 2−ℓnβ

] = I(W).

(ii) For any fixed β > E(K),

lim inf
n→∞

Pr[Zn ≥ 2−ℓnβ

] = 1.

That is, the rate of polarization shows how fast bit sub-

channels of K⊗m approach neither almost noiseless or noisy

channel with n = lm.

Suppose we constructed (n, k) polar code C with kernel K .

Let Pe(n) be a block error probability of C under transmission

over W and decoding by SC algorithm. It was proven [6], that

if n/k < I(W) and β < E(K), then

Pe(n) ≤ 2−nβ

It turns out that the rate of polarization is independent of

channel W . Namely, let 〈g1, g2, . . . , gk〉 be a linear code, gen-

erated by vectors g1, g2, . . . , gk. Let dH(a, b) be the Hamming

distance between a and b. Let dH(b, C) = minc∈C dH(b, c) be

a minimal distance between vector b and linear block code C.

We denote the i-th row of an l× l matrix M as M [i], i ∈ [l].

The partial distances Di, i = 0, . . . , l−1, l× l of the matrix

K are defined as follows:

Di = dH(K[i], 〈K[i+ 1], . . . ,K[l− 1]〉), i = 0, . . . , l − 2,

Dl−1 = dH(K[l − 1],0).

The vector D will be referred to as a partial distances

profile. In work [6] it was shown that for any B-DMC W
and any l × l polarization kernels K with partial distances

{Di}
l−1
i=0, the rate of polarization E(K) is given by

E(K) =
1

l

l−1∑

i=0

logl Di. (4)

The Arikan kernel F1 has rate of polarization E(F1) = 0.5,

whereas random codes achieveE = 1. For polarization kernels

of size 16 and 32 the kernels with rate of polarization 0.51828

and 0.53656 respectively can be obtained.

C. Scaling exponent

Let us fix a B-DMC W of capacity I(W) and a desired

block error probability Pe. Given W and Pe, suppose we wish

to communicate at rate I(W)−∆ using a family of (n, k) polar

codes with kernel K . It has been shown that this value of n
scales as O(∆−µ(K)), where the constant µ(K) is known as

the scaling exponent [8].

The scaling exponent depends on channel. Unfortunately,

the algorithm of its computing is only known for the case on

binary erasure channel (BEC) [13],[8].

The Arikan kernel F1 has µ(K) = 3.627, whereas random

codes achieve optimal µ = 2. The best known scaling

exponent for 16× 16 polarization kernel is 3.346 [11].

D. Computing kernel input symbols LLRs

1) General case: Our goal is to compute probabilities

W
(i)
m (ui0|y

n−1
0) for a given polarization transform K⊗m. Let

us assume for the sake of simplicity that m = 1. The

corresponding task will be referred to as kernel processing.

We propose to introduce approximate probabilities

W̃
(j)

1 (uj0|y
l−1
0) = max

u
l−1
j+1

W
(l−1)
1 (ul−1

0 |yl−1
0)

= max
u
l−1
j+1

l−1∏

i=0

W ((ul−1
0 K)i|yi). (5)

This is the probability of the most likely continuation of path

uj0 in the code tree, without taking into account possible

freezing constraints on symbols ui, i > j. Note that the

same probabilities were introduced in [14], [15], and shown to

provide substantial reduction of the complexity of sequential

decoding of polar codes.

Decoding can be implemented using the log-likelihood

ratios S̄m,i = S̄
(i)
m (ui−1

0 |yn−1
0) = ln

W
(i)
m (ui−1

0 .0|yn−1
0)

W
(i)
m (ui−1

0 .1|yn−1
0)

. Hence,

kernel output LLRs S̄1,i, i ∈ [l] can be approximated by

S̄1,i ≈ S1,i = ln
W̃

(i)

1 (ui−1
0 .0|yl−1

0)

W̃
(i)

1 (ui−1
0 .1|yl−1

0)

= max
u
l−1
i+1

lnW
(l−1)
1 (u(0)i|yl−1

0)−max
u
l−1
i+1

lnW
(l−1)
1 (u(1)i|yl−1

0),

(6)

where u(a)i = (ui−1
0 .a.ul−1

i+1). The above expression means

that S1,i can be computed by performing ML decoding of the

code, generated by last l−i+1 rows of the kernel K , assuming

that all uj, i < j < l, are equiprobable.

2) Window processing: Straightforward evaluation of (6)

for arbitrary kernel has complexity O(2ll). However, we have

a simple explicit recursive procedure for computing these

values for the case of the Arikan transform Ft.

Let l = 2t. Consider encoding scheme

cl−1
0 = vl−1

0 Ft. (7)

Similarly to (5), define approximate probabilities

W̃
(i)
t (vi0|y

l−1
0) = max

v
l−1
i+1

W
(l−1)
t (vl−1

0 |yl−1
0)

and modified log-likelihood ratios

S
(i)
t (vi−1

0 , yl−1
0) = log

W̃
(i)
t (vi−1

0 .0|yl−1
0)

W̃
(i)
t (vi−1

0 .1|yl−1
0)

.

It can be seen that

S
(2i)
λ (v2i−1

0 , yN−1
0) = sgn(a) sgn(b)min(|a|, |b|) (8)

S
(2i+1)
λ (v2i0 , y

N−1
0) =(−1)v2ia+ b, (9)

where N = 2λ, a = S
(i)
λ−1(v

2i−1
0,e ⊕ v2i−1

0,o , yN−1
0,e), b =

S
(i)
λ−1(v

2i−1
0,o , yN−1

0,o). Then the log-likelihood of a path vi0 can

be obtained as [16]

R(vi0|y
l−1
0) = log W̃

(i)
t (vi0|y

l−1
0)

= R(vi−1
0 |yl−1

0) + τ
(
S
(i)
t (vi−1

0 , yl−1
0), vi

)
, (10)

where R(ǫ|yl−1
0) can be set to 0, ǫ is an empty sequence, and

τ(S, v) =

{
0, sgn(S) = (−1)v

−|S|, otherwise.

It was suggested in [17] and [11] to express values

W
(i)
1 (ui0|y

l−1
0) via W

(j)
t (vj0|y

l−1
0) for some j. Indeed, TK =

Ft, where T is an l × l matrix. Let

cl−1
0 = vl−1

0 Ft = ul−1
0 K ⇒ ul−1

0 = vl−1
0 T.

Observe, that it is possible to reconstruct ui0 from vτi0 , where

τi is the position of the last non-zero symbol in the i-th column

of T . For the sake of simplicity we assume that all τi, i ∈ [l]
are distinct. The general case is considered in [11].

Indeed, vectors ul−1
0 and vl−1

0 satisfy the equation

ui =

l−1∑

j=0

vjT [j, i], (11)

where T [i, j] is a j-th element of row T [i].
Let hi = maxi′∈[i+1] τi′ . It can be seen that1

W
(j)
1 (uj0|y

l−1
0) =

∑

v
hj
0 ∈Zj

W
(hj)
t (v

hj

0 |yl−1
0)

=
∑

v
hj
0 ∈Zj

∑

v
l−1
hj+1

W
(l−1)
t (vl−1

0 |yl−1
0), (12)

where Zj is the set of vectors v
hj

0 , such that (11) holds for

i ∈ [j]. Similarly we can rewrite the above expression for the

case of the approximate probabilities

W̃
(j)

1 (uj0|y
l−1
0) = max

v
hj
0 ∈Zj

W̃
(hj)
t (v

hj

0 |yl−1
0)

= max
v
hj
0 ∈Zj

max
v
l−1
hj+1

W
(l−1)
t (vl−1

0 |yl−1
0). (13)

Let Zi,b =
{
vhi

0 |vhi

0 ∈ Zi,where ui = b
}

. Hence, one obtains

S1,i = max
v
hi
0 ∈Zi,0

R(vhi

0 |yl−1
0)− max

v
hi
0 ∈Zi,1

R(vhi

0 |yl−1
0). (14)

Observe that computing these values requires considering

multiple vectors vhi

0 of input symbols of the Arikan transform

Ft. Let

Di = [hi + 1]\{τ0, τ1, . . . , τi} (15)

be a decoding window, i.e. the set of indices of independent

(from ui−1
0) components of vhi

0 . Note that

|Di| = |[hi+1]|−|{τ0, τ1, . . . , τi}| = hi+1−(i+1) = hi− i

since all τi are distinct and {τ0, τ1, . . . , τi} ⊆ [hi + 1]. The

calculation of LLRs S1,i via (14) will be referred to as the

window processing algorithm.

The number of path scores to be computed in (14), which

determines the processing complexity, is equal to 2|Di|+1.

Let M(K) denotes the maxi∈[l] |Di|. In general, one has

M(K) = O(l) for an arbitrary kernel K .

3) Complexity: The complexity of LLR S1,i computation

via the straightforward implementation of the window pro-

cessing algorithm (14) consist of the several components. In

this work we count the arithmetical complexity as a number

summation and comparison operations, which is considered to

be equal.

At first, to compute S1,i, one should obtain path scores

R(vhi

0 |yl−1
0), vhi

0 ∈ Zi. According to the expression (10), the

path score R(vhi

0 |yl−1
0) is equal to

R(vhi−1
0 |yl−1

0) + τ
(
S
(hi)
t (vhi−1

0 , yl−1
0), vi

)
.

If one stores the intermediate results of (8) and (9), then

the complexity of computing S
(hi)
t = S

(hi)
t (vhi−1

0 , yl−1
0) is

1The method given in [10] is a special case of this approach.

given by 2B(hi) − 1 operations, where B(h) is a position of

the last nonzero digit in the binary representation of h, i.e.

h = 2b0 + 2b1 + · · ·+ 2B(h). If h = 0 then B(h) is assumed

to be t.
Totally, 2|Di| LLRs S

(hi)
t should be computed. Then, for

LLR S
(hi)
t and vi ∈ [1] one should calculate the value

τ
(
S
(hi)
t (vhi−1

0 , yl−1
0), vi

)
, which can be done in one sum-

mation. In sum, it gives 2|Di| operations more. Moreover,

if hi − hi−1 > 1, then the above described computations

should be done for LLRs S
(h)
t , hi−1 < h ≤ hi. It can

be observed, that the number of such LLRs is given by

2|Di|−(hi−h) = 2h−i.

In total, the complexity of path scores R(vhi

0 |yl−1
0), vhi

0 ∈
Zi, calculation is given by

Λ(i) =

hi∑

hi−1+1

(2h−i(2B(h) − 1) + 2h−i) =

hi∑

hi−1+1

2h+B(h)−i

and h−1 is assumed to be −1.

To complete the LLR S1,i computation, the corresponding

maximum of path scores should be computed, which requires

2|Di|+1 comparisons.

Note that in the case of hi = hi−1 we assume that all

path scores are stored together with corresponding partial

maximums, thus, one substraction needed only.

In sum, the complexity of the straightforward implementa-

tion of the window processing algorithm for kernel K can be

estimated as

Ψ(K) =

l−1∑

i=0

Φ(i), (16)

where

Φ(i) =

{
2hi−i+1 + Λ(i), hi > hi−1,

1, otherwise.

III. CONSTRUCTION OF POLARIZATION KERNELS

Our goal is to construct polarization kernels with polar-

ization rate greater that 0.5, which admit low complexity

processing. Such rate of polarization rate can be achieved for

kernels of size l = 16 and l ≥ 23 [6]. In this work we focus

on 16× 16 polarization kernels.

The maximum rate of polarization among 16 × 16 kernels

is equal to 0.51828, which can be achieved by the kernel with

the partial distances profile

D
(∗) = [1, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 8, 8, 8, 8, 16].

There are polarization kernels with partial distance profile

which corresponds to some permutation of D
(∗), what will

be demonstrated later, but the complete list of such permu-

tations is unknown. Therefore, it is convenient to begin our

investigation with kernels with monotonic increasing partial

distances.

The minimization of the complexity (16) by the exhaustive

search among all polarization kernels K of size 16× 16 and

partial distances D(∗) is intractable. Therefore, we are going to

significantly reduce the search space to some restricted class

of polarization kernels, which are expected to have moderate

Ψ(K).

A. Row permutation

Recall that τi is the position of the last non-zero symbol

in the i-th column of T = FtK
−1, hi = maxi′∈[i+1] τi′ and

|Di| = hi − i.

It can be seen, that the value of hi− i increases once τi > i
appears in T , therefore the heuristic minimization of Ψ(K)
can be done with minimization of |τi − i|, i ∈ [l].

The minimal value of |τi − i| = 0 is achieved by Arikan

transform Ft. The kernel with partial distances D
(∗) can be

derived by performing elementary operations over rows space

of F4, since F4 is invertible.

The partial distance profile of the Arikan transform F4 is

given by

D
(F4) = [1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16].

Hence, we can begin construction procedure with row permu-

tation of the matrix F4 .

Let Pρ be a permutation matrix, which corresponds to the

permutation

ρ =

(
0 1 . . . 14 15
ρ(0) ρ(1) . . . ρ(14) ρ(15)

)
.

For convenience, we enumerate elements of ρ from zero

unlike standard notation. For brevity we will write ρ as

[ρ(1), ρ(2), . . . , ρ(16)]. Consider the kernel Kρ = PρF4,

consequently,

T = F4K
−1
ρ = F4(PρF4)

−1 = PT
ρ .

Thus, τi, i ∈ [l] are given by ρ(i). Therefore, the processing

complexity for Kρ directly depends on the permutation ρ.

We start our construction with permuted Arikan kernels Kβ

given by permutations

β = [0, 1, 2, 4, 8, w0, w1, w2, w3, w4, w5, 7, 11, 13, 14, 15],

where w is an arbitrary permutation of the vector

[3, 5, 6, 9, 10, 12]. The indices of w are the indices of F4 rows

with Hamming weight 4. The obtained kernels have monotonic

partial distance profile

D
(4) = [1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 16].

For instance, the permutation

σ = [0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 12, 7, 11, 13, 14, 15]

results in the permuted Arikan kernel Kσ with E(Kσ) = 0.5
and scaling exponent µ(Kσ) = 3.479 [10]. It can be observed,

that kernel Kσ has the least processing complexity ψ(K)
among all permuted F4 kernels which have the partial distance

profile D
(4). The maximal hi for this kernel is given by 4,

which results in relatively low complexity.

B. Row addition

To transform the kernel Kβ into the kernel with partial

distance D
(∗), one should sum rows of Kβ . It is proven [8],

that addition of row Ki to row Kj with i > j does not

change the properties of the kernel K . Thus, we consider row

additions with i < j only.

The addition of two rows can also increase the maximal size

of the decoding windows. Indeed, let Xi,j be an elementary

matrix which corresponds to addition of row i to row j. In

other words, Xi,j is an identity matrix with Xi,j [j, i] = 1.

Then

K = Xi,jPρF4 ⇒ T = PT
ρ Xi,j ,

which means that the column j has been added to the

column i of the matrix PT
ρ Xi,j . After row addition in K ,

τi = max(τi, τj), which can increase the τi − i. It can lead to

increasing of the size of the corresponding decoding window.

It means that one should use addition matrices Xi,j with as

small as possible values |j − i|.
To keep the processing complexity as small as possible, we

suggest to sum only rows Kβ[i], i ∈ {5, 6, 7, 8, 9, 10} to each

other. These rows have a Hamming weight 4. It was shown

that sum x of these rows can produce vectors of weight ≥ 6

and, furthermore, there exist several x such as

dH(x, 〈Kβ [11],Kβ[12], . . . ,Kβ[15]〉) = 6

(see [18] page 429).

C. The construction algorithm

Let M = {3, 5, 6, 9, 10, 12}. We propose to minimize the

decoding window processing complexity over set K of 16×16
kernels, which is given by following constraints on kernel K:

• K[i] = Kβ[i], i ∈ {0, 1, 2, 3, 4, 11, 12, 13, 14, 15},

• K[9],K[10] ∈ V0, where V0 = {c ∈ C|dH(c,0) = 6}, 0

is a zero element vector and C = 〈{F4[i], i ∈ M}〉,
• Kj ∈ V1, where V1 = {F4[i], i ∈ M} , j ∈ 5, 6, 7, 8.

The above construction results in the search space of size

|K| = |V0|
2 · |V1|

4 = 272 · 64 = 944784.

It is easy to observe, that the proposed construction can

produce kernels with partial distances distinct from D
(∗) and

even to singular matrices. However, one does not need to

compute the complete partial distance profile D for K ∈ K,

because the kernel K can be dropped once its partial distance

does not match the D
(∗). Of course, there are a lot of possible

methods for reduction of K, however, there is no need for them

since computer-based search over K runs in several minutes.

IV. NUMERIC RESULTS

A. Kernel construction

1) Monotonic partial distances: Computer-based search

results in set K∗ of 60480 16 × 16 polarization kernels K
with E(K) = 0.51828. For each K in K∗ we compute

its complexity Ψ(K). Moreover, we also computed the BEC

scaling exponent µ(K) for each kernel. The scaling exponent

K1, E = 0.51828, µ = 3.346


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




K2, E = 0.51828, µ = 3.45


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




Fig. 1. Examples of constructed polarization kernels

TABLE I
SCALING EXPONENTS OF KERNELS FROM K∗

µ(K) 3.346 3.353 3.356 3.363 3.374 3.378 3.383 3.396

min complexity 740 692 740 660 692 692 660 660

also affects on the error correction performance, so we write

the minimal processing complexity for kernel with different

scaling exponent.

Table I demonstrates all occurred scaling exponents of

kernels from the set K∗ together with minimal processing

complexity. Furthermore, for each presented scaling exponent

the kernel K with M(K) = 4 is provided. It can be seen

that the minimal complexity of 660 operations is provided

by kernels with µ(K) = 3.363 and kernels with the lowest

µ(K) = 3.346 requires the maximal complexity among other

scaling exponents.

It turns out, that the complexity of window processing

can be significantly reduced. For instance, the kernel K1,

illustrated in Figure 1,K1 ∈ K∗, µ(K1) = 3.346, was reported

in [11] to have processing complexity of 472 arithmetic

operations instead of 740.

For comparison, the general trellis-based algorithm [12]

applied to processing of K1 kernel has the complexity of

7530 operations, which is 10 times higher compared to the

complexity of straightforward window processing algorithm.

However, minimization of maximal size of the decoding

windows is crucial, as far as complexity grows exponentially

with it. For instance, 16× 16 BCH kernel

KBCH =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0
1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0
1 1 1 1 0 1 1 0 0 1 0 1 0 0 0 0
1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0
1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0
1 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




,

with E(KBCH) = 0.51828 and µ(KBCH = 3.396),
which consist of the sequence of nested generator matrices

of extended BCH codes, has M(KBCH) = 12 and the

TABLE II
PROPERTIES OF PERMUTED K1 KERNELS

E(K) µ(K) M(K) Ψ(K) E(K) µ(K) M(K) Ψ(K)
0.58128 3.346 4 740 0.58128 3.405 3 377

0.58128 3.353 4 648 0.58128 3.414 3 331

0.58128 3.361 4 600 0.58128 3.415 3 320

0.58128 3.363 4 602 0.58128 3.432 3 306

0.58128 3.37 4 554 0.58128 3.45 3 292

0.58128 3.379 4 522 0.50914 3.484 3 268

0.58128 3.38 4 483 0.50914 3.513 3 252

0.58128 3.397 3 345 0.50914 3.53 2 173

processing complexity Ψ(KBCH) = 72563. Whereas the

algorithm [12] for KBCH requires 12456 operations. This

example shows us the importance of minimization of decoding

windows sizes.

2) Permuted partial distances: In the previous section

we showed how to find kernels of size 16 with monotonic

partial distance profile D
(∗). It resulted in kernels with the

M(K) = 4. For further complexity reduction we are going

to perform row permutations over row space of the obtained

kernels, which preserves the polarization rate.

Given kernel K , the value M(K) can be reduced by row

permutation of K . By step-by-step exchange of the kernel

rows, we performed an heuristic search of row permutation,

which preserve the polarization rate of K1.

Table II demonstrates the properties of kernels which we

obtained by permutations of the kernel K1. It can be ob-

served, that higher scaling exponent requires lower processing

complexity, furthermore, the maximal size of the decoding

windows can be also reduced for kernels with polarization

rate 0.51828. For instance, the kernel K2, illustrated in Figure

1, has E(K2) = 0.51828, µ(K) = 3.45 and M(K) = 3. The

kernel K2 is given by ρ̄K1, where

ρ̄ = [0, 1, 2, 7, 3, 4, 5, 6, 9, 10, 11, 12, 8, 13, 14, 15],

and has a partial distance profile

D̄ = [1, 2, 2, 4, 2, 2, 4, 4, 6, 6, 8, 8, 4, 8, 8, 16],

which is not monotonic unlike D
(∗). It was shown in [11] that

the kernel K2 can be processed with 183 operations instead

of 293 operations in straightforward implementation.

Unfortunately, we do not have a proof that the kernel K2

admits minimum possible complexity of window processing

algorithm among all 16 × 16 polarization kernels with polar-

ization rate 0.51828.

B. Performance of polar codes with the constructed kernels

We constructed (4096, 2048) polar codes with kernels K1

and K2, obtained by the proposed construction, and investi-

gated their performance for the case of AWGN channel with

BPSK modulation. The sets of frozen symbols were obtained

by Monte-Karlo simulations.

Figure 2 illustrates the performance of plain polar codes

and polar subcodes [4],[19]. It can be seen that the codes

based on kernels K1 and K2 with improved polarization rate

10
−5

10
−4

10
−3

10
−2

10
−1

 1 1.2 1.4 1.6 1.8 2 2.2

F
E

R

Eb/N0, dB

F2, L=32
F2, L=32, subcode

K2, µ=3.450, L=8
K2, µ=3.450,CRC−8, L=8

K2, µ=3.450, subcode, L=8
K1, µ=3.346, L=8

K1, µ=3.346,subcode, L=8

Fig. 2. Performance of (4096, 2048) polar codes

10
−3

10
−2

10
−1

 1 2 4 8 16 32 64 128 256

F
E

R

L

F2, E = 0.5, µ=3.627
K1, E = 0.51828, µ=3.346
K2, E = 0.51828, µ=3.450

Fig. 3. Performance of SCL decoding

E(K1) = E(K2) = 0.51828 provide significant performance

gain compared to polar codes with Arikan kernel. Moreover,

polar subcodes with kernels K1,K2 under SCL with L =
8 have almost the same performance as polar subcodes with

Arikan kernel under SCL with L = 32. Observe also that the

codes based on kernels with lower scaling exponent exhibit

better performance despite of the fact that scaling exponent is

computed for the BEC.

Figure 3 presents simulation results for (4096, 2048) polar

subcodes with different kernels under SCL with different L
at Eb/N0 = 1.25 dB. It can be seen that the kernels with

polarization rate 0.51828 require significantly lower list size

L to achieve the same performance as the code with the

Arikan kernel. Moreover, this gap grows with L. This is due to

improved rate of polarization, which results in smaller number

of unfrozen imperfectly polarized bit subchannels. The size of

the list needed to correct possible errors in these subchannels

grows exponentially with their number (at least for the genie-

aided decoder considered in [20]). On the other hand, lower

10
−3

10
−2

10
−1

 100000 1x10
6

 1x10
7

F
E

R

Number of arithmetical operations

F2, E = 0.5, µ=3.627
K1, E = 0.51828, µ=3.346
K2, E = 0.51828, µ=3.450

Fig. 4. Complexity of SCL decoding

scaling exponent gives better performance with the same list

L, but the slope of the curve remains the same for both kernels

K1,K2.

Figure 4 presents the same results in terms of the actual

decoding complexity. Recall that proposed kernel processing

algorithm uses only summations and comparisons. The SCL

algorithm was implemented using the randomized order statis-

tic algorithm for selection of the paths to be killed at each

phase, which has complexity O(L). Observe that the polar

subcode based on kernel K2 can provide better performance

with the same decoding complexity for FER ≤ 8 · 10−3. This

is due to higher slope of the corresponding curve in Figure

3, which eventually enables one to compensate relatively high

complexity of the LLR computation algorithm presented in

[11].

Unfortunately, K1 kernel, which provides lower scaling

exponent, has greater processing complexity than K2, so that

its curve intersects the one for the Arikan kernel only at

FER= 2 · 10−3.

V. CONCLUSIONS

In this paper the construction method for 16 × 16 polar-

ization kernels with polarization rate 0.51828 were proposed.

These kernels admits low complexity decoding by window

processing algorithm. The construction method performs el-

ementary operations over row space of the Arikan transform

matrix. These elementary operations are chosen to have min-

imal impact on the complexity of the window processing

algorithm.

It was shown that in the case of SCL decoding with

sufficiently large list size, the constructed kernels results in

lower decoding complexity compared to the case of polar

(sub)codes with Arikan kernel with the same performance.

Extension of the proposed construction to the case of kernels

with larger size remains an open problem.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE

Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, July
2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions

On Information Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.
[3] P. Trifonov and V. Miloslavskaya, “Polar subcodes,” IEEE Journal on

Selected Areas in Communications, vol. 34, no. 2, pp. 254–266, February
2016.

[4] P. Trifonov and G. Trofimiuk, “A randomized construction of polar sub-
codes,” in Proceedings of IEEE International Symposium on Information

Theory. Aachen, Germany: IEEE, 2017, pp. 1863–1867.
[5] T. Wang, D. Qu, and T. Jiang, “Parity-check-concatenated polar codes,”

IEEE Communications Letters, vol. 20, no. 12, December 2016.
[6] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar codes: Characteri-

zation of exponent, bounds, and constructions,” IEEE Transactions on

Information Theory, vol. 56, no. 12, pp. 6253–6264, December 2010.
[7] A. Fazeli, S. H. Hassani, M. Mondelli, and A. Vardy, “Binary linear

codes with optimal scaling: Polar codes with large kernels,” in Proceed-

ings of IEEE Information Theory Workshop, 2018.
[8] A. Fazeli and A. Vardy, “On the scaling exponent of binary polariza-

tion kernels,” in Proceedings of 52nd Annual Allerton Conference on

Communication, Control and Computing, 2014, pp. 797 – 804.
[9] N. Presman, O. Shapira, S. Litsyn, T. Etzion, and A. Vardy, “Binary

polarization kernels from code decompositions,” IEEE Transactions On

Information Theory, vol. 61, no. 5, May 2015.
[10] S. Buzaglo, A. Fazeli, P. H. Siegel, V. Taranalli, and A. Vardy, “On

efficient decoding of polar codes with large kernels,” in Proceedings of

IEEE Wireless Communications and Networking Conference Workshops

(WCNCW), March 2017, pp. 1–6.
[11] G. Trofimiuk and P. Trifonov, “Efficient decoding of polar codes with

some 16 × 16 kernels,” in Proceedings of IEEE Information Theory

Workshop, 2018.
[12] H. Griesser and V. R. Sidorenko, “A posteriory probability decoding

of nonsystematically encoded block codes,” Problems of Information

Transmission, vol. 38, no. 3, 2002.
[13] S. H. Hassani, K. Alishahi, and R. Urbanke, “Finite-length scaling for

polar codes,” IEEE Transactions On Information Theory, vol. 60, no. 10,
October 2014.

[14] V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes
with arbitrary binary kernel,” in Proceedings of IEEE Information

Theory Workshop. Hobart, Australia: IEEE, 2014, pp. 377–381.
[15] ——, “Sequential decoding of polar codes,” IEEE Communications

Letters, vol. 18, no. 7, pp. 1127–1130, 2014.
[16] P. Trifonov, “A score function for sequential decoding of polar codes,” in

Proceedings of IEEE International Symposium on Information Theory,
Vail, USA, 2018.

[17] ——, “Binary successive cancellation decoding of polar codes with
Reed-Solomon kernel,” in Proceedings of IEEE International Sympo-

sium on Information Theory. Honolulu, USA: IEEE, 2014, pp. 2972 –
2976.

[18] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting

codes. Amsterdam, The Netherlands: North-Holland, 1977.
[19] P. Trifonov, “Design of randomized polar subcodes with non-Arikan

kernels,” in Proceedings of 16-th International Workshop on Algebraic

and Combinatorial Coding Theory, 2018.
[20] M. Mondelli, S. H. Hassani, and R. Urbanke, “Scaling exponent of

list decoders with applications to polar codes,” IEEE Transactions On

Information Theory, vol. 61, no. 9, September 2015.

