
Word embedding in form of symmetric and
skew-symmetric operator

Koshchenko Ekaterina
National Research University

Higher School of Economics in Saint-Petersburg
Saint-Petersburg, Russia
catherine.pths@gmail.com

Kuralenok Igor
JetBrains Research

Saint-Petersburg, Russia
ikuralenok@gmail.com

Abstract—Existing word embedding models repre-
sent each word with two real-valued vectors: central
and context. This happens because of words relations
asymmetric nature and requires more time and data
for training. We introduce a new approach based on
asymmetric relations that uses the advantages of global
vectors model. Due to the reduction of asymmetric
information impact on resulting words representations,
our model converges faster and outperforms existing
models on words analogies tasks.

Index Terms—SSDE, word embedding, matrix de-
composition

I. Introduction
Understanding words relations in the context of natural

language is an easy task for human but not for computer.
We need to teach computers how words are related and
what meanings they have, depending on the context. To
make it possible for a machine to process words, they have
to be presented in digitized format. This leads to the idea
of real-valued vector representations — word embeddings.

Most works on word embeddings focus their attention on
preserving two words properties in their representations.
The first property is that words relations and similarities
can be described using distances and angles between word
vectors. For example, closer-further feature: “yellow” is
closer to “red” than to “smart”. In vector form it can be
presented as

Y ellow −Red < Y ellow − Smart

This property is widely used for synonyms search. Another
property is words analogies. The corresponding feature
was introduced by Mikolov et al. [1], designed to learn
words similarities. For example, “Paris” and “France” has
the same connection as “Budapest” and “Hungary”. In
vectors we can present it as

France− Paris = Hungary −Budapest.

This approach benefits models creating meaning based
word vectors, while the closer-further feature is more
practical and can be applied to clustering and classification
tasks.

Word embeddings were originally created to be used
in Natural Language Processing tasks. For example, one

of the feature extraction techniques used for document
indexing is latent semantic indexing [2]. Latent semantic
indexing is a precursor for word embeddings embodying
the same principles and ideas. Another task is sentiment
analysis. One of the solutions for this problem is SentProp
framework [3], it combines label propagation method with
word embeddings to learn sentiment lexicons on domain-
specific corpora. Another way to solve some of the Natural
Language Processing tasks are Language Models. Nowa-
days state of the art decisions for Language Modeling are
ELMO [4] and BERT [5]. Each of these methods uses
prebuilt word embeddings as input data and can benefit
from better embedding models. Therefore, creating better
embedding models is still a relevant task.

There are three most popular and used word embedding
models. Word2Vec is a local window-based method pre-
sented by Mikolov et al. [6]. It preserves words analogies
feature, bringing closer vectors of words appearing in a
similar context. Another approach is GloVe [7] which
is trained on word-word co-occurrence counts. Authors
noticed that to understand the relation of two words you
can examine the ratio of their co-occurrence probabilities
with various probe words, thus deploying words analogies
feature. Third model – FastText [8] – is focused on dis-
tances/angles property. FastText uses character n-grams
to enrich word vectors with subword information. This
approach allows to use morphology information, therefore,
choosing better vectors for sparse words and makes it
possible to learn something for non-vocabulary words.

Words relations are often asymmetrical. For example,
"New York" is a common combination of words meaning
the name of the city in the USA. However, "York New"
is a quite rare combination and does not mean anything
specific. In all mentioned models words interaction is
expressed in terms of the dot product of their vectors,
that leads to a generation of two vectors for each word:
central and context. For that reason, twice more parame-
ters should be computed and, consequently, more time is
required for learning. To solve this problem asymmetrical
relations between word representation can be used instead
of central and context vectors dot product.

In this work, we propose a Symmetric Skew-symmetric

Decomposition based model. We demonstrate that our
method outperforms GloVe approach on its words analo-
gies metrics.

II. Related work

There are many word embedding models known from
the literature. But most of them were based on three prin-
ciple approaches: Word2Vec [6], GloVe [7] and FastText
[8]. All three models are widely used in language models
and Natural Language Processing applications.

A. Word2Vec
Word2Vec is an approach introduced by Mikolov et al.

[6] that preserves words analogies property. It suggests two
language models: Skip-gram and CBOW. Both methods
represent words relationships with the dot product of their
vectors. As it was described in the introduction, relations
can be asymmetrical, which leads to two vectors per word
usage: central and context. Skip-gram and CBOW scan
corpus with a sliding window. All words inside the window
are considered to be in the same context, i.e. connected to
each other. In both models all words inside one window
get the same co-occurrence weight, i.e. are equal. We call
this type of window "constant window".

Continuous Bag of Words (CBOW) is a model trained
with “predict middle-word if you know surrounding con-
text” task. The method tries to choose words central and
context vectors, so that probability to predict the word
in the middle of the sliding window, based on the rest of
the window, would be high. The second model is called
Skip-gram and is trained on the inverse problem: predict
context with just one word in the center of the sliding
window.

For each training step for each word, both methods
should count the probability of using window middle-word
in context with any other word from the vocabulary. It
makes computational complexity too high. In later article
[9] this problem was solved for Skip-gram model with
Negative Sampling. Negative Sampling suggests counting
the probability of middle-word being in the same context
only with a constant number of positive and negative
samples. Positive samples are words that often appear in
one window with middle-word, they can be found before
the training process. Negative samples are words that are
unlikely to appear in context with middle-word. Mikolov
et al. suggest getting negative samples from uniform dis-
tribution raised to 3/4rd power. This approach allows
accelerating Skip-gram model calculations while being of
the same quality.

Results of experiments have shown that Skip-gram
method performs better on semantic tasks and their syn-
tactic tasks results are very similar. Since Skip-gram can
be trained easier than CBOW with same or even better
results, later models use Skip-gram.

Skip-gram and CBOW models have several drawbacks.
First, training time depends on the corpus size. Second,

there are two vectors generated for each word, which
requires more time and input data for training.

B. GloVe
GloVe model, for Global Vectors, suggested by Man-

ning et al. also aims to preserve words analogies. The
relationship of two words can be learned by examining
their relations with other words. In this approach words
relationships are represented with a matrix of their co-
occurrences X, where xij is how many times word wi

was in the context with word wj . This matrix should be
constructed before the training process with one scan of
the corpus. On each learning step we iterate through co-
occurrences matrix and for each non-zero co-occurrence
xij calculate central and context vectors for corresponding
wi, according to value and direction of target function
gradient.

In GloVe each word is presented with two vectors,
similar to Word2Vec. A sliding window is also used to scan
the corpus for co-occurrences matrix construction. Unlike
the Word2Vec "constant" window, GloVe uses "shrinking"
window. The weight of co-occurrence in the window lin-
early decreases with distance increasing. Authors did not
explore how window type affects experiments results and
did not give any details on such a choice.

C. FastText
FastText model, in contrast to Word2Vec and GloVe,

was built to preserve words property of representing words
relations in distances and angles between their vectors.
This change allows the model to perform better on text
classification tasks. Similar to two previous methods, Fast-
Text generates central and context vectors for each word
and uses a sliding window to scan the corpus.

The main idea of this approach is to use character n-
grams to build central vectors. During the vocabulary
construction, each word is saved with it’s n-grams. For
example, for the word “pencil” we also remember 3-grams
"pe", "pen", "enc", "nci", "cil" and "il" in addition to the
whole word sequence. 3-gram "pen" corresponding to the
word "pencil" is different from the word “pen”. After that,
during the training process, each sequence gets its own
vector and resulting central vector is a sum of all n-gram
vectors and whole word vector.

As it was mentioned, FastText has great results on text
classification tasks but Word2Vec and GloVe outperform
it on words analogies tasks.

III. The SSDE Model

Words relations have asymmetric nature, for that reason
all three approaches above generate two vectors for each
word. The question is how to apply these central and
context vectors. In GloVe, for example, there are several
modes for what to use as a resulting vector. The default
mode is a sum of central and context vectors. There was
no intuition for this choice, although our experiments have

shown that the default mode indeed performs best. It is
possible that Word2Vec, GloVe and FastText use more
parameters than they really need, which means more time
and input data is required for training. The subject of our
research was to find out if words asymmetric information
is really necessary to include into the resulting vector.
To do that we introduce a Symmetric Skew-symmetric
Decomposition Embedding (SSDE). It is based on GloVe
model, mainly because it is faster than other existing
models and performs better on word analogies metrics.

A. GloVe model analysis
The main idea of GloVe model: words wi and wj

relation can be found by studying the ratio of their
co-occurrence probabilities with various probe words –
P (wi, wk)/P (wj , wk), where wk is a probe word. So, gen-
eral model can be written as

F ((ui − uj)T vk) =
P (wi, wk)

P (wj , wk)
. (1)

Authors say that due to exchangeability of words and
context words function F should be a homomorphism:

F ((ui − uj)T vk) =
F (uTi vk)

F (uTj vk)
. (2)

This formula gives an idea that model F is exponential,
which in combination with Eqn. (1) leads to:

uTi vk = logPik = logXik − logXi. (3)

After that GloVe brings biases to the formula. logXi does
not depend on probe word k and is replaced with bias bui .
For word-context exchange symmetry context bias bvk is
also included:

uTi vk + bui + bvk = logXik. (4)

In this equation, right-hand side is what information
model has to learn and left-hand side is how GloVe
preserves it. This is optimized with weighted least squares
regression model. As a result, GloVe model target function
is

J =

|V |∑
i,j=1

f(Xij) · (uTi vj + bui + bvj − logXij)
2, (5)

where
• X — co-occurrences matrix,
• |V | — vocabulary size,
• ui and bui — central vector and bias for word wi,
• vj and bvj — context vector and bias for word wj .
Introduction of encoding and decoding biases is a mo-

ment that has no mathematical demonstration in the
article, but our experiments have shown that the model
does not work without their usage. We explained this
with target function similarity with mutual information
formula:

DKL =
∑
i,j

p(wi, wj) · log
p(wi, wj)

p(wi)p(wj)
. (6)

We are actually looking for embedding that will preserve
the ratio in logarithmic part of Eqn. (6). The ratio repre-
sents how much more often a combination of words x and
y occurs in corpus than each of them individually. Infor-
mation that the model encodes is a conditional probability
given model F:

I =
∑
i,j

p(wi, wj) · log
p(wi, wj |F)

p(wi|F)p(wj |F)
. (7)

The result of rewriting Eqn. (6) and Eqn. (7) in GloVe
notation and combining with the weighted least squares
method will be very similar to GloVe target function:

p(wi, wj |F)
p(wi|F)p(wj |F)

⇒ eu
T
i vj

log
p(wi, wj)

p(wi)p(wj)
⇒ logXij − bui − bvj

J∗ =
∑
i,j

p(wi, wj) · (uTi vj + log p(wi) + log p(wj)−

− log p(wi, wj))
2,

(8)

Joint probability of words wi and wj are what in GloVe
model is designed as co-occurrences matrix Xij and prior
probabilities of words are designed as biases bui and bvj . In
our experiments we tried both ways and obtained similar
results for biases and probabilities usage. For that reason,
we continued using prior probabilities in SSDE to decrease
computational complexity.

B. Our model
From Eqn. (5) we see that GloVe represents words rela-

tions with dot product of their central and context vectors:
uT v. This is done to consider the asymmetry property
that we want to remove. Central and context vectors
dot product is equal to corresponding one-hot encoder
vectors multiplication to central and context matrices
product. Central and context matrices product can be
considered as linear operator, and any linear operator can
be decomposed to sum of symmetric and skew-symmetric
matrices [10]:

uTi vj = hiU
TV hj

L = UTV = S +K (9)

After that symmetric matrix S (according to the prop-
erty of symmetric matrices) can be written as a product
of some low-rank matrix and its transpose. The same
transformation can be used for the skew-symmetric matrix
K with multiplying lower-diagonal part to −1.

lij = sij + kij = aTi aj + ξij · cTi cj , (10)

The size of a matrix A is |V | · l where |V | - size of
vocabulary, l - word symmetric representation size. The
size of a matrix C is |V |·m wherem - word asymmetric rep-
resentation size. Balancing between symmetric and skew-
symmetric sizes we control the information distribution

the way we need. For example, to reduce the influence of
asymmetric information on resulting word representation
we make constant m much smaller than l.

In total, after rewriting GloVe target function (5) with
Eqn. (10) and using the prior probabilities instead of
biases, we get SSDE model target function:

Q =

|V |∑
i,j=1

f(pij) · (aTi aj + ξij · cTi cj + log pi + log pj−

− log pij)
2,
(11)

• pij = p(wi, wj) and pi = p(wi) — are counted from
the input corpus before the training process

• ξij = −1, if i > j, otherwise ξij = 1

On each training step we iterate through word-word co-
occurrences matrix X. Each co-occurrence xij shows how
many times word wi was in the context with word wj .
We compute gradients for symmetric vectors and skew-
symmetric vectors and update them according to the
gradients.

Resulting word embeddings are vectors of symmetric
matrix A. Since we wanted to remove asymmetric informa-
tion influence on resulting word representations, vectors ci
are only used for training. However, their properties worth
further studying.

There are two ways to optimize function (11): 1) gradi-
ent descent, 2) stochastic gradient descent. The advantage
of gradient descent is that it will eventually converge
to better results. Though stochastic gradient has several
methods that achieve reasonable results much faster than
gradient-descent. Since we wanted to reduce training time,
we decided to use Glove’s approach using adaptive gradi-
ent descent. GloVe authors also noticed that values slightly
change on each stochastic gradient iteration which means
computations can be done in parallel.

GloVe model shuffles whole co-occurrences matrix on
each step of stochastic gradient descent.

|V |∑
i=1

|V |∑
j=1

f(Xij) · (uTi vj + bui + bvj − logXij)
2

= Ei,j∼U(X)f(Xij) · (uTi vj + bui + bvj − logXij)
2.

(12)

In SSDE model we shuffle only lines of co-occurrences
matrix.

|V |∑
i=1

|V |∑
j=1

f(pij) · (aTi aj + ξij · cTi cj + log pi + log pj−

− log pij)
2

= Ei

|V |∑
j=1

f(pij) · (aTi aj + ξij · cTi cj + log pi + log pj−

− log pij)
2.
(13)

Lines shuffle without columns shuffle makes computations
cash-friendly, reducing cash-miss rate. This change allowed

us to optimize model performance while quality remained
the same.

IV. Experiments

A. Evaluation
To compare SSDE with GloVe we used metrics sug-

gested in GloVe article. All the metrics are based on word
analogies property. There are four words w1, w2, w3, w4,
all associated with one topic and can be described as “w1

is related to w2 the same way w3 is related to w4”. This
can be presented in vectors terms as

w2 − w1 = w4 − w3.

According to the arithmetics law this can be rewritten as

w2 − w1 + w3 = w4(∗).

Testing algorithm is: 1) get first three input words and
count left part of (*) 2) among all vectors of our vocab-
ulary find the closest vector v to the previous step result
(using cosine similarity) 3) if word corresponding to v is
equal to w4, then this experiment was successful, otherwise
it failed.

We do not provide a comparison with CBOW or Skip-
gram models, but, as it is shown in the article [7], GloVe
performs better than the other baselines.

‘Tab. I” shows all metrics that were used to evaluate
both GloVe and SSDE models. Five of these metrics have
semantic nature, for example,

”King”− ”Man” + ”Woman” = ”Queen”.

While the other nine are syntactic, for example,

”Dangerous”− ”Danger” + ”Beauty” = ”Beautiful”.

B. Results
We compared GloVe and SSDE models on corpus com-

posed of 100Mb of articles from English Wikipedia. For
corpus scanning we used symmetric shrinking window
of size 30. All models were trained up to convergence.
Studying of the constant window and asymmetric window
results will be completed in future work.

Tab. II shows the performance of GloVe and SSDE
models with an equal number of parameters trained. Our
approach significantly improves scores both for semantic
and syntactic tasks.

Tab. III shows results of GloVe and SSDE models
with equal sizes of word embeddings vectors. As it was
mentioned, GloVe model uses a sum of central and context
vectors as the resulting representation and SSDE model
uses only a symmetric vector. Similar or even higher
scores can be obtained with SSDE model with the same
representation size as GloVe, but almost twice a smaller
number of parameters.

All the results were obtained on Inter Core i7 processor,
8GB, DDR4 memory type.

Table I
GloVe word analogies metrics

Type Name Example Size

Semantic Capital common
countries

Greece to Athens
as Iraq to Baghdad 506

Semantic Capital world Nigeria to Abuja as
Ghana to Accra 4525

Semantic City in state Illinois to Chicago
as Texas Houston 2467

Semantic Currency Dinar to Algeria as
Kwanza to Angola 866

Semantic Family Brother to Boy as
Sister to Girl 506

Syntactic Adjective to adverb Calm to calmly as
Happy to Happily 992

Syntactic Opposite Aware to Unaware
as Clear to Unclear 812

Syntactic Comparative Worse to Bad as
Bigger to Big 1332

Syntactic Superlative Worst to Bad as
Biggest to Big 1122

Syntactic Present Participle Coding to Code as
Dancing to Dance 1056

Syntactic Nationality Adjec-
tive

China to Chinese
as Poland to Polish 1599

Syntactic Past Tense Danced to Dancing
as Flew to Flying 1560

Syntactic Plural Bananas to Banana
as Birds to Bird 1332

Syntactic Plural Verbs Eats to Eat as Says
to Say 870

Total 19545

Table II
Experiments with equal parameters number

Average Average Average Sec.
Model sem synt total per

score score score iter.
GloVe-25 12.9% 12.3% 12.5% 13
SSDE-40-5 19.1% 22.5% 20.4% 11
SSDE-40-10 19.6% 22.6% 20.8% 12
GloVe-50 20.3% 29.4% 23.9% 18
SSDE-80-5 24.3% 39.8% 30.6% 17
SSDE-80-10 25.1% 39.7% 31.0% 18
SSDE-80-20 25.5% 41.4% 31.9% 20
GloVe-80 25.3% 40.2% 31.3% 24
SSDE-120-10 25.3% 48.1% 34.5% 25
SSDE-120-20 26.3% 47.8% 35.1% 27
a"GloVe-n" – vector size n.
b"SSDE-m-l" – symmetric size m, asymmetric size l.

We demonstrated that our approach outperforms GloVe
model on word analogies metrics while calculating a twice
smaller number of parameters. This fact proves our ini-
tial assumption that asymmetric information influence
on word embeddings can be significantly reduced, thus,
optimizing time required for training of the model.

V. Conclusion

A. Achievements

In this paper, we studied the necessity of word rela-
tionships asymmetric information for word embeddings.

Table III
Experiments with equal representations size

Average Average Average Sec.
Model sem synt total per

score score score iter.
GloVe-50 20.3% 29.4% 23.9% 18
SSDE-50-5 22.5% 28.7% 25.0% 12
SSDE-50-10 21.8% 28.3% 24.3% 14
SSDE-50-20 21.7% 28.5% 24.5% 15
GloVe-80 25.3% 40.2% 31.3% 24
SSDE-80-5 24.3% 39.8% 30.6% 17
SSDE-80-10 25.1% 39.7% 31.0% 18
SSDE-80-20 25.5% 41.4% 31.9% 20
GloVe-120 27.6% 44.0% 34.2% 34
SSDE-120-10 25.3% 48.1% 34.5% 25
SSDE-120-20 26.3% 47.8% 35.1% 27
GLOVE-150 27.8% 45.2% 34.8% 79
a"GloVe-n" – vector size n.
b"SSDE-m-l" – symmetric size m, asymmetric size l.

We showed that it is possible to train high-quality word
vectors using a little information on the asymmetry of re-
lations, comparing to the popular word embedding model
with highest scores on word analogies tasks – GloVe.
Since our approach computes a twice smaller number of
parameters, it requires less time to train the model.

We analyzed GloVe model and introduced a new model
– SSDE – that combines the advantages of GloVe with
our ideas on asymmetric relations. Comparison of SSDE
with GloVe has shown that our model outperforms GloVe
on word analogies metrics, while GloVe, according to the
article [7], outperforms CBOW and Skip-gram models.

B. Future work

SSDE model, similar to GloVe and Word2Vec, uses
a sliding window to scan the corpus. We assume that
depending on the type of the window used, results may be
different for metrics of different types. Constant windows
might perform better on synonyms search tasks, while the
shrinking window could be a good choice for word analo-
gies tasks. So, in future work, we will examine window
type influence on different metrics types.

Currently, we only use vectors with symmetric informa-
tion for resulting word embeddings. However, there might
be some interesting information encoded in asymmetric
vectors. For example, L1-regularization turn most of the
skew-symmetric vectors to zero. There might be some con-
nection between those words which corresponding skew-
symmetric vectors are not zero. In future work, we will
study the asymmetric component of SSDE and analyze if
there is any pattern that might increase performance on
some tasks.

Window size and symmetry influence on model perfor-
mance is another aspect that was not examined. Impor-
tance of asymmetric information might increase for highly
asymmetric windows.

References
[1] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in

continuous space word representations.” in HLT-NAACL, 2013,
pp. 746–751.

[2] F. Sebastiani, “Machine learning in automated text
categorization,” ACM Computing Surveys, vol. 34, no. 1,
pp. 1–47, 2002. [Online]. Available: http://nmis.isti.cnr.it/
sebastiani/Publications/ACMCS02.pdf

[3] W. L. Hamilton, K. Clark, J. Leskovec, and D. Jurafsky,
“Inducing domain-specific sentiment lexicons from unlabeled
corpora,” in Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Association for
Computational Linguistics, 2016, pp. 595–605. [Online].
Available: http://aclweb.org/anthology/D16-1057

[4] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark,
K. Lee, and L. Zettlemoyer, “Deep contextualized word repre-
sentations,” in Proc. of NAACL, 2018.

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert:
Pre-training of deep bidirectional transformers for language
understanding,” arXiv preprint arXiv:1810.04805, 2018.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” CoRR, vol.
abs/1301.3781, 2013. [Online]. Available: http://dblp.uni-trier.
de/db/journals/corr/corr1301.html#abs-1301-3781

[7] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global
vectors for word representation,” in Empirical Methods in
Natural Language Processing (EMNLP), 2014, pp. 1532–
1543. [Online]. Available: http://www.aclweb.org/anthology/
D14-1162

[8] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching
word vectors with subword information,” Transactions of the
Association for Computational Linguistics, vol. 5, pp. 135–146,
2017.

[9] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Advances in Neural Information Process-
ing Systems 26, C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q.Weinberger, Eds. Curran Associates,
Inc., 2013, pp. 3111–3119.

[10] F. Gantmacher, The theory of matrices, ser. The Theory of
Matrices. Chelsea Pub. Co., 1960, no. т. 1. [Online]. Available:
https://books.google.ru/books?id=GOdQAAAAMAAJ

