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Abstract—DSM platforms that are based on metamodeling
typically use the two-metalevel approach. Disadvantages of
this approach were taken into account when developing the
REAL.NET platform, and deep metamodeling approach was
chosen. The following article describes an experiment to create
a “smart greenhouse” programming technology on the basis
of REAL.NET. The experiment has shown the efficiency of
the platform for quick creation of tools for the end user
programming. The article describes the platform itself and
deep metamodeling approach as well as “smart greenhouse”
programming technology based on it.

Index Terms—Domain-specific modeling, visual languages,
multi-level metamodeling

1. Introduction

The days when visual modeling was considered a new
silver bullet are long gone, but visual modeling is still a
viable tool for end-user programming. Non-technical people
often don’t have time to study even a simple programming
language, and in scenarios where some simple programming
is needed visual languages can be very effective alternative.
We believe that number of applications of visual languages
for end-user programming will grow with the adoption of In-
ternet of Things, blockchain smart contracts, simplification
of mobile application and web application development and
so on.

Growth of visual end-user programming technologies
is hindered by a very high cost of tool development and
usability issues. Adequate tools for visual languages are
much harder to develop than textual IDEs due to com-
plexity of graphical editing features required, and when a
tool is needed only to perform a small set of tasks for
a limited amount of users, costs of its development are
much higher than expected benefits. To address this, a
considerable amount of research was done on creating tools
that simplify visual modeling tools development — Domain-
Specific Modeling platforms (or DSM platforms).

The core of every DSM platform is its ability to declar-
atively specify a visual language and automatically provide
tools like visual editors, code generators, model browsers
and so on. Many different approaches and formalisms were

developed for language specification, most of them are using
metamodels — models (visual or textual) that specify a set
of valid models that becomes a new language. Metamodel is
itself a model created using dedicated metalanguage, much
like Backus-Naur form describing the grammar of textual
language. There are several existing metamodel architec-
tures, most widely known being two-level architecture (with
dedicated metalanguage that allows to specify needed visual
language), used, for example in MOF (Meta-Object Facility,
metalanguage with which UML is specified) and several
popular DSM platforms, like Eclipse Modeling Project [1]
and MetaEdit+ [2].

Limitations of two-level metamodeling architecture be-
came apparent when UML 2 standard was discussed (see
[3], [4]), and new metamodeling architectures have emerged
with the aim to simplify language definition and improve
tool support. For example, UML is not able to capture
instance-of relation between classes and objects on a lan-
guage level, as “Class” and “Object” are different instances
of the same element of metalanguage and are not related
to each other. So every UML tool needs to have some
complicated custom code to maintain consistency of models
that use classes and objects — for example, that every object
in a model has its corresponding class somewhere. One of
the most developed architectures that allows to solve such
problems is deep metamodeling [4], [5]. Deep metamodeling
proposes to consider entities of a model as classes and ob-
jects at the same time (and call them “clabjects”). Clabjects
can be used in a model and at the same time be used as
types for a lower-level model, for example, clabject “Class”
may exist on UML class diagram and have its instances on
UML object diagram. With such formalism an object can not
exist without corresponding class, since it is its instance, and
no special support is required to capture such relation in a
visual modeling tool.

There are many publications about deep metamodeling
(starting from [6] and including pivotal works [4], [5])
and there are some tools that use deep metamodeling as
a metamodeling framework (for example, Melanee [7] and
textual modeling tool MetaDepth [8]). But most of such
tools are purely academic research projects or are sup-
posed to be used by software engineering professionals,
so whether deep metamodeling architecture is usable and



beneficial for end-user modeling tools development, remains
open question. Our research group had recently created
rather successful visual programming tool employing DSM
platform with two-level metamodeling architecture (in par-
ticular, QReal [9] DSM platform was used to create TRIK
Studio [10] educational tool). A fact that resulting tool
has several thousands of active users most of which are
children who can not program in textual languages, is a good
indication of feasibility of two-level metamodeling, but we
experienced several language design problems that we were
not able to solve with two-level architecture (see [10]). We
decided to develop a new DSM tool using deep metamod-
eling architecture and to create an end-user programming
tool using it to compare our experience with two-level
metamodeling and to gain some experimental evidence on
applicability of deep metamodeling to real-world end-user
programming. “Smart greenhouse” programming tool was
selected as our goal because it is relatively small and simple
domain, but can be easily extended to more general Internet
of Things applications, and there already exist some visual
programming tools (Node-RED1, for example) with which
we can compare our results.

The remaining part of its article provides brief overview
of deep metamodeling, followed by a brief overview of
REAL.NET — our DSM platform that supports it. Then a
visual language for “smart greenhouse” programming is in-
troduced as an instance of REAL.NET metamodel hierarchy
and tools for working with this language are described. Next
we summarize and analyze our informal experience creating
this tool, compare our results to related work and conclude
the article. We believe that main contribution of this article is
in reporting the experience of deep metamodeling usage for
end-user programming tool development, which, we hope,
can be meaningful contribution to empirical data related to
metamodeling architectures, and as such helps to advance a
knowledge about visual languages.

2. Deep Metamodeling

Deep metamodeling was first proposed in 2001 [4] as a
basis of new UML 2.0 standard, but UML 2.0, released in
2005, still used two-level metamodeling architecture (and
uses it by today). Later deep metamodeling received at-
tention of domain-specific modeling research community,
several tools using it were developed (i.e. [7], [8], [11]) and
it sparked a wide interest and debates in related multi-level
metamodeling techniques (see, for example, architecture
based on “Powertype” pattern [12], comparison of different
architectures in [13] and empirical study [14]).

Main idea of deep metamodeling is to consider entity
in a model as a type and an object simultaneously. Each
element of a model (node or edge) can be an instance of an
element of some other model (which is then considered as
metamodel) and a type for some elements in other models
(so our model can be considered a metamodel related to
them). Elements, attributes and various other elements have

1. Node-RED: http://nodered.org/. Accessed: 10.02.2019

numeric attribute called “potency”, which denotes how many
times given element or attribute can be instantiated. For
example, classic two-level metamodeling architecture can
be considered deep metamodeling where potency of each
element is either 1 or 0. Another example is a hierarchy of
simplified UML metamodel, UML class diagram and UML
object diagram, illustrated on figure 1.

Figure 1. An example of class-object model hierarchy

Potency allows language creator to influence model
structure several metalevels below language metamodel,
which can be useful to connect user models with “instance-
of” relations (like in our example with classes and objects).
It is useful not only to explicitly express “instance-of”, but
also to give a limited ability for an user to specify language
elements. It seems to be rather unexpected ability for a
visual modeling tool, but has some important use cases —
for example, user-created subprograms can be considered
as a new language element, instances of “Subprogram”, but
able to have their own instances — subprogram calls.

For visual languages an editor shall be able to work
with any element on a model, i.e. be able to correctly
draw it, provide the ability to edit its attributes and so on.
For this, all elements shall expose a set of properties that
are not specified by their metamodel, but are determined
by capabilities of an editor. To uniformly handle this, or-
thogonal metamodeling was proposed in [5] as an addition
to “pure” deep metamodeling framework. With orthogonal
metamodeling, each element is an instance of some element
in a metamodel (which is called ontological metamodel) and
at the same time it is an instance of some element in other —
linguistic — metamodel, which determines only properties
related to representation of an element. See figure 2 as
an example of UML models hierarchy with an addition of
linguistic metamodel.

3. REAL.NET Overview

REAL.NET is an implementation of DSM platform that
is able to support deep metamodeling. We started working
on REAL.NET with the aim to provide a tool and a set
of libraries for experimenting with visual languages based
on .NET platform, as an alternative to Eclipse Modeling
Project, which is widely used for visual language research

http://nodered.org/


Figure 2. Orthogonal model hierarchy example

now. Eclipse Modeling Project targets Java platform and
is highly dependent on Eclipse infrastructure, but there
are many .NET applications that could benefit from visual
languages, so we decided to develop our own DSM platform
from scratch.

Component diagram with an overview of REAL.NET
architecture is presented on figure 3.

Figure 3. REAL.NET high-level architecture

Main component of a system is repository. Repository
is able to store models and perform operations on them,
including operations that require knowledge of model se-
mantics, for example, instantiation. Repository provides API
for higher layers that allows them to work with models
in high-level terms, for example, create elements that are
instances of given type, having given properties. Repository
encapsulates knowledge about metamodeling infrastructure
and contains a hierarchy of predefined models which are
needed to define that infrastructure and semantics. All data
structures used by repository to store models are defined by
those models themselves, so it is possible to automatically
generate repository data structures using predefined models
— a repository is self-defined in this sense.

Repository is used by two visual editors — one is based
on WPF framework, other uses Windows Forms framework.
WPF framework runs only on Windows but allows much
nicer-looking GUI, Windows Forms framework, despite its
name, runs nicely on Linux and Mac OS. Right now we
consider WPF editor as our primary editor. WPF editor
consists of reusable controls library which provides compo-
nents like palette, scene, property editors and so on, and a
frontend which puts these components together. We actually

have several frontends — one for general-purpose diagram
editing, others — for a specific programming tools based
on REAL.NET, for example, quadcopter programming en-
vironment.

It is possible to construct domain-specific tool using
components from controls library, but there is another pos-
sibility — define a plugin which will be dynamically loaded
by plugin manager and is able to add its capabilities to
an editor. Plugins are much simpler to implement than
custom editor, so for scenarios where GUI is not important
(e.g. code generators) plugins are preferred way to provide
domain-specific functionality.

REAL.NET uses hierarchy of metamodels to define
its metamodeling capabilities, and the “smart greenhouse”
language is an instance of Infrastructure Metamodel, which
is itself an instance of Language Metamodel, which is
an instance of Core Metamodel, which is an instance of
itself. This architecture allows us to relatively easily replace
any metamodel layer and implement different metamodeling
architectures.

4. REAL.NET Metamodels Hierarchy

The base metamodel in REAL.NET is Core Metamodel.
The key element of metamodel is “Node” and it is the
instance of itself, while the other elements that are defined
in this model, such as “Element”, “Edge”, “Generalization”,
“Association” and “String” are the other instances of “Node”
(“instance of” relation is itself modeled as “class” link from
“Element” to itself). At the same time, all elements are
inheritors of the “Element” and therefore should have an
association relationship named “class” with some “element”
inheritor. Full Core Metamodel is presented in figure 4,
dashed lines represent “instance of” relations.

Figure 4. REAL.NET Core metamodel

The following level is the Language Metamodel. It de-
fines the elements with which the Infrastructure Metamodel



is built and contains edges, nodes and also definitions for
“source”/“target” of edge and an “enum” type. The next
level is Infrastructure Metamodel. It defines metamodeling
capabilities that are used to create actual domain-specific
languages, for example, this is the first model where “At-
tribute” notion is properly introduced. Infrastructure Meta-
model models an interface between repository and editors
and enables high-level operations such as creating a new
model, creating elements and so on.

5. Visual Language

“Smart greenhouse” language is based on Infrastructure
Metamodel and enables the creation of rules for autonomous
greenhouse work using visual primitives. Consider two use
case examples, when and to whom autonomous greenhouse
work may be useful.

• Alice lives outside the city and has several green-
houses with different plant cultures. She spends a
lot of time on opening/closing greenhouses every
morning/evening when it gets warmer/colder. There-
fore, she wants to automate this process, indicating
in the scenario at what temperature windows should
be opened in a specific greenhouse.

• Bob lives in the city, but has a greenhouse outside
the city and has the opportunity to go there only
on weekends. He wants to grow plants that require
daily watering. Therefore, he needs the ability to
set scenarios for watering plants depending on soil
moisture.

Thus, the greenhouse scenarios should indicate which
external conditions should trigger the device operation.
Greenhouse program should react on the data that comes
from sensors and send commands to actuators. So the
paradigm of dataflow programming is useful to make the
work more clear for end-users. Data flow is represented in
form of edges that connect modules.

Greenhouse metamodel elements are shown on figure 5.
There is only one association, it represents data flow in form
of oriented edges that connect data sources with receivers.
Source and target vertices should be descendants of the
metamodel abstract node which is the instance of the infras-
tructure node. Since the entire system processes information
from sensors and issues commands to the actuators, sensors
are always sources and actuators are target nodes. The
metamodel includes two types of sensors and three types of
actuators. Each of them has port number of a physical device
they introduce as an attribute. The metamodel abstract node
also has logical operation and interval as descendants. In
turn, the logical operation node has “AND” and “OR” op-
erations as its descendants. The interval node has attributes
of minimum and maximum values and sets an open interval
for checking whether it has value that is passed to it. “Null”
value of this attributes is interpreted as the absence of the
upper/lower limit of the interval.

Each metamodel element also has the following at-
tributes: a graphic figure defining its appearance when

Figure 5. “Smart greenhouse” metamodel

visually building a script; “isAbstract” boolean type that
indicates whether an element can be used in models; “in-
stanceMetatype” — whether an instance of this element is
edge or node.

The language is limited and, in particular, it is not
possible to set specific attributes for each type of actuators.
For example, the volume of watering for the device watering
the soil.

6. Tool Implementation

To model a scenario end-user drags all the necessary
elements from the palette to the stage: actuators with sensors
from his real greenhouse and operations with intervals for
complex rules formation. Then he determines the values
of all attributes of the selected nodes. And then he selects
the edge in the palette and connects sources and receivers
successively clicking on them. For the convenience of the
user, the ability to draw ports on elements has been added to
the editor — ports are the places on an element where edges
can be connected. On the left side of the elements there are
ports for incoming edges and on the right for outgoing.
New free ports are automatically added to the node if all
the others are already occupied but the element can still
be linked to other vertices. User interface of our tool is
presented om figure 6.

After the script is modeled, the user clicks on the “Gen-
erate” button on the right panel to generate code using the
created model.

A generator has been implemented to produce an exe-
cutable file that can be run on a micro-controller. It is written
in C# and uses RX.NET and T4 technologies. T4 runtime
text template takes model from repository as parameter and
at the beginning creates an instance of the corresponding
class for each element from this model assigning each an
identifier. This identifier is used to set instance name and
further to create dictionary with this identifier as a key
where the “Operation” blocks can store values from all
nodes connected to them. Property values of instances are
set according to the attribute values from the model.

Our system should react and process the data that comes
from different sensors. So each element should handle the



Figure 6. “Smart greenhouse” prototype editor

events that the sources of its incoming vertices sends and
then generate events for subsequent elements in the rule
chain. To describe this behavior of the elements and to
simplify work with event flows, the RX.NET library was
used. Each node from the model is considered as the Subject
in terms of Reactive Extensions. This means that it is at
the same time the Observer, it reacts to changes in the
preceding nodes, and the Observable, it allows to subscribe
to its changes. Real greenhouse sensors and actuators or
robot simulator sensors are considered to be Observables
and Observers respectively.

Testing of the prototype required the use of a real micro-
controller. We have used the TRIK micro-controller as it can
run .NET virtual machine and real sensors and actuators can
be easily connected to it. The Trik-Sharp library provides
access to controller devices and even directly supports Re-
active Extensions, representing sensors as Observables and
actuators as Observers.

An example of the code generated by the model in
figure 7 is shown in the listing 1. The “Air t” node is waiting
for a value from the temperature sensor. The “Interval” node
subscribed to “Air t” receives this value and checks whether
it lies in the (5, 15) interval. And if it does, then the “Open
the window” node receives TRUE value which means that
it should send the open command to the actuator on the
window.

Figure 7. An example of a model

7. Experiment

To understand how easily end users can solve problems
with the new language, a small test scenario was formulated.

“If the temperature sensor on port #1 shows a value
greater than 20 degrees — open the window with an actuator
on port #5. If less — close it with an actuator #4.”

Four users were invited to model the scenario using
the developed “smart greenhouse” solution. Two of them
were not familiar with programming (the lawyer and the
mechanical engineer). Two others were undergraduate stu-
dents in software engineering familiar with UML but not
with IoT. At the beginning of the experiment, work with
the system was demonstrated on the example of similar
scenarios. Users from the second group finished the work
with the task faster, but on average it took only 3 minutes
to model such scenario.

8. Lessons Learned

As mentioned earlier, “smart greenhouse” language
metamodel includes only association relation and language
itself is only a prototype of a full-featured programming



element0 = new Actuator(0);
element0.Port = 0;
IObservable<int> observable0 =

System.Reactive.Linq.Observable.FromEventPattern<int>(
h => element0.Event += h, h => element0.Event -= h)
.Select(e => e.EventArgs).Synchronize().DistinctUntilChanged();

IObserver<int> observer0 = Observer.Create<int>(x => element0.Action(x));
ISubject<int> reactElement0 = Subject.Create<int>(observer0, observable0);

element1 = new Interval(1);
element1.Min = null;
element1.Max = null;
IObservable<int> observable1 =

System.Reactive.Linq.Observable.FromEventPattern<int>(
h => element1.Event += h, h => element1.Event -= h)

.Select(e => e.EventArgs).Synchronize().DistinctUntilChanged();
IObserver<int> observer1 = Observer.Create<int>(x => element1.Action(x));
ISubject<int> reactElement1 = Subject.Create<int>(observer1, observable1);

element2 = new Sensor(2);
element2.Port = 0;
IObservable<int> observable2 =

System.Reactive.Linq.Observable.FromEventPattern<int>(
h => element2.Event += h,h => element2.Event -= h)

.Select(e => e.EventArgs).Synchronize().DistinctUntilChanged();
IObserver<int> observer2 = Observer.Create<int>(x => element2.Action(x));
ISubject<int> reactElement2 = Subject.Create<int>(observer2, observable2);

var sub0 = reactElement1.Subscribe(reactElement0);
var sub1 = reactElement2.Subscribe(reactElement1);

Listing 1: Example of generated code

language for greenhouses. The set of language entities is
clearly defined because it affects the code generation logic,
which takes into account only specific sets of possible
combinations. And types of sensors and actuators that can
be installed in a real greenhouse are known in advance and
taken into account when creating the language. Due to the
fact that the end user does not need to invent additional
classes when working with a greenhouse, during the work
with this language there actually was no opportunity to take
advantage of the deep metamodeling for end-user scenarios.
From the language designer point of view, classic two-level
metamodeling architecture was used — Infrastructure Meta-
model and everything below it can be considered metameta-
model, “smart greenhouse” language is metamodel and user
scenarios of “smart greenhouse” control can be considered
models. We believe that it is a typical situation in language
design — to do something meaningful with models, custom
code is needed, be it a generator, an interpreter, an analyzer
and so on, and a need to write custom code greatly limits
the flexibility of a metamodeling infrastructure.

On the other hand, deep metamodeling proved itself
beneficial for DSM platform architecture. We implemented
model persistence capabilities on Core Metamodel level,
so each model derived from Core Metamodel can be
stored/loaded. But editor capabilities are described by In-
frastructure Metamodel, so we can have several different in-
frastructure metamodels for different visual language usage
scenarios (for example, complex metamodel for an editor

based on WPF and much simpler metamodel for a limited
functionality editor based on Windows Forms). They are
all can be based on the same Core Metamodel and take
advantage of the functionality implemented in Core level.
Our tool presented here did not require such capabilities,
but we are planning to use them for web-based version,
with completely different model editor requiring completely
different infrastructure metamodel.

9. Related Work

There are some other systems that allow end users to
create rules for devices sets. One of them is Node-RED2

— a popular and widely used open source programming
tool. It uses browser for scheme of interaction between
devices definition. When compared with our system, the
rules built in a similar way. The difference is the wide
choice of blocks on the sidebar of Node-RED and some of
them provide an opportunity to set complex rules by writing
JavaScript functions. There are also many libraries that allow
to expand the capabilities of the tool. But such an abundance
of options for designing creates a sense of a complex system
for beginners and have no sense in our greenhouse case, and
a need for JavaScript programming makes it unsuitable for
non-programmers.

There are many DSM platforms supporting deep meta-
modeling and, more general, multi-level metamodeling:

2. NodeRED, URL: https://nodered.org (accessed 10.02.2019)

https://nodered.org


Melanee [7], MetaDepth [8], WebDPF [11] to name a
few. They are mainly created for research and concept-
proof purposes and to our best knowledge there are no
reports on their use for creation of actual domain-specific
tools for end-users. Practical case studies like presented
in this article are very limited. Research reported in [15]
analyses features of 21 existing DSM tool with support of
multi-level modeling, but lacks analysis of applicability of
those features to real-world end-user applications. Work [16]
considers methodological questions on evaluating multi-
level modeling techniques and tools, but also is focused on
technical qualities like model maintainability or model size,
and does not report the experience of creating tools useful
for non-programmers.

10. Conclusion

A new REAL.NET tool based on the deep metamodeling
approach made it possible to quickly create a prototype
of “smart greenhouse” graphical programming tool, which
includes new language, editor and code generator. This pro-
totype was tested with non-programmers and, as it seemed,
turned out to be quite acceptable in real life for end users.
Thus, in this article we reported a case study where a
visual programming tool built using deep metamodeling
architecture has enabled non-programmers to do limited
programming tasks for a real-world scenarios.

Despite the fact that the area of “smart greenhouses”
is rather narrow, it is part of the concept of the Internet
of Things, and the result of this work can be extended to
control sensors in any “smart” systems. All that is required
is to determine the types of sensors that are possible to be
installed in this area. And even if there are logical rules
that are needed for processing values, but do not exist in
the present system, the task of building a similar system
based on this knowledge gained can be solved quickly using
REAL.NET platform.

A logical continuation of the development of the appli-
cation may be the transition to the web version. This will
free the user from the obligation to install software on his
own and also will help get rid of the need to create different
versions for different platforms.
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