
Inconsistency Handling in Ontology-Mediated
Query Answering: A Progress Report

Meghyn Bienvenu

CNRS & University of Bordeaux, France

Abstract. This paper accompanies an invited talk on inconsistency
handling in OMQA and presents a concise summary of the research that
has been conducted in the area.

1 Introduction

It is widely acknowledged that real-world data is plagued with numerous data
quality issues, among them the presence of erroneous facts. While already a se-
rious issue for ‘plain’ databases, the problem of handling imperfect data is even
more critical in the setting of ontology-mediated query answering (OMQA),
where even a single erroneous fact can provoke an inconsistency, thereby ren-
dering classical OMQA semantics useless. This has motivated DL and KR re-
searchers to study a variety of approaches for handling inconsistent data in
OMQA, adapting and extending techniques initially proposed for databases.
Now that there has been about a decade of research on inconsistency handling
in OMQA, the time is ripe to take a step back and evaluate the progress that
has been made and what remains to be done.

In this paper, we will try to summarize what is now quite a large collection of
works related to inconsistency handling in OMQA. Our treatment will necessar-
ily be incomplete. We will focus on the case of inconsistencies in the data (i.e.,
we assume the ontology has been properly debugged) and mainly discuss how
inconsistency-tolerant semantics can be used to obtain meaningful information
from inconsistent knowledge bases. The material we cover can be mostly found
in the survey chapter [9], and we invite interested readers to consult that chap-
ter for a much more detailed presentation, with complete references and further
examples and discussion.

Given the target audience, we will assume that the reader is familiar with DLs
and the basics of OMQA. Throughout the paper, we assume that K = 〈T ,A〉
is a knowledge base (KB) with TBox T and ABox A, q is a conjunctive query,
and a is a tuple of constants from A of the same arity as q. We say that A
is T -consistent if the KB 〈T ,A〉 is consistent, i.e. it has at least one model,
and otherwise, it is T -inconsistent. A subset A′ ⊆ A is called a minimal T -
inconsistent subset of A if (i) A′ is T -inconsistent, and (ii) every A′′ (A′ is
T -consistent. A subset C ⊆ A is a(consistent) T -support of q(a) if (i) C is
T -consistent, and (ii) 〈T , C〉 |= q(a), i.e. a is a certain answer to q w.r.t. 〈T , C〉.

2 Meghyn Bienvenu

2 Inconsistency-Tolerant Semantics

As mentioned in the introduction, the usual first-order semantics of DLs does
not provide any useful information in the presence of inconsistencies, as every-
thing can be inferred from a contradiction. To address this limitation of classical
semantics, several inconsistency-tolerant semantics have been proposed with the
aim of returning meaningful answers to queries posed over inconsistent KBs.

A key notion that underlies many of the proposed semantics is that of a
repair, which intuitively captures the different ways of restoring consistency while
retaining as much of the original information as possible. If we use set inclusion
to select the maximal ABoxes, as was proposed in [21] and many subsequent
works, then repairs can be formalized as follows.

Definition 1. An (ABox) repair of an ABox A w.r.t. a TBox T is an inclusion-
maximal subset of A that is T -consistent. We use Rep(A, T) to denote the set
of repairs of A w.r.t. T , which we abbreviate to Rep(K) when K = 〈T ,A〉.

Each repair is T -consistent, so it is possible to query a repair using classical
semantics. The difficulty, however, is that there are typically several different
repairs for an inconsistent KB, so we need to decide how to combine the answers
obtained from the different repairs. Arguably the most natural approach is to
require that a tuple be a certain answer no matter which repair is considered.
This idea is captured by the AR semantics, which was first defined in [21] and
can be seen as the OMQA analog of the consistent query answering approach
long studied in the database literature [1, 16, 5].

Definition 2 (AR semantics). A tuple a is an answer to q over K = 〈T ,A〉
under the AR (ABox Repair) semantics, written K |=AR q(a), just in the case
that 〈T ,B〉 |= q(a) for every repair B ∈ Rep(K).

A more conservative semantics, termed the IAR semantics [21], is obtained
by querying the intersection of the repairs (or equivalently, the set of assertions
not participating in any minimal inconsistent subset).

Definition 3 (IAR semantics). A tuple a is an answer to q over K under the
IAR (Intersection of ABox Repairs) semantics, written K |=IAR q(a), just in the
case that 〈T ,D〉 |= q(a) where D =

⋂
B∈Rep(K) B.

The more adventurous brave semantics, first explored in the OMQA setting
in [14], merely requires that an answer hold w.r.t. at least some repair.

Definition 4 (Brave semantics). A tuple a is an answer to q over K = 〈T ,A〉
under the brave semantics, written K |=brave q(a), just in the case that 〈T ,B〉 |=
q(a) for some repair B ∈ Rep(K).

Before proceeding further, let us illustrate the AR, IAR, and brave semantics
on an example (borrowed and adapted from [9]):

Inconsistency Handling in OMQA: A Progress Report 3

IAR
= 1-support

= 0-lazy

AR

2-support

3-support

k-lazy
...

ICR

k-support

brave
= 0-defeater

k-defeater

...

1-defeater

2-defeater

ICAR

CAR
non-objection

Fig. 1: Relationships between inconsistency-tolerant semantics. An arrow S → S′

means that S under-approximates S′, i.e., 〈T ,A〉 |=S q(a)⇒ 〈T ,A〉 |=S′ q(a).

Example 1. Consider the DL-Lite TBox Tuniv with the following axioms:

Prof v Faculty Prof v ∃Teaches Prof v ¬Lect Faculty v ¬Course
Lect v Faculty Lect v ∃Teaches Prof v ¬Fellow
Fellow v Faculty ∃Teaches− v Course Lect v ¬Fellow

together with the ABox

Auniv = {Prof(sam), Lect(sam),Fellow(sam),Prof(kim), Lect(kim),

Fellow(jane),Teaches(cs34, jane),Fellow(alex),Teaches(alex, cs48)}

The KB 〈Tuniv,Auniv〉 is inconsistent and can be shown to have twelve repairs. If
we evaluate the query q(x) = Faculty(x) using the three semantics, we obtain:

– 3 answers for AR semantics: sam, kim, alex
– 1 answer for IAR semantics: alex
– 4 answers for brave semantics: sam, kim, alex, jane

The preceding three semantics can be related as follows (see also Fig. 1):

K |=IAR q(a) ⇒ K |=AR q(a) ⇒ K |=brave q(a)

In other words, the brave and IAR semantics provide respectively upper and
lower bounds on the set of answers w.r.t. AR semantics.

We can also compare these (and later) semantics based upon the properties
they satisfy. Three salient properties for an inconsistency-tolerant semantics are:

4 Meghyn Bienvenu

Semantics which satisfy the property

Consistent Results non-objection, CAR, ICAR, AR, ICR,
k-support, k-lazy, IAR

Consistent Support brave, k-defeater, non-objection, AR, ICR,
k-support, k-lazy, IAR

Unique Base IAR, ICR, ICAR

Fig. 2: Properties of inconsistency-tolerant semantics.

Consistent Results Semantics S has the Consistent Support property if
for every KB 〈T ,A〉, query q, and tuple a, if 〈T ,A〉 |=S q(a), then there
exists a T -support C ⊆ A of q(a).

Consistent Support Semantics S has the Consistent Results property if
for every KB 〈T ,A〉, there exists a model I of T such that I |= q(a) for
every q(a) with 〈T ,A〉 |=S q(a).

Unique Base Semantics S has the Unique Base property if for every KB
K = 〈T ,A〉, there exists a T -consistent ABox A′ such that for every query
q and tuple a: 〈T ,A〉 |=S q(a) iff 〈T ,A′〉 |= q(a).

The interest of Consistent Results is that it allows users to safely combine the
results obtained when querying under semantics S. The Consistent Support
property means that every answer can be backed up by exhibiting a consistent
subset of the original ABox. Finally, the Unique Base property is a nice feature
from the implementation point of view, since it means we compute in an offline
phase a consistent ABox and then employ any existing querying algorithms.

As seen in Fig. 2, the brave semantics satisfies only Consistent Support,
the AR semantics satisfies both Consistent Support and Consistent Re-
sults, while the IAR semantics satisfies all three properties.

Let us now continue on to other semantics that have been proposed in the
OMQA literature, starting with the ICR semantics, defined in [7]:

Definition 5 (ICR semantics). A tuple a is an answer to q over K = 〈T ,A〉
under the ICR (Intersection of Closed Repairs) semantics just in the case that
〈T ,D〉 |= q(a) where D =

⋂
B∈Rep(K) closeT (B).

By closing the repairs before intersecting them, the ICR semantics provides
a better lower approximation of the AR semantics than the IAR semantics, and
it can shown to satisfy the three properties. This semantics coincides with the
AR semantics on instance queries, which means that in our example, the ICR
semantics would return sam, kim, alex as answers to q(x) = Faculty(x).

The idea of adding inferred assertions in order to keep more information is
also at the heart of the CAR and ICAR semantics proposed in [21]. The key dif-
ference is that a modified closure operator is applied to the original inconsistent
ABox, and the enriched ABox is then used to define closed ABox repairs:

Inconsistency Handling in OMQA: A Progress Report 5

Definition 6 (Closed ABox repair). Let close∗T (A) = {β | ∃S ⊆ A such that
S is T -consistent and 〈T , S〉 |= β}. A subset R ⊆ close∗T (A) is a closed ABox
repair of A w.r.t. T if (i) it is T -consistent, and (ii) there is no T -consistent
R′ ⊆ close∗T (A) such that R∩A (R′∩A or R∩A = R′∩A and R (R′. If K =
〈T ,A〉, the set of closed ABox repairs of A w.r.t. T is denoted ClosedRep(K).

Closed ABox repairs can be seen as maximally ‘completing’ the (plain) ABox
repairs with assertions from close∗T (A)\A. Note that while a closed ABox repair
of 〈T ,A〉 is always a repair of the KB 〈T , close∗T (A)〉, repairs of 〈T , close∗T (A)〉
need not be closed ABox repairs of 〈T ,A〉 (see [9] for an example).

Definition 7 (CAR and ICAR semantics). A tuple a is an answer to q
over K = 〈T ,A〉 under the CAR (Closed ABox Repair) semantics just in the
case that 〈T ,R〉 |= q(a) for every R ∈ ClosedRep(K). It is an answer under
the ICAR (Intersection of Closed ABox Repairs) semantics just in the case that
〈T ,D〉 |= q(a) where D is the intersection of the closed ABox repairs of A
w.r.t.T .

On the KB from Example 1, the CAR semantics gives the same answers as
the AR semantics, and the ICAR semantics coincides with ICR semantics. We
provide another example (borrowed from [9]) to show how these semantics differ.

Example 2. Reconsider Tuniv and Auniv from Example 1, and let T ′univ be obtained
by adding ∃Teaches v Faculty to Tuniv. Applying the closure operator yields:

close∗T ′
univ

(Auniv) = Auniv ∪ {Faculty(sam),Faculty(kim),Faculty(alex),Course(cs48),

Faculty(jane),Course(jane),Faculty(cs34)}

Since Faculty(cs34) is not involved in any contradictions, it appears in every
closed ABox repair, so cs34 is an answer to q(x) = Faculty(x) under ICAR and
CAR semantics. Note however that cs34 is not an answer under AR seman-
tics since some (standard) repairs do not contain Teaches(cs34, jane), which is
required to infer Faculty(cs34).

As displayed in Fig. 2, the CAR semantics satisfies Consistent Results,
and ICAR semantics further satisfies Unique Base, but neither satisfies Con-
sistent Support (here again we refer to [9] for an example).

We next consider a parameterized family of semantics, called the k-support
semantics, that were introduced in [15] in order to provide increasingly more
fine-grained lower approximations of the AR semantics (while enjoying certain
desirable computational properties, see Section 3).

Definition 8 (k-support semantics). Tuple a is an answer to q over K =
〈T ,A〉 under the k-support semantics, written 〈T ,A〉 |=k-supp q(a), if there exist
(not necessarily distinct) subsets S1, . . . , Sk of A that satisfy the following:

– each Si is a T -support for q(a) in A

6 Meghyn Bienvenu

– for every R ∈ Rep(K), there is some Si with Si ⊆ R

The intuition for the k-support semantics is to restrict the number of distinct
supports of the query that can be used to ‘cover’ all of the repairs. When k = 1,
the same support must be present in every repair, so the 1-support semantics
coincides with the IAR semantics. By increasing k and allowing larger and larger
supports, the set of answers will increase until it coincides with the AR-answers.
Like the AR semantics, the k-support semantics satisfy both Consistent Re-
sults and Consistent Support.

Example 3. Returning to Example 1, we evaluate Faculty(x) using the k-support
semantics. When k = 1, the semantics coincides with IAR, so we only get alex.
For k = 2, we gain an additional answer, kim, by considering the pair of supports
{Prof(kim)} and {Lect(kim)}. Finally, for k ≥ 3, we have one further answer, sam,
by considering the supports {Prof(sam)}, {Lect(sam)}, {Fellow(sam)}.

A second parameterized class of semantics, the k-defeater semantics, was
introduced in the same work [15] in order to provide increasingly tighter upper
approximations of the AR semantics.

Definition 9 (k-defeater semantics). A tuple a is an answer to q over K =
〈T ,A〉 under the k-defeater semantics, written K |=k-def q(a), if there does not
exist a T -consistent subset S of A with |S| ≤ k such that 〈T , S ∪ C〉 |= ⊥ for
every inclusion-minimal T -support C ⊆ A of q(a).

It can be shown that 0-defeater semantics coincides with brave semantics and
that the set of answers under k-defeater semantics decreases as the value of k
increases, until the set of AR-answers is reached.

We should also mention another parameterized family of inconsistency-tolerant
semantics, called k-lazy [24], whose definition involves another notion of repair
and will be omitted for lack of space. By taking k large enough, the k-lazy se-
mantics coincides with the AR semantics. However, in contrast to the k-support
semantics, the convergence is not monotone, meaning that a tuple might be an
answer for k = ` but no longer an answer when k = `+1. Due to this behaviour,
the k-lazy semantics are not always under-approximations of AR semantics,
though they do satisfy Consistent Results and Consistent Support.

More recently, a new upper approximation of the AR semantics has been
proposed, called non-objection inference [4]:

Definition 10. A tuple a is an answer to q over K = 〈T ,A〉 under the non-
objection (no) semantics if (i) there is some B ∈ Rep(K) with 〈T ,B〉 |= q(a),
and (ii) for every B ∈ Rep(K), there is a model of 〈T ,B〉 where q(a) is satisfied.

The non-objection semantics lies between the brave and AR semantics, and
it satisfies both Consistent Results and Consistent Support. Two further
variants are considered in [4], by focusing on cardinality-maximal repairs.

As noted at the beginning of the section, repairs are usually defined us-
ing set inclusion. However, in some cases, it can be more appropriate to work

Inconsistency Handling in OMQA: A Progress Report 7

with cardinality-maximal repairs, or to select only the most preferred repairs
according to some criteria. Several different notions of preferred repair, based
cardinality, priority levels or weighted assertions, were explored in [10] and used
to define variants of the IAR and AR semantics.

We further remark that the preceding works focused on repairing data given
in the form of an ABox, and the definitions need to be adapted to handle the
setting of ontology-based data access (OBDA), where existing data sources are
linked to a TBox via mappings. This issue is explored in a recent paper [8], where
two different approaches (repair-at-source and map-then-repair) are contrasted.

Finally, we should emphasize that there is no single ‘best’ semantics, and
the choice of which to use needs to be based upon the acceptable level of risk
and performance requirements. Moreover, it can be fruitful to utilize multiple
semantics in combination, either for computational benefit or to identify answers
with different levels of reliability.

3 Complexity of Inconsistency-Tolerant Querying

The complexity of query answering under inconsistency-tolerant semantics has
been the subject of numerous works. We briefly present what is known and refer
to [9] for further details and full references.

Let us start by the most well-studied case, namely, DL-Lite KBs1. Figure 3
displays the complexity landscape for querying DL-Lite KBs under a range of
inconsistency-tolerant semantics, considering both data and combined complex-
ity and both conjunctive queries (CQs) and instance queries (IQs). We observe
that there are several semantics for which query answering is in AC0 in data
complexity. These upper bounds are shown by means of first-order query rewrit-
ing. For the IAR semantics, the rough idea is to modify a usual rewriting by
adding negated atoms that forbid the use of ABox assertions that do not belong
to the intersection of repairs [22, 6]. Subsequent work [15] established general
rewritability results that apply to the families of k-support and k-defeater se-
mantics and arbitrary FO-rewritable ontology languages. We note that the AC0

result for non-objection semantics2 has not been stated in the literature but
can be shown by adapting query rewriting techniques for the brave and IAR
semantics. For the AR semantics, which is arguably the most natural, query an-
swering is intractable in data complexity, even in simpler settings, like IQs [21]
or very simple TBoxes (a single axiom T v F suffices [7]). Looking now to com-
bined complexity, we observe that the semantics that are well behaved for data
complexity remain so for combined complexity (i.e. their complexity matches
that of classical semantics), while the semantics with intractable data complex-
ity exhibit higher combined complexities than classical semantics. Finally, we
note that the complexity of querying with variants of AR and IAR based upon

1 The presented results apply to the most common DL-Lite dialects, such as DL-
Litecore, DL-LiteR, and DL-LiteA, see [9] for details.

2 In [4], only polynomial data complexity is proven, which we improve to AC0. It is
also not too hard to show that the combined complexity matches classical semantics.

8 Meghyn Bienvenu

Semantics
Data complexity Combined complexity

CQs IQs CQs IQs

classical in AC0 in AC0 NP NL
AR coNP coNP Πp

2 coNP
IAR in AC0 in AC0 NP NL
brave in AC0 in AC0 NP NL
CAR coNP in AC0 Πp

2 NL
ICAR in AC0 in AC0 NP NL
ICR coNP coNP ∆p

2[O(log n)] coNP
k-support (k ≥ 1) in AC0 in AC0 NP NL
k-defeater (k ≥ 0) in AC0 in AC0 NP NL
k-lazy (k ≥ 1) coNP in P Πp

2 in P
non-objection in AC0 in AC0 NP NL

Fig. 3: Complexity of inconsistency-tolerant query answering in DL-Lite. All re-
sults are completeness results unless otherwise indicated.

DL Semantics
Data complexity Combined complexity

CQs IQs CQs IQs

EL⊥ classical P P NP P
AR coNP coNP Πp

2 coNP
IAR coNP coNP ∆p

2[O(log n)] coNP
brave NP NP NP NP

ALC classical coNP coNP Exp Exp
AR Πp

2 Πp
2 Exp Exp

IAR Πp
2 Πp

2 Exp Exp
brave Σp

2 Σp
2 Exp Exp

Fig. 4: Complexity of inconsistency-tolerant query answering in EL⊥ and ALC.
All results are completeness results unless otherwise indicated.

preferred repairs (cardinality, weights, priorities) has also been studied [10], and
the general message is that incorporating preferences leads to higher complexity.

We now briefly consider the situation for DLs beyond DL-Lite. Figure 4
displays complexity results for two representative DLs (EL⊥ and ALC) and
three prominent semantics (AR, IAR, brave). The main observation with regards
to EL⊥ (and other Horn DLs) is that the IAR and brave semantics are no
longer tractable in data complexity. Essentially, the reason is that in constrast
to DL-Lite and other FO-rewritable languages, it is not possible in general to
bound the size of minimal T -inconsistent subsets nor minimal T -supports. For
ALC, the adoption of inconsistency-tolerant semantics leads to a rise in data
complexity, but leaves the combined complexity unchanged (since the repairs
can be enumerated in exponential time).

Inconsistency Handling in OMQA: A Progress Report 9

4 Implementations of Inconsistency-Tolerant Querying

We provide a brief overview of systems that have been implemented and tested
for inconsistency-tolerant query answering over DL knowledge bases.

QuID system [26, 23] This system3 performs conjunctive query answering under
the IAR semantics in an extension of DL-LiteA with denial and identification
constraints. Three different approaches have been implemented and compared:
first-order query rewriting, ABox annotation (in which assertions are marked
as safe or problematic depending on whether they belong to the intersection of
repairs, and the query is modified to only use safe assertions), and ABox cleaning
(in which assertions not belonging to the intersection of repairs are removed, and
the resulting dataset is queried as usual). The latter two approaches generally
proved to be more efficient than the rewriting approach, but they have the
downside of involving data modifications.

CQAPri system [10, 13] This system4 computes answers to CQs over DL-LiteR
KBs under the IAR, brave, and AR semantics (as well as prioritized versions
of AR and IAR). Answers are first computed for the IAR and brave semantics,
by evaluating a UCQ-rewriting and filtering the results using a pre-computed
set of minimal T -inconsistent subsets. To identify the AR-answers among the
remaining tuples (i.e. those holding under brave semantics but not under IAR
semantics), CQAPri constructs a (usually quite small) instance of UNSAT for
every such tuple, which is passed to an off-the-shelf SAT solver. In addition
to using the IAR and brave semantics to reduce the number of calls to the
SAT solver, the three semantics are used to partition query answers into three
levels of reliability: (Almost) Sure (those answers holding under IAR semantics),
Likely (answers holding under AR but not IAR semantics), and Possible (answers
only holding under brave semantics). Experiments conducted on the modified
LUBM benchmark (which was further augmented with negative inclusions and
conflicting assertions) showed that despite its intractable data complexity, it is
feasible to compute query answers under the AR semantics, thanks in part to the
fact that many AR-answers can be identifed using the tractable IAR semantics.

SaQAI system [28] This system5 implements the IAR and ICAR semantics for
DL-LiteR KBs and CQs. For the IAR semantics, the authors follow the ABox
cleaning approach from QuID, using query rewriting to identify then remove the
assertions that do not appear in the intersection of repairs. For the ICAR seman-
tics, a combination of saturation and query rewriting is employed, together with
some optimizations. The experiments conducted using the CQAPri benchmark
show a better performance than QuID and CQAPri for the IAR semantics.

3 QuID system: http://www.dis.uniroma1.it/~ruzzi/quid/
4 CQAPri system and benchmark: https://www.lri.fr/~bourgaux/CQAPri.
5 SaQAI system: http://www.image.ece.ntua.gr/~etsalap/SaQAI/

10 Meghyn Bienvenu

System from [27] This system targets the IAR semantics and currently supports
the DL ELHdr

⊥ . It checks whether sufficient conditions for producing an IAR-
rewriting are fulfilled (leveraging the FO-rewritability checker Grind [19]) and
constructs such a rewriting when one exists by adding negated conjuncts to
a classical rewriting. Experiments were conducted on seven existing ontologies
(which sometimes needed to be enriched with negative inclusions) and for six of
them, the sufficient conditions were satisfied, suggesting that a rewriting-based
approach to IAR may be feasible in practice for ontologies beyond DL-Lite.

System from [4] This system implements the non-objection semantics for ground
CQs (i.e. CQs without existentially quantified variables) for DL-LiteR KBs. Ex-
periments on the CQAPri benchmark confirm that query answers can be effi-
ciently computed (in accordance with the tractable data complexity).

System from[18] This system can be used to query SHIQ KBs under a variant
of the AR semantics with weight on ABox assertions and is restricted to ground
CQs. Like CQAPri, it employs SAT solvers, and a form of reachability analysis
to identify a query-relevant fragment of the KB.

5 Related Reasoning Services for Inconsistency Handling

We mention some related reasoning and analysis tasks. First, to render incon-
sistency-tolerant OMQA systems more usable, it is important to be able to
explain the results to users. This issue has been taken up in [11], where a formal
framework was presented for justifying why a given tuple appears as an answer
under the considered inconsistency-tolerant semantics (AR, IAR, or brave) or
why it is not part of the results. The approach has been implemented by ex-
ploiting different functionalities of SAT solvers and integrated into the CQAPri
system. Closely related is a line of work [3, 2] on utilizing argumentation and di-
alogues with users to explain query answers under various inconsistency-tolerant
semantics (ICR, IAR, brave, and AR).

Another important question is how to aid users in repairing their data, in
order to improve the quality of the data. An interactive query-driven approach
to this question has been presented in [12]. The idea is to allow users may provide
feedback on which query results are missing or erroneous, and then interact with
the user in order to identify a set of ABox modifications (additions and deletions
of assertions) that fix the identified flaws.

Finally, let us mention a formal study of the consistency properties of OBDA
specifications [17], in which a database schema is said to protect an OBDA
specification if every legal data instance for the database constraints is consistent
w.r.t. the ontology and mappings, and it said to be faithful to a specification
if the database constraints do not exclude any instance that is allowed by the
ontology and mappings. (Un)decidability and complexity results are shown for
the analysis tasks of checking the protection and faithfulness properties.

Inconsistency Handling in OMQA: A Progress Report 11

6 Concluding Remarks

We hope to have showcased the large body of research that has been developed
over the past decade or so around the issue of inconsistency handling in OMQA.
Significant progress has been made on proposing different semantics for query-
ing inconsistent KBs in a principled manner and exploring their computational
properties: complexity, algorithms, and implemented prototypes. There remain
several interesting challenges to tackle going forward, let us mention just three.

First, while we start to have a reasonable idea of how to approach the is-
sue for DL-Lite KBs, there remains a need to develop practical algorithms for
DLs beyond DL-Lite. Indeed, due to the prevalence of data quality issues, ev-
ery OMQA system should be equipped with some sort of inconsistency handling
mechanism (beyond simply reporting that the KB is inconsistent!), and the chal-
lenge is to find ways of incorporating such features while limiting the impact on
performance. Some first steps towards this goal can be found in [28, 27].

Second, a very nice but extremely challenging theoretical question is to clas-
sify the complexity of inconsistency-tolerant query answering at the level of
ontology-mediated queries (that is, ontology-query pairs). Some preliminary re-
sults in this direction have been presented in [6, 7]. We note that this problem
is closely related to work on classifying the complexity of consistent query an-
swering in the presence of functional dependencies, where significant progress
has been made (see e.g. [20]), but a full classification has proven elusive.

Third, it would also be worthwhile to develop quantitative approaches to
inconsistency-tolerant OMQA, both to be able to quantify the confidence in
different results, and to be able to take advantage of numeric / probabilistic /
statistical information when it is available. For instance, data that results from
information extraction systems is often annotated with a confidence value, and
mined data quality rules (see e.g. [25]) that act as soft constraints can prove
useful in detecting inconsistencies and determining the most likely fixes.

Acknowledgements Let me take this opportunity to thank the steering committee
and workshop chairs for asking me to be an invited speaker, and while I’m at
it, a big thanks to my many co-authors and the DL community at large for
providing a scientifically stimulating and friendly research environment.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsis-
tent databases. In: Proceedings of the 18th Symposium on Principles of Database
Systems (PODS). pp. 68–79. ACM Press (1999)

2. Arioua, A., Croitoru, M.: Dialectical characterization of consistent query explana-
tion with existential rules. In: Proceedings of FLAIRS (2016)

3. Arioua, A., Tamani, N., Croitoru, M.: Query answering explanation in inconsistent
datalog +/- knowledge bases. In: Proceedings of DEXA (2015)

4. Benferhat, S., Bouraoui, Z., Croitoru, M., Papini, O., Tabia, K.: Non-objection
inference for inconsistency-tolerant query answering. In: Proceedings of the 25th

12 Meghyn Bienvenu

International Joint Conference on Artificial Intelligence (IJCAI). pp. 3684–3690
(2016)

5. Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management, Morgan & Claypool Publishers (2011)

6. Bienvenu, M.: First-order expressibility results for queries over inconsistent dl-lite
knowledge bases. In: Rosati, R., Rudolph, S., Zakharyaschev, M. (eds.) Proceedings
of the 24th International Workshop on Description Logics (DL) (2011)

7. Bienvenu, M.: On the complexity of consistent query answering in the presence of
simple ontologies. In: Proceedings of AAAI (2012)

8. Bienvenu, M.: Inconsistency-tolerant ontology-based data access revisited: Taking
mappings into account. In: Lang, J. (ed.) Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI). pp. 1721–1729 (2018)

9. Bienvenu, M., Bourgaux, C.: Inconsistency-tolerant querying of description logic
knowledge bases. In: Reasoning Web: Logical Foundation of Knowledge Graph
Construction and Query Answering - 12th International Summer School 2016,
Aberdeen, UK, September 5-9, 2016, Tutorial Lectures. pp. 156–202 (2016)

10. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic
knowledge bases under preferred repair semantics. In: Proceedings of the 28th
AAAI Conference on Artificial Intelligence (AAAI) (2014)

11. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Explaining inconsistency-tolerant query
answering over description logic knowledge bases. In: Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI) (2016)

12. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Explaining inconsistency-tolerant query
answering over description logic knowledge bases. In: Proceedings of the 25th In-
ternational Joint Conference on Artificial Intelligence (IJCAI) (2016)

13. Bienvenu, M., Bourgaux, C., Goasdoué, F.: Computing and explaining query an-
swers over inconsistent dl-lite knowledge bases. J. Artif. Intell. Res. 64, 563–644
(2019)

14. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: Proceedings of IJCAI (2013)

15. Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI) (2013)

16. Chomicki, J.: Consistent query answering: Five easy pieces. In: Proceedings of
ICDT. pp. 1–17 (2007)

17. Console, M., Lenzerini, M.: Data quality in ontology-based data access: The case
of consistency. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the 28th AAAI
Conference on Artificial Intelligence. pp. 1020–1026 (2014)

18. Du, J., Qi, G., Shen, Y.D.: Weight-based consistent query answering over inconsis-
tent SHIQ knowledge bases. Knowledge and Information Systems 34(2), 335–371
(2013)

19. Hansen, P., Lutz, C., Seylan, I., Wolter, F.: Efficient query rewriting in the de-
scription logic EL and beyond. In: Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI). pp. 3034–3040 (2015)

20. Koutris, P., Wijsen, J.: Consistent query answering for self-join-free conjunctive
queries under primary key constraints. ACM Trans. Database Syst. 42(2), 9:1–
9:45 (2017)

21. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Proceedings of the 4th International Conference
on Web Reasoning and Rule Systems (RR) (2010)

Inconsistency Handling in OMQA: A Progress Report 13

22. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Query rewriting for in-
consistent DL-Lite ontologies. In: Proceedings of the 5th International Conference
on Web Reasoning and Rule Systems (RR) (2011)

23. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
query answering in ontology-based data access. Journal Web Sem. 33, 3–29 (2015)

24. Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in
datalog+/- ontologies. In: Proceedings of ECAI (2012)

25. Ortona, S., Meduri, V.V., Papotti, P.: Rudik: Rule discovery in knowledge bases.
PVLDB 11(12), 1946–1949 (2018)

26. Rosati, R., Ruzzi, M., Graziosi, M., Masotti, G.: Evaluation of techniques for in-
consistency handling in OWL 2 QL ontologies. In: Proceedings of ISWC (2012)

27. Trivela, D., Stoilos, G., Vassalos, V.: A framework and positive results for iar-
answering. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence.
pp. 1973–1980 (2018)

28. Tsalapati, E., Stoilos, G., Stamou, G.B., Koletsos, G.: Efficient query answering
over expressive inconsistent description logics. In: Kambhampati, S. (ed.) Proceed-
ings of the 25th International Joint Conference on Artificial Intelligence (IJCAI).
pp. 1279–1285 (2016)

