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Abstract—with a growing interest in medical research problems
and the introduction of machine learning methods for solving
those, a need in an environment for integrating modern solu-
tions and algorithms into medical applications developed. The
main goal of our research is to create medical images research
framework (MIRF) as a solution for the above problem. MIRF
is a free open–source platform for the development of medical
tools with image processing. We created it to fill in the gap be-
tween innovative research with medical images and integrating
it into real–world patients treatments workflow. Within a short
time, a developer can create a rich medical tool, using MIRF's
modular architecture and a set of included features. MIRF
takes the responsibility of handling common functionality for
medical images processing. The only thing required from the
developer is integrating his functionality into a module and
choosing which of the other MIRF's features are needed in the
app. MIRF platform will handle everything else. In this paper,
we overview and compare existing applications for handling
operations with medical images, as well as describing basic
ideas and functionality behind our own MIRF framework.

1. Introduction

Over the past decade, many kinds of approaches for solv-
ing problems in the field of medical images were explored.
Because of these researches, the scientific community can
now rapidly open new and more challenging tasks. However,
these studies should go beyond just algorithmic decisions
related to diagnosis and treatment using CT (Computed
Tomography) and MRI (Magnetic resonance imaging) im-
ages. Doctors require high–performance real–time software
systems that can assist in the diagnosis's determination of the
patient and solve various related tasks. Hence, it is necessary
not only to develop highly efficient algorithms for medical
images analysis but also to integrate them into a convenient
environment in which many other instruments essential for
physicians may be seamlessly used. A set of medical tasks
share many of these tools, which means that these tools
can be provided within a single platform. In this paper, we
investigate existing software systems for medical images and
introduce our own framework (MIRF) for medical diagnosis,
simplifying the development of medical instruments. The
objectives of this work are to create an extensible platform

for the development of medical instruments and to show
successful applications of this library on some real medical
cases.

2. Existing systems for medical image process-
ing

There are many open–source packages and software
systems for working with medical images. Some of them are
specifically dedicated for these purposes, others are adapted
to be used for medical procedures.

Many of them comprise a set of instruments, dedicated
to solving typical tasks, such as images pre–processing
and analysis of the results – ITK [1], visualization –
VTK [2], real–time pre–processing of images and video –
OpenCV [3].

Others solve problems related to image analysis of cer-
tain organs or diseases. For example, brain images analysis
(FreeSurfer [4], SPM [5] and others). The extension of
such software systems for solving a wide range of tasks
in medicine is quite complicated or even impossible since
most often the architecture of such applications was written
for solving a specific task and it may be hard to generalize
these approaches.

There are also many general–purpose medical imaging
applications. Such systems provide basic functionality for
working with images. However, they cannot be expanded
to address any specific tasks (for example, segmentation or
finding features inherent in certain diseases). Such systems
are: Ginkgo CAD [6] and ClearCanvas [7].

Another class of medical software form expandable
medical applications that focus primarily on the final usage
by the doctors. They already provide all the basic methods
in an integrated user interface, for example, Slicer [8],
Weasis [9] and OsiriX [10]. The last one is an expensive
commercial product and is not available to a wide audience.
Such applications can be expanded with specifically written
plugins for these platforms. However, this approach does not
give the developers enough flexibility to create and adjust
their own systems and functionality.

The most generalized and flexible product for work-
ing with medical images is MITK [11] – an open–source
framework for developing interactive medical software sys-
tems. MITK combines the algorithms presented in ITK [1]



with the visualization algorithms from the VTK library [2].
MITK also supplements the functionality of these two li-
braries with some unique features, allowing its users to
create a variety of medical programs from a broad range
of functions. While MITK is a cross–platform framework,
some versions have not been supported for years. Because it
is originally written in C++, it requires to be built separately
for each platform. Moreover, the developers have to use a
custom build procedure provided by MITK to create and
add new modules.

In this paper, we introduce our own open–source medical
images research framework (MIRF) as an alternative to
existing software systems for medical applications develop-
ment. MIRF is written in Kotlin programming language with
a focus on enabling a smooth integration between modern
research in medical imaging. With the Kotlin at its core,
MIRF can be smoothly integrated into any projects with
Java Environment. We pay close attention to the possibility
of integration of artificial intelligence and various machine
learning approaches for diagnosis and treatment of various
diseases. This is because nowadays the most effective solu-
tions for medical image analysis problems are solved using
machine learning or deep learning algorithms [12].

3. MIRF architecture

3.1. Structure

MIRF framework is represented as a collection of
generic modules for various tasks. These modules are di-
vided into two global packages:

• Core – the minimum set of necessary modules for
the correct operation of the MIRF framework. This
package includes modules that are used for transfer-
ring data into the internal representation, communi-
cation between modules and creating data processing
pipelines.

• Features – contains modules with core user func-
tionality that are needed to facilitate development:
mechanisms for accessing data storages, adapters for
various medical data formats, various pre–processing
filters and image analysis tools. Any custom modules
should extend the capabilities of this package.

3.2. Pipeline

Execution of any workflows in MIRF is implemented
with Pipes & Filters [13] approach. For these purposes,
various data handlers should be used to stick individual
blocks together.

In the framework, any computational logic must extend
the Algorithm interface. The Algorithm is a handler class
that, when invoked, changes only the data submitted to it
at the input. The Algorithm does not invoke any third–
party code associated with data processing. It does not
save data and acts solely as a data handler. This approach

provides opportunities for flexible creation of algorithms and
organization of hierarchies.

Algorithm instances act as filters in our architecture.
The Algorithm class is encapsulated by the PipelineBlock
class, which is the main entity used to transfer data between
algorithms. The communication between the blocks is based
on the Observer pattern – after the block executes the
algorithm, it informs all its listeners about the completion of
the calculations. Some blocks may also be engaged in the
aggregation of data for the following blocks or have another
specific purpose (for example, they indicate the completion
of calculations in the pipeline).

The core architecture of MIRF may be seen at figure 1.

Figure 1. The Core Architecture of MIRF.

3.3. Data representation

Any data in MIRF should be derived from an abstract
class Data. The main task of this class is to take over the
management of the metadata, namely the list of attributes
(AttributeCollection class). Any class inherited from the
Data class should be used only as a data storage ob-
ject. Instances of Data class are passed through the MIRF
pipeline and act as Pipes in our Pipes & Filters approach.
This ensures the clarity of the entity's purpose within the
framework.



3.4. Pipeline initialization

MIRF provides common blocks that may assemble cus-
tom pipelines and control the functions that the user wants to
be executed on the provided data. The pipeline initialization
can be done with a few simple steps:

val pipe = Pipeline("Pipeline name")
// Creating the blocks
val firstBlock = PipelineBlock(

Block parameters
)

...Initialization of other blocks...
// Creating connections between blocks
firstBlock.dataReady +=

secondBlock::inputReady
...Initialization of other connections...
// Setting the first block and input
pipe.rootBlock = firstBlock
pipe.run(Data)

4. Medical images representation

4.1. MedImage

There are several common medical images formats, for
example, DICOM [14] or NIfTI [15]. For a unified workflow
with these formats and applications of common analysis
algorithms, we have implemented a general class for rep-
resenting medical images in MIRF. MedImage is a class,
that contains a list of attributes extracted by certain rules,
depending on the source format and the pixel representation
of the image. Thus, all algorithms for working with medical
images work with the MedImage class, which allows the
library user to reuse and extend the existing code.

4.2. DICOM

DICOM format is represented as a set of key–value
items, and the image itself is also stored by key, as a value.
All sets of keys for DICOM images are strictly defined and
are used everywhere by the medical community. To read
DICOM images, we considered several libraries for working
with this format in Kotlin: ImageJ [16], DCM4CHE [17],
and PixelMed [18]. While ImageJ supports the DICOM
reading, it does not provide the functionality to output
images with this format. DCM4CHE is a rich toolkit for
working with DICOM images, it provides a lot of functions
to work with those images, using medical servers. Because
we don't want to overwhelm our library with unnecessary
dependencies, we made our final decision towards PixelMed,
which supports reading, working with attributes and writing
of DICOM images without complicated workflows such as
in DCM4CHE. After reading the list of attributes for a
DICOM image MIRF converts it to the MedImage class
by creating an internal representation of the attributes and
extracting an array of images from the original format.

4.3. NIfTI

Another popular type of medical images is NIfTI [15].
There are a few differences between DICOM and NIfTI
file formats, such as the data they store and storage repre-
sentations. For instance, NIfTI metadata does not include
patients or hospital related information. It only stores the
image and MRI settings metadata. Also, NIfTI stores a set
of medical slices within one file (a set of medical images),
while DICOM usually stores them as separate files. To
enable NIfTI usage in our framework, we used ImageJ [16].
Then, similarly to DICOM images, we convert the infor-
mation received from the NIfTI to our internal MedImage
representation, to make it possible for the same algorithms
to work with different file formats.

5. Unique features

5.1. Tensorflow models integration

Because modern researchers are often using deep learn-
ing techniques for solving various problems in medicine,
we paid special attention to the possibility of integration
of those approaches effortlessly within our framework. We
started with the most commonly used deep learning frame-
works such as Tensorflow [19] and Keras [20]. As a result,
integrating Tensorflow models is possible within MIRF Ten-
sorflow block. Since Tensorflow provides a Java API for
working with its models, it was possible for us to create a
block which may run the provided models. To run inference
on the prepared Tensorflow model, the Tensorflow Block
with the models parameters should be instantiated. It is
sufficient to pass in the path to the saved model and the
names of the input and output nodes.

Also, since Tensorflow package provides Keras inter-
faces, it is possible to integrate not only Tensorflow models
but Keras as well.

To the best of our knowledge, no other software for cre-
ating medical applications, provide such integration within
its core functionality. We believe that this feature is very
important in the modern medical applications development
because it completely encapsulates the integration of the
complex artificial intelligence models in real medical ap-
plications and enables developers to focus on creating new
algorithms in their preferred languages and environments.

To use Tensorflow API in C++ or Java developers have
to specify the Graph of the model and define many fields
before they can run it. However, MIRF users can set up the
Tensorflow block within just a few lines:

val tensorflowModel = TensorflowModel(
MODEL_NAME, INPUT_NODE_NAME,
OUTPUT_NODE_NAME, OUTPUT_DIMS
)

val tensorflowModelRunner =
AlgorithmHostBlock<Data, Data>(

{
tensorflowModel.runModel(



Figure 2. The data flow diagram for the multiple sclerosis analysis pipeline. MIRF reads a set of DICOM images and loads lesion masks from a baseline
set. The follow–up set of images is pre-processed and the segmentation masks are calculated. Then, MIRF compares the baseline and follow–up images
and generates a report based on this data.

it, INPUT_DIMS)
},
pipelineKeeper = pipe

)

5.2. PDF reports generation

There are various types of medical documentation that
doctors generate after the patients appointment. Those doc-
uments usually include CT and MRI images as additions to
the final diagnosis paper and recommendation. The outline
and contents of medical reports are strictly regulated by the
government standards and they vary by different criteria,
such as organs, diseases or medical procedures performed.
Doctors have to fill in those reports manually or semi-
automatically and include images into them. MIRF provides
tools for creating these reports automatically, based on the
results of the specified pipelines. MIRF generates the report
in PDF format and has all the necessary images already
included.

We use algorithm class implementation for this pur-
pose. It generates a report in the form of PdfElement-
Data from input data. The final report is then created by
PdfElementsAccumulator class, which takes the sequence of
PdfElementData as input and draws them on the document.
We use IText 7.1.2 [21] as the main library for working with
PDF format.

MIRF provides a set of primitive modules that may
be included in the final PDF report. We currently support
tables, images, and raw text. If the user needs other instances
in his report, he may create his own implementation of
PdfElementData and include it in the final report.

6. MIRF applications

6.1. Multiple sclerosis analysis

With our framework, developers may easily create cus-
tom pipelines for specific tasks. This automates many man-
ual scenarios and it can bring new features, unused before,



Figure 3. Example of PDF file, that was created with our framework from
a multiple sclerosis analysis pipeline.

to doctors workflows. We take Multiple sclerosis analysis as
an example of such a workflow.

Multiple sclerosis is an immune–mediated disorder, af-
fecting the central nervous system. Patients with this disease
have multiple lesions in the brain. Such patients have to take
MRI scans twice a year. Doctors are comparing scans over
time and check the growing process of lesions in the brain.
They generate the report about this.

We implemented an application, that generates MS re-
ports based on the baseline and follow–up sets of scans. This
procedure saves a lot of time for doctors and optimizes their
work at several steps.

The data flow diagram for this pipeline may be seen at
figure 2. First, it reads a set of DICOM images and loads le-
sion masks from a baseline set. The follow–up set of images
is pre–processed and the segmentation masks are calculated.
We use Tensorflow block to perform segmentation on the
images. Then, MIRF compares the baseline and follow–
up images and generates a report based on this data. An
example report for the MS pipeline may be seen at figure 3.

With this application, the segmentation, comparison and
report generation is performed automatically for the doctor.

Figure 4. Example of segmented brain image. Different tumor structures
are specified as folllowing: edema (green), enhancing core (yellow) and
the necrotic core (red).

These steps are usually done manually and require a lot of
time.

6.2. Brain tumor analysis

Another example, that shares common functionality with
MS analysis is the brain tumor segmentation and a report
generation from the obtained information. With this case,
we show how MIRF core functions may be used in various
scenarios and optimize doctors workflows.

According to [12], brain tumor segmentations are per-
formed either manually or semi–automatically, as well as
there is no registered case of bringing the modern research
for this problem into real clinical trials. The main infor-
mation that can be inferred from such segmentation on
the early stages of treatment is the tumor volume and its
relative volume to the whole patients brain. Hence, these
discoveries should be added to the final disease statement.
These actions (analyzing MRI scans, calculating the volume
and including this information in a report) are performed
manually by the specialists. As part of the final tool for
working with various medical images, this pipeline may
be easily included in our framework. For the brain tumor
segmentation, we take an implementation of the state of
the art solution of this problem [22]. The algorithm for
segmentation is implemented using Tensorflow framework
and may be integrated as a model file with our general
purpose Tensorflow block, described above. It takes MRI
brain images in NIfTI format [15] and creates a mask,
indicating different types of tumor tissues, where they are
present (figure 4). Since MRI images are represented as
a set of slices, where voxels in the slice correspond to
some particular volume, it is possible to calculate volume,
based on the number of voxels. The information about this
encoding is stored in a medical image metadata and depends



Figure 5. The data workflow and the blocks scheme for the brain tumor segmentation example. MIRF loads a NIfTI image from a local repository and
extracts the metadata from raw image data. It pre–processes the image data and sent it to the segmentation block. This block produces a mask with
information about detected tumor cells. Then the volume for both tumor and the whole brain is calculated in the corresponding volume blocks. It is
essential to pass in the metadata from the NIfTI image to the volume blocks, so the scaling can be inferred. After that, the pdf report from the collected
data is generated.

on the MRI machine settings. MIRF calculates the tumor
volume based on the segmented mask. Using the initial
brain images the whole brain volume may be determined
and relativities between those volumes are deduced. Then,
MIRF creates a complete report with this information, using
PDF generating tools. The data workflow and the blocks
used in this pipeline may be seen on figure 5.

This example shares such blocks as image reading, seg-
mentation and report generation with MS analysis workflow.
It demonstrates how the core MIRF blocks may facilitate
very different workflows from the medical point of view.

6.3. Skin cancer detection on Android

Due to the fact that we develop our framework on
Kotlin programming language, it is possible to create not

only cross–platform desktop applications but also mobile.
This enables developers to deploy the same pipelines and
scenarios on a wide range of devices without rewriting any
code. To show the benefits of this approach, we created
an Android application for skin cancer detection. For image
classification, we use an open–source implementation of one
of the deep learning algorithms for this problem [23]. It
implements the deep learning model with the Keras frame-
work usage. Since it is possible to convert Keras models
into pure Tensorflow models, we may use the Tensorflow
integration block from MIRF to deploy this model. As a
result, we may use the same pipeline as for the desktop app
on the phone to detect skin cancer from the phones images.
It is required from the developer to write custom layouts
on Android for the GUI. We are planning to resolve this
issue in the future, by creating a pre–defined library of such



graphical interfaces, so the development of these apps may
be performed with more ease and automaticity.

To show the simplicity of our approach, we provide the
pipeline code that is used on Android to run this example.
It takes an image path as an input and generates a label
showing whether the mole is benign or malignant.

val pipe = Pipeline("Detect moles")
val assetsBlock =

AlgorithmHostBlock<Data, AssetsData>
(...algorithm parameters...)

val imageReader =
AlgorithmHostBlock<AssetsData,

BitmapRawImage>
(...algorithm parameters...)

val tensorflowModelRunner =
AlgorithmHostBlock<BitmapRawImage,

ParametrizedData<Int>>
(...algorithm parameters...)

val root = PipeStarter()
// Make connections
root.dataReady +=

assetsBlock::inputReady
assetsBlock.dataReady +=

imageReader::inputReady
imageReader.dataReady +=

tensorflowModelRunner::inputReady
// Run
pipe.rootBlock = root
pipe.run(MirfData.empty)

7. Conclusion

In this paper, we introduced the Medical Images Re-
search Framework for the development of complex medical
applications with various types of medical images. We in-
vestigated the existent solutions in this area and argued why
we created such a tool.

We introduced the basic overview of the proposed archi-
tecture and its benefits in this paper, as well as the unique
features of our platform. We believe that our framework
will help in mending the gap between innovative research
made in medical images analysis and delivering it to the
final users. As our research is still early in development,
we have many plans for further integration, such as adding
most commonly used features (scales, segmentation masks,
zooming, working with patients data) and GUI for them.
We also plan on creating a visual programming environment
based on our framework, so creating medical apps would be
possible for people with little programming experience.

Out project is publically available and may
be found at https://github.com/MathAndMedLab/
Medical-images-research-framework
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