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Abstract. Various probabilistic description logics (DLs) have been pro-
posed for dealing with the uncertainty endemic to many domain knowl-
edge representation scenarios. A particular class of such formalisms fo-
cuses on representing knowledge that is certain, but holds only in some
uncertain contexts. In this paper, we consider an extension of those for-
malisms that allows an agent to influence the choice of the context and
minimise its subjective cost. This is achieved through a combination of
the light-weight DL EL and influence diagrams, a graphical model for
representing decision situations, and their potential costs, under uncer-
tainty.

1 Introduction

A well-recognised limitation of classical description logics (DLs) [4] is their in-
ability to deal with uncertainty. In order to model different aspects of knowl-
edge domains where uncertainty is unavoidable, such as in the bio-medical sci-
ences, many probabilistic extensions of DLs have been proposed in the litera-
ture [11,13,14,16]. Among them, a prominent example are Bayesian DLs [6,8–10],
which provide a means for expressing complex probabilistic and logical depen-
dencies between axioms. For example, in these logics it is easy to express that
two axioms must always appear together, or that if one axiom holds, then the
likelihood of another one holding is some probability p.

The expressive power of Bayesian DL arises from combining a set of (clas-
sical) DL ontologies (called contexts) with a Bayesian network (BN) [15] repre-
senting the joint probability distribution of these ontologies to hold. This allows
to reason about the likelihood of a consequence to hold, but also update the
beliefs about the probabilities of the contexts. However, this remains as a pas-
sive attitude towards knowledge. In practice, one would like an agent to be
able to make choices depending on its knowledge and observations. Some earlier
works [1, 2] that employed (probabilistic) DLs in a decision-theoretic setting,
however, neither addressed observations, nor contextual reasoning. Hence, they
stay completely orthogonal to our work.

Influence diagrams (IDs) [17] are a generalisation of BNs aimed at modelling
potential decisions made by an agent and their associated cost. As a typical toy
example, an agent has to decide whether to go for a picnic or not, based on the
weather forecast that depends (unreliably) on the actual weather. The overall



cost to the agent will depend on their choice and on the state of the weather (see
Figure 1). In this paper we propose an extension of the Bayesian DL BEL [7] to
allow for agent decisions combining influence diagrams with the light-weight DL
EL [3]. We call this logic ID-EL.

In ID-EL, the contexts consider the uncertainty in the network, as well as
the potential choices from the agent and, obviously, also their associated cost.
More importantly, the ontological knowledge can be used as evidence about the
potential context, thus modifying the underlying probabilities. We study the
reasoning problems associated with the selection, by the agent, of a strategy
that minimises its expected cost given such evidence.

2 Influence Diagrams

Influence diagrams (IDs) [17] are a generalisation of Bayesian networks (BNs) [15],
which contain three types of nodes: chance nodes that reflect the uncertainty of
the environment as in BNs; decision nodes, which express the choices made by
an agent in response to the environment; and a cost node (sometimes also called
a utility node), which reflects the cost (or utility) of a given outcome. From a
formal perspective, each of these nodes represents a discrete random variable,
and the main difference is how this variable is interpreted or used within the
network.

Formally, an influence diagram is a pair D = (G,Φ) where G = (V ∪ {c}, E)
is a directed acyclic graph (DAG), whose nodes V are partitioned into two sets
B and D of chance nodes (or Bayesian nodes), and decision nodes, respectively,
and c is a single cost node. For simplicity, we assume w.l.o.g. that all nodes in
V are Boolean random variables.4 The cost node c has no outgoing edges, and
represents a cost function from the valuations of its parent nodes to a finite set
val(c) ⊆ R of values. For every node v ∈ V ∪ {c}, π(v) denotes the parents of v.
Given a decision node d ∈ D, d-anc(d) is the set of all decision ancestors of d,
and

infl(d) := d-anc(d) ∪ π(d).

is the influence set of d. When the set of nodes in D is V ∪{c}, we say that D is an
ID over V . The second part of the tuple D, Φ, is a class of conditional probability
distribution tables P (v | π(v)), one for each chance node v ∈ B given its parents.
Notice that there is no probability distribution associated with decision nodes,
and recall that the node c represents a function from the class of all valuations
of π(c) to R.

IDs are represented graphically using circles to denote chance nodes, squares
for decision nodes, and a diamond for the cost node; see Figure 1. Seen in this

4 In general, chance and decision nodes can be arbitrary finite random variables. By
considering only the Boolean case, we greatly simplify the notation and presentation,
without affecting the generality of the approach.
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Fig. 1. An influence diagram; x, y are choice nodes, z is a decision node, and c is the
only cost node with val(c) = {0, 8, 20}. The probability table for the choice node z is
not specified (represented through transparency).

way, an ID can be thought of as an incomplete BN where some of the nodes are
missing their conditional probability tables, given their parents.5

If these tables are added to the ID, then one could derive the joint probability
distribution of all the variables in V using the standard chain rule from BNs

PD(V ) =
∏
v∈V

P (v | π(v)).

Instead, in an ID, the decision nodes correspond to choices that an agent can
make based on the information available. The actual response of the agent is
called a strategy.

Definition 1 (Strategy). A (local) strategy on a decision node d ∈ D is a
conditional probability distribution of d given its influence set infl(d). A (global)
strategy on the ID D is a set of local strategies, containing one for each d ∈ D.
A local or global strategy is pure if it only assigns probabilities 0 or 1.

Note that the strategy at a decision node does not depend on its parents only,
but on its whole influence set; that is, it depends on its decision ancestors.
Intuitively, we can see the direction of the DAG as a precedence in the choices
made. Hence, every decision depends also on the choices made earlier. This can
be seen as having implicit connections between the node d and its influence
set. This assumption, known as no-forgetting, is commonly used in IDs, thus
we include it in our formalism. However, removing it would have no effect over
the results in this work. In the ID from Figure 1, one possible pure strategy
would be to assign P (z | ¬y) = P (¬z | y) = 1. To distinguish pure and general

5 Note that the utility function can be seen as a special kind of probability distribution
over the set val(c), where probabilities are always 0 or 1.



strategies, we often call the former an action. We denote by PD(S) the probability
distribution obtained by adopting the strategy S in D.

Clearly, an agent has a large class of strategies from which to choose. Which
one is better depends on the probability of paying different costs given the chosen
strategy. One usual approach is to try to minimise the expected cost.

Definition 2 (Expected cost). Given a global strategy S on the ID D, the
expected cost of S w.r.t. D is

E[D | S] :=
∑

r∈val(c)

r · PD(S)(c = r).

For example, if we use the aforementioned strategy S in the ID D from Figure 1,
we obtain that

PD(S) =


0.15 r = 0

0.49 r = 8

0.36 r = 20.

Hence, expected cost E[D | S] = 0 · 0.15 + 8 · 0.49 + 20 · 0.36 = 11.12.
As mentioned, strategies in IDs are often targeted to minimising the expected

cost on the resulting network. However, other kinds of problems can also be con-
sidered over such a network, such as finding the most likely cost, or maximising
the probability of the minimum cost. If we limit ourselves to pure strategies only,
then one can verify that the strategy S in our running example is in fact the one
which minimises the expected cost. On the other hand, the strategy S′ which
assigns P (z | y) = P (z | ¬y) = 1 maximises the probability of observing the
least possible cost 0: PD(S′)(c = 0) = 0.3.

In the next section, we propose a combination of IDs with the description
logic EL and later study some of its reasoning problems.

3 Influence Diagrams with Contextual EL Ontologies

We now introduce a new logic that combines the light-weight DL EL with an in-
fluence diagram to allow reasoning and deriving strategies according to observed
knowledge. The connection between the two formalisms is based on adding a
contextual annotation to every axiom, expressing in which circumstances it is
required to hold. We formalise this next.

Definition 3 (KB). Consider a finite set V of contextual variables (or vari-
ables for short) and two disjoint sets NC and NR or concept and role names,
also disjoint with V . ID-EL concepts are constructed through the grammar rule
C ::= A | > | C u C | ∃r.C, where A ∈ NC and r ∈ NR. A (contextual) general
concept inclusion (V -GCI) is an expression of the form 〈C v D : ϕ〉 where C,D
are two ID-EL concepts and ϕ is a propositional formula over V . A V -TBox is
a finite set of V -GCIs. An ID-EL knowledge base (KB) is a pair K = (D, T ),
where D is an ID over V and T is a V -TBox.



As with other context-based DLs introduced in the past [5,9], the idea is that a
V -GCI is only required to hold when its context ϕ is satisfied. This intuition is
formalised via a possible world semantics that uses so-called V -interpretations.
These combine classical DL interpretations with propositional valuations to link
the GCIs with their contexts.

Definition 4 (Semantics). A V -interpretation is a triple I = (∆I , ·I ,VI),
where ∆I is a non-empty set called the domain, VI : V → {0, 1} is a valuation
of V , and ·I is the interpretation function that maps every A ∈ NC to a set
AI ⊆ ∆I and every r ∈ NR to a binary relation rI ⊆ ∆I ×∆I . This function
is extended to complex concepts as usual in EL.

The V -interpretation I satisfies the V -GCI 〈C v D : ϕ〉 (I |= 〈C v D : ϕ〉)
iff VI 6|= ϕ or CI ⊆ DI . It is a model of the V -TBox T iff it satisfies all V -GCIs
in T .

When there is no ambiguity, we omit the prefix V and speak of e.g., interpreta-
tions or TBoxes.

Clearly, the probabilistic DL BEL [9]—which combines a contextual ontology
with a Bayesian network—is a special case of ID-EL, where there are no decision
nodes, and the cost node is ignored (e.g., it may be disconnected from the rest
of the DAG). As in that special case, it is often useful to consider the classical
EL TBox induced by a valuation of the variables in V.

Definition 5 (Restricted KB). Let K = (D, T ) be a KB, and W a valuation
of the variables in V . The restriction of T to W is the EL TBox

TW := {C v D | 〈C v D : ϕ〉 ∈ T ,W |= ϕ}.

To consider the uncertainty associated with the contexts, BEL defines a possible
world semantics where each world is associated with a probability that needs
to be compatible with the probability distribution of the nodes. In ID-EL this
definition cannot be applied directly, because the actual probability distribution
is underspecified, and depends on the strategy chosen by the agent. Thus, we
consider probabilistic models that are parameterised w.r.t. a strategy.

Definition 6 (Probabilistic model). A probabilistic interpretation is a pair
P = (I, PI), where I is a finite set of V -interpretations and PI is a probability
distribution over I. This probabilistic interpretation is a model of the TBox T
if every I ∈ I is a model of T .

Given an ID D and a strategy S on D, the probabilistic interpretation P is
consistent with D w.r.t. S if for every possible valuation W of the variables in
V it holds that PD(S)(W) =

∑
I∈I,VI=W PI(I).

P is a model of the KB K = (D, T ) w.r.t. the strategy S (denoted as P |=S K)
iff it is a model of T and consistent with D w.r.t. S.

Example 7. Let Kexa = (D, Texa) be the ID-EL KB where D is the ID in Figure 1,
and

Texa := {〈A v B : ¬x ∨ z〉, 〈B v C : ¬z ∨ x〉, 〈B v D : ¬x ∧ z〉}.
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Fig. 2. Four V -interpretations that satisfy the TBox Texa from Example 7.

One possiblevaluation of the variables in V is Wexa = {¬x, y,¬z}. The inter-
pretation Iexa = ({δ}, ·Iexa,Wexa) where AI

exa = BI
exa = {δ} and CI

exa = DI
exa = ∅

satisfies the first and the last GCIs, but not of the second.

Consider now the interpretations Ii := ({δ}, ·Ii ,Wi), 1 ≤ i ≤ 4, where

AI1 = {δ} BI1 = {δ} CI1 = {δ} DI1 = {δ}
AI2 = ∅ BI2 = ∅ CI2 = ∅ DI2 = ∅
AI3 = ∅ BI3 = {δ} CI3 = ∅ DI3 = {δ}
AI4 = {δ} BI4 = {δ} CI4 = {δ} DI4 = ∅

and W1 = {x, y, z}, W2 = {x,¬y,¬z}, W3 = {¬x, y, z}, W4 = {¬x,¬y,¬z},
depicted in Figure 2. It is easy to verify that the probabilistic interpretation
Pexa = (I, PI) with I = {I1, . . . , I4} and PI1

= 0.49, PI2
= 0.21, PI3

= 0.15,
PI4

= 0.15 is a model of Texa and is consistent with the strategy S that assigns
P (z | ¬y) = P (¬z | y) = 1. Hence Pexa is a model of Kexa w.r.t. S.

We emphasise once more that the notion of a model is always dependent on a
given strategy chosen by the agent. This is in line with our understanding of IDs.
For instance, the strategy of an agent could be such that some contexts become
impossible. Then, a model of the knowledge of this agent should disallow to
have those contexts with any positive probability. As a consequence, the basic
reasoning tasks in ID-EL must also be parameterised on the chosen strategy. We
also note that the requirement for I to be finite can be relaxed by imposing some
additional constraints in the probability distribution PI. To avoid unnecessary
technicalities, we simply focus on the finite case.

We can now define the cost associated with V -interpretations and probabilis-
tic models.

Definition 8 (Expected cost). Given an ID D over V, the cost of the V -in-
terpretation I = (∆I , ·I ,VI) is c(I) := c(VI |π(c)), where VI |π(c) denotes the
restriction of the valuation VI to the parents of c.

Given a strategy S on D and a probabilistic interpretation P = (I, PI) which
is consistent with D w.r.t. S, the expected cost of P (w.r.t. S) is

E[P | S] :=
∑
I∈I

PI(I) · c(I).



Since the probability distribution in a probabilistic model must be consistent
with the distribution induced by the strategy S, the expected cost of any model
of a KB K = (D, T ) w.r.t. S corresponds exactly to the expected cost of D w.r.t.
S. That is, once that the strategy has been chosen, the expected cost does not
depend on the specific model of K. Thus, we can define the expected cost of K
w.r.t. S as E[K | S] := E[P | S], where P is any model of K.

Rather than defining a cost function directly on the nodes of the network, it
sometimes makes sense to consider this function to be implicitly defined by the
properties of the contexts that the node c can observe. In the extreme case, all
nodes in V are parents of c and defining the cost function in terms of the contexts
obtained by each valuation avoids having to represent the exponentially large
mapping. A natural choice for such a cost function is the size of the context.
Intuitively, this function allows us to express that a smaller context is preferred
over a larger one. Using this function makes sense, for instance, when the context
needs to be transferred or manipulated over an unreliable channel. A smaller
ontology is preferred to reduce the risk of errors. However, many other functions
can be considered depending on the application. As an additional example, if
the contexts refer to different levels of granularity of access, then considering
the size of the vocabulary as cost is more relevant. We emphasise, however, that
ID-EL does not require the use of any of these cost functions, or even that the
node c is influenced by all nodes in V. These are just given as concrete examples
with an application-oriented motivation.

4 Reasoning in ID-EL

Before delving in detail into the reasoning tasks for ID-EL, we notice that just
as in the special cases of EL and BEL, every ID-EL ontology is consistent. More
precisely, for every ID-EL KB and strategy S, there is a model of K w.r.t. S.
Hence, we are more interested in reasoning problems related to subsumptions,
their probabilities, and more importantly, their costs.

The first reasoning task that we consider in this setting corresponds to com-
puting bounds on the expected costs associated with the models of a given KB
K. That is, we would like to compute an optimal strategy, which minimises the
expected cost w.r.t. D, and a pessimal strategy, which maximises this cost. From
the previous discussion, it follows that these bounds correspond exactly to the
bounds on the expected cost of the ID D from K. To speak about complexity,
we consider their associated decision problem versions.

Problem 9 (Optimal/Pessimal strategy). Given an ID D and b ∈ R, the optimal
strategy problem (D-Opt) is to decide whether there is a strategy S such that
E[D | S] < b. Dually, the pessimal strategy problem (D-Pes) is to decide whether
there is a strategy S such that E[D | S] > b.

Both of these problems are PSpace-complete [12]. It follows that the analogous
problems defined for ID-EL KBs are PSpace-complete as well.



Theorem 10. Given an ID-EL KB K = (D, T ) and b ∈ R, deciding whether
there exists a strategy S such that E[K | S] < b or E[K | S] > b is PSpace-
complete.

Notice, however, that in general we cannot expect a polynomial-space algorithm
to enumerate an optimal strategy. Indeed, even if we limit the search to pure
strategies, we should observe that a pure local strategy is merely a Boolean
function over the parent variables. It is well known that for every n ≥ 2 there
exist Boolean functions (and hence, local strategies) that cannot be expressed
with circuits of size smaller or equal to 2n/2n [18].

One can also consider the problem of entailment of a contextual subsumption,
or computing the probability of a subsumption relation to hold. For the latter,
as already explained, one must first instantiate the chosen strategy.

Definition 11 (Probabilistic subsumption). Let K = (D, T ) be a KB, α
a context, and C,D two ID-EL concepts. Given the probabilistic interpretation
P = (I, PI), the probability of 〈C v D : α〉 w.r.t. P and w.r.t. the strategy S
over D are defined, respectively, as

P (〈C vP D : α〉) :=
∑

I∈I,I|=〈CvD:α〉

PI(I), and

P (〈C vK,S D : α〉) := inf
P|=SK

P (〈C vP D : α〉).

In particular, we denote as P (C vP D) the case where α = true is the universal
context satisfied by all propositional valuations.

Recall that an ID together with a strategy forms a BN, and hence after
choosing the strategy, the probability of each instantiation of all the variables
in V is fully specified. Still, one can choose different models for the KB w.r.t.
this strategy. Indeed, note that the universal EL model which contains only one
element belonging to all concepts and connected to itself via all roles, can always
be used to build a probabilistic model P such that P (〈C vP D : α〉) = 1 for
all concepts C,D. Choosing the infimum in the definition of the probability of
a subsumption is the natural cautious bound that is guaranteed to hold in all
models.

In a decision situation, an agent might observe a fact, and try to act upon
it with the best available strategy. In IDs, this is modelled through the intro-
duction of evidence; formally, the instantiation of one of the chance nodes. In
our setting, we are more interested in observing facts that arise from the onto-
logical perspective. Hence, rather than observing the behaviour of the ID, we
observe a fact that provides information about the possible contexts that can
still hold, hence also influencing the probability distribution over the underlying
ID. In practice, when we observe a consequence, we can immediately exclude
some cases which contradict our observation. The probabilities of the remaining
cases need to be updated accordingly.

Definition 12 (Conditional expected cost). Let K = (D, T ) be an ID-EL
KB, S a strategy on D, P = (I, PI) a probabilistic model of D w.r.t. S, and



C,D two concepts such that P (C vP D) > 0. The conditional probability of the
interpretation I ∈ I given the subsumption C v D is

PI(I | C v D) :=

{
0 if I 6|= C v D
PI(I)

P (CvPD) otherwise.

The conditional expected cost of P given C v D w.r.t. S is

E[P | S,C v D] :=
∑
I∈I

PI(I | C v D) · c(I).

As when dealing with probabilities alone, when trying to understand the ex-
pected cost given an observation it is important to consider all the possible
models of the KB. Accordingly, we can consider an optimistic or a pessimistic
approach depending on whether we try to maximise or minimise this expected
cost.

Definition 13. Let K be an ID-EL KB, S a strategy, and C,D two concepts.
The optimistic expected cost E and the pessimistic expected cost E of K w.r.t.
S given C v D are defined, respectively, by

E[K | S,C v D] := inf
P|=SK

E[P | S,C v D],

E[K | S,C v D] := sup
P|=SK

E[P | S,C v D].

Note that, as mentioned already, for every context it is always possible to con-
struct an EL model of the context that satisfies also the GCI C v D. In such a
model P = (I, PI), it always holds that PI(I | C v D) = PI(I) for all I ∈ I.
In particular, this also means that E[P | S,C v D] = E[P | S] for all strategies
S. This yields the following result.

Proposition 14. For every ID-EL KB K, strategy S, and concepts C,D, it holds
that E[K | S,C v D] ≤ E[K | S] ≤ E[K | S,C v D].

Example 15. Consider again the KB Kexa from Example 7. We have already
seen that under the pure strategy P (z | ¬y) = P (¬z | y) = 1, it holds that
E[Kexa | S] = 11.12. Consider now the evidence A v C. It is easy to see that
there exists a probabilistic model P such that E[P | S,A v C] = 20. Similarly,
if the evidence is A v D, there is a model P ′ such that E[P ′ | S,A v D] = 0.
Hence, in general the pessimistic and optimistic expected costs given an evidence
do not coincide with the expected cost of the KB. This example also shows that
different models may reduce or increase the expected cost, in manners that may
not be obvious at first sight.

Theorem 16. Optimistic and pessimistic expected costs given C v D can be
computed in polynomial space on the size of V .



Proof. There are exponentially many valuations of the variables in V . For each
valuationW, we construct the TBox TW . Let n be the smallest value in val(c). We
construct a probabilistic model P = (I, PI) as follows. For each valuation W, I
contains a V -interpretation IW = (∆IW , ·IW ,W) s.t. (i) (∆IW , ·IW ) |= TW , (ii) if
c(I) = n then (∆IW , ·IW ) |= C v D, and (iii) if c(I) 6= n and TW 6|= C v D,
then (∆IW , ·IW ) 6|= C v D. Moreover, PI(IW) = PD(S)(W). It is easy to verify
that this is a model, constructed in exponential time, and minimises the expected
cost. To compute this cost in polynomial space, we store only one interpretation
at a time, and accumulate the relative cost of each interpretation iteratively. For
the pessimistic expected cost, the proof is analogous. ut

However, we are not interested in the expected costs per se, but rather as a means
to identify the best strategy that the agent can follow under the evidence. In this
case, we have the choices to minimise or maximise the optimistic or pessimistic
expected costs, which yields four different notions. To reduce the overhead of
the definition, we focus only on minimising these costs; notice however that
maximisation can be treated analogously.

Definition 17 (Dominant strategies). Let K be an ID-EL KB and C,D two
concepts. The strategy S is dominant optimistic if for every strategy S′ it holds
that E[K | S,C v D] ≤ E[K | S′, C v D]. It is dominant pessimistic if for all
strategies S′, E[K | S,C v D] ≤ E[K | S′, C v D].

A näıve approach for finding pure dominant strategies is to enumerate all possible
options, and preserve those that yield the lowest expected costs. In the worst
case, there are doubly-exponentially many such strategies on the size of V , which
makes this näıve approach infeasible, despite its effectiveness. On the other hand,
it is easy to see that the optimal strategy for the whole network is a special case
of Definition 17, where C v D corresponds to any EL tautology (e.g., A v A).

Consider the decision problems (D-Dom-Opt and D-Dom-Pes, respectively)
associated with Definition 17: given a KB K, two concepts C,D and b ∈ R,
decide whether there are strategies S, S′ such that E[K | S,C v D] < b, and
E[K | S′, C v D] < b, respectively. Using an approach similar to Theorem 16,
we can build a polynomial-space algorithm for deciding D-Dom-Opt under pure
strategies by enumerating all valuations of the chance nodes, guessing for each
of them a valuation of the decision variables and computing the minimal cost
that arises from each of them. The only issue is that this needs to be done in a
specific order to guarantee that for equal parent nodes, the same guess is made
always in a decision variable.

Theorem 18. The problems D-Dom-Opt and D-Dom-Pes are PSpace-complete
for pure strategies.

Obviously, the lower bound holds also for arbitrary strategies. The upper bound
can be extended to non-pure strategies, as long as they are representable in
exponential space; otherwise, we would not be able to guess them in exponential
time.



5 Conclusions

We have introduced ID-EL, a new extension of the DL EL capable of modeling
and dealing with decision situations under uncertainty. This is achieved by in-
tegrating an influence diagram to represent the uncertainty, potential decisions,
and the overall costs of a choice. The ontological (EL) portion and the influ-
ence representation are combined through contexts. From an abstract point of
view, we build a collection of ontologies, which hold only in specific contexts.
These ontologies contain only certain knowledge, but the specific context under
consideration is uncertain.

Extending the basic idea of BEL, our framework allows for an agent to influ-
ence its context by making choices in specific nodes of the network. The agent is
motivated to make choices that minimise the overall expected cost. Intuitively,
this means minimising the probability of large costs, and maximising the prob-
ability of low costs.

We studied the basic reasoning problems in this logic, and gave tight com-
plexity bounds for all of them. Interestingly, the decision problem associated with
finding a dominating optimal strategy, in which the agent should find the best
strategy conditioned on an ontological observation, remains PSpace-complete.
A practical algorithm for solving this problem is left for future work. As future
work we will also consider other decision-based reasoning tasks, and complexity
classes. Notably, we will study whether optimal strategies or costs can be ap-
proximated efficiently. Moreover, we will consider the task of building strategies
iteratively, as a response to the environment; this is justified by the no-forgetting
assumption of IDs. Another interesting issue to resolve is how to dislodge the
strategies from the underlying ID, and allow the agent to select consequences
(rather than direct contexts) instead.

To conclude, we note that the choice of EL as a logical formalism is moti-
vated by its polynomial-time reasoning problems, which allow us to understand
complexity issues better. However, our framework can be combined with other
(potentially more expressive) logics. Building those extensions introduces further
problems (e.g., consistency) that would need to be studied in detail as well.
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9. Ceylan, İ.İ., Peñaloza, R.: The Bayesian ontology language BEL. Journal of Auto-
mated Reasoning 58(1), 67–95 (2017). https://doi.org/10.1007/s10817-016-9386-0

10. d’Amato, C., Fanizzi, N., Lukasiewicz, T.: Tractable reasoning with bayesian de-
scription logics. In: Greco, S., Lukasiewicz, T. (eds.) Proceedings of the Sec-
ond International Conference on Scalable Uncertainty Management (SUM 2008).
Lecture Notes in Computer Science, vol. 5291, pp. 146–159. Springer (2008).
https://doi.org/10.1007/978-3-540-87993-0 13

11. Gutiérrez-Basulto, V., Jung, J.C., Lutz, C., Schröder, L.: Probabilistic description
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