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Abstract. It is well-known that answering conjunctive queries with inequalities
(CQ6=s) over DL-LiteR ontologies is in general undecidable. In this paper we
consider the subclass of CQ 6=s, called CQ6=,bs, where inequalities involve only
distinguished variables or individuals. In particular, we tackle the problem of an-
swering CQ 6=,bs and unions thereof (UCQ 6=,bs) over DL-Lite6=R ontologies, where
DL-Lite6=R corresponds to DL-LiteR without the Unique Name Assumption, and
with the possibility of asserting inequalities between individuals, as in OWL2QL.
As a first contribution, we show that answering CQ6=,bs over DL-Lite6=R ontologies
has the same computational complexity as the UCQ case over DL-LiteR, i.e., it
is in AC0 in data complexity, in PTIME in TBox complexity, and NP-complete
in combined complexity. We then deal with the UCQ6=,b case, and prove that an-
swering UCQ 6=,bs over DL-Lite6=R ontologies is still in AC0 in data complexity
and in PTIME in TBox complexity, but is Πp

2 -hard in combined complexity.

1 Introduction

DL-LiteR is the Description Logic (DL) of the DL-Lite family [6] which underpins
the OWL2 profile OWL2QL [16]. It is arguably one of the most important formalisms
of choice for representing ontologies in Ontology-based Data Access (OBDA) [18, 22]
scenarios, where the aim is to access a typically huge amount of data residing in external
data sources. In particular, DL-LiteR has been designed so that answering unions of
conjunctive queries (UCQs) can be reduced to evaluating first-order logic queries over
the database storing the ABox assertions, and therefore is in AC0 with respect to the
size of the ABox, i.e., in the so-called data complexity [21].

While answering UCQs over DL-LiteR ontologies has been extensively studied in
recent years (e.g., by establishing bound on the size of rewritings [10], developing opti-
misation algorithms [19], and implementing systems for real-world applications [4,5]),
we argue that not much is known about the problem of answering conjunctive queries
with inequalities (CQ6=s) and unions thereof (UCQ 6=s). To the best of our knowledge,
the basic facts that are known about these latter cases can be summarised as follows:

– In stark contrast to the UCQ case, answering CQ6=s over DL-LiteR ontologies is in
general undecidable [12].



– For subclasses of CQ 6=s and UCQ 6=s, named local CQ6=s and local UCQ6=s, re-
spectively, query answering over DL-LiteR ontologies is decidable, but with a high
CONEXPTIME upper bound in data complexity. Furthermore, it is provably in-
tractable (in general coNP-hard in data complexity) already for local CQ6=s [12].

– For the subclass of CQ 6= with bounded inequalities (called CQ 6=,b), where inequali-
ties involve only individuals or distinguished variables, query answering over DL-LiteR
ontologies is in PTIME in data complexity and in EXPTIME in combined complex-
ity [17].

Observe that all the above results hold regardless of whether the Unique Name As-
sumption (UNA) is enforced or not. Also, it is immediate to see that, for DL-LiteR,
they do not provide the answer to the question whether answering CQ 6=,bs and unions
thereof (UCQ6=,bs) has the same complexity as the UCQ case.

As a first consideration on these classes of queries, we observe that, differently
from the UCQ case [3], query answering over DL-LiteR ontologies is sensitive to the
adoption of the UNA, even for CQ6=,bs, as shown in following example.

Example 1. Consider the DL-LiteR ontology O = 〈T ,A〉, where T = ∅ and A =
{P (a, b)}. For the CQ 6=,b q = {(x, y) | P (x, y)∧x 6= y}, it is easy to see that the tuple
〈a, b〉 is in the certain answers of q over O under the UNA, while it is not if the UNA is
not enforced. Indeed, for the modelM of O with aM = bM = e and PM = {(e, e)},
that does not respect the UNA, we have that qM = ∅. ut

Notice, however, that answering UCQ6=,bs over DL-LiteR ontologies under the UNA
is a straightforward generalisation of the UCQ case.

Proposition 1. Answering UCQ6=,bs over DL-LiteR ontologies under the UNA is in
AC0 in data complexity, in PTIME in TBox complexity, and NP-complete in combined
complexity.

Therefore, in what follows, we implicitly assume that the UNA is not enforced. In
particular, in this paper we consider the DL DL-Lite6=R, which extends DL-LiteR with
the possibility of asserting inequalities between individuals, as in OWL2QL, and we
present the following results:

– Answering CQ6=,bs over DL-Lite6=R ontologies has the same computational com-
plexity of the UCQ case, i.e., it is in AC0 in data complexity, in PTIME in TBox
complexity, and NP-complete in combined complexity (cf. Theorem 2).

– Answering UCQ6=,bs over DL-Lite6=R ontologies is Πp
2 -hard in combined complex-

ity (cf. Theorem 3).
– Answering UCQ 6=,bs over DL-Lite6=R ontologies is in AC0 in data complexity, in

PTIME in TBox complexity, and in EXPTIME in combined complexity (cf. Theo-
rem 4).

Several recent works investigate the problem of answering UCQs over DL-LiteR
ontologies [3, 6, 13], and answering SPARQL queries over OWL2QL ontologies [2, 11,
14, 15]. However, none of them deal with queries containing inequalities. Conversely,
inequality is considered in [7,8,12,17]. As we said before, a crucial result in [12] shows



that answering queries with inequalities over DL-LiteR ontologies is in general unde-
cidable. In [7, 8] the authors prove that answering UCQ6=s over OWL2QL ontologies
under the Direct Semantics Entailment Regime [9] (i.e., the regime usually adopted for
SPARQL queries) can be polynomially reduced to the evaluation of a Datalog program,
and therefore is in PTIME in data complexity, and in EXPTIME in combined complex-
ity. As already mentioned, in [17] the author shows that the same results hold also for
CQ6=,bs under the standard semantics.

The paper is organized as follows. In Section 2 we provide some preliminaries on
the languages considered in the paper. In Section 3 we illustrate the notion of chase that
we use for DL-Lite6=R, and some related technical results. In Section 4 and Section 5
we present our results on CQ 6=,bs and UCQ 6=,bs, respectively. Finally, in Section 6 we
conclude the paper with a discussion on future work.

2 Preliminaries

In this section, we first formally define the syntax and the semantics of DL-Lite6=R, and
then we present the query languages considered in this paper.
Ontology language. Essentially, DL-Lite6=R extends DL-LiteR with the possibility of
asserting inequalities between individuals. Formally, starting with an alphabet of indi-
viduals, atomic concepts, and atomic roles, that includes the binary relation symbol 6=,
a DL-Lite6=R ontology, or simply an ontology, is a pair O = 〈T ,A〉, such that T , called
TBox, and A, called ABox, are sets of axioms, that have, respectively, the following
forms:

T : B1 v B2 R1 v R2 (concept/role inclusion)
B1 v ¬B2 R1 v ¬R2 (concept/role disjointness)

A : A(a) P (a, b) (concept/role membership)
a 6= b (inequality)

where a, b denote individuals, A and P denote an atomic concept and an atomic role,
respectively, B1, B2 are basic concepts, i.e., expressions of the form A, ∃P , or ∃P−,
and R1 and R2 are basic roles, i.e., expressions of the form P , or P−.

The semantics of a DL-Lite 6=R ontology O is specified through the notion of inter-
pretation. An interpretation for O is a pair I = 〈∆I , ·I〉, where the interpretation
domain ∆I is a non-empty, possibly infinite set of objects, and the interpretation func-
tion ·I assigns to each individual a a domain object aI ∈ ∆I , to each atomic concept
A a set of domain objects AI ⊆ ∆I , to each atomic role a set of pairs of domain ob-
jects P I ⊆ ∆I × ∆I , and to the special predicate “ 6=” the set of all pairs of distinct
domain objects, i.e., 6=I= {(o1, o2) | o1, o2 ∈ ∆I ∧ o1 6= o2}. The interpretation
function extends to the other basic concepts and the other other basic roles as follows:
(i) (∃P )I = {o | ∃o′.(o, o′) ∈ P I}, (ii) (∃P−)I = {o | ∃o′.(o′, o) ∈ P I}, and (iii)
(P−)I = {(o, o′) | (o′, o) ∈ P I}.

An interpretation I satisfies a concept inclusion B1 v B2 (respectively, role in-
clusion R1 v R2) if BI1 ⊆ BI2 (respectively, RI1 ⊆ RI2 ), and it satisfies a concept
disjointness B1 v ¬B2 (respectively, role disjointness R1 v ¬R2) if BI1 ∩ BI2 = ∅
(respectively,RI1 ∩RI2 = ∅). An interpretation I satisfies a DL-LiteR TBox T if it satis-
fies every axiom in T . An interpretation I satisfies a DL-Lite6=R ABox A if (i) aI ∈ AI



for every A(a) ∈ A, (ii) (aI , bI) ∈ P I for every P (a, b) ∈ A, and (iii) aI 6=I bI for
every a 6= b ∈ A. Finally, a DL-Lite 6=R ontology O = 〈T ,A〉 is satisfiable if it has a
model, where a model is an interpretation I for O that satisfies both the TBox T and
the ABox A.

Query language. A conjunctive query with inequalities (CQ6=) over a DL-Lite6=R ontol-
ogy O is an expression of the form q = {x | φ(x,y)}, where x and y are tuples of
variables, called distinguished and existential variables of q, respectively, and φ(x,y),
called the body of q, is a finite conjunction of DL-Lite6=R ABox assertions with vari-
ables that can appear in predicate arguments, i.e., atoms of the formA(t1), P (t1, t2), or
t1 6= t2, where each tj is either an individual of O, or a variable in x or y. We impose
that every variable in x or y appears in some atom of φ(x,y). If x is empty, then the
query is called boolean. A CQ 6= q without atoms of the form x1 6= x2 in its body is
called a conjunctive query (CQ). An intermediate class of queries that lies between CQs
and CQ6=s is the class of conjunctive queries with bound inequalities (CQ6=,b). Specifi-
cally, a CQ6=,b q = {x | φ(x,y)} is a CQ6= whose inequalities involve only individuals
or distinguished variables, i.e., for every atom z1 6= z2 appearing in φ(x,y), both z1
and z2 are not in y. An UCQ (resp., UCQ 6=,b, UCQ6=) is a union of a finite set of CQs
(resp., CQ6=,b, CQ6=) with same arity.

The set of certain answers of an UCQ6= q over a DL-Lite 6=R ontology O, denoted by
cert(q,O), is the set of n-tuples t of individuals such that tI ∈ qI for every model I
of O, where tI = 〈tI1 , . . . , tIn〉 for t = 〈t1, . . . , tn〉, and qI denotes the evaluation of q
over I seen as a relational database [1]. When q is a boolean query, we write O |= q if
qI = {〈〉} (i.e., q is true in I, also denoted by I |= q) for every model I ofO. Observe
that, if O is unsatisfiable, then cert(q,O) is trivially the set of all possible n-tuples of
individuals, where n is the arity of q (ex falso quodlibet).

When we talk about the problem of answering a class of queries Q over a class of
DL ontologies L, in fact we implicitly refer to the following decision problem (also
known as the recognition problem): Given a query q in the class Q, an L-ontology O,
and an n-tuple of t of individuals of O, check whether t ∈ cert(q,O).

DL-LiteR. It is well-known (see e.g., [6]) that a DL-LiteR ontology O is satisfiable if
and only if cert(VO,Op) = ∅, where Op is obtained from O by removing the dis-
jointness axioms, and VO is the O-violation query, i.e., the boolean UCQ obtained by
including a CQ of the form {() | A1(x) ∧ A2(x)} (resp., {() | A1(x) ∧ R(x, y)},
{() | R1(x, y)∧R2(x, z)}, and {() | R1(x, y)∧R2(x, y)}) for each disjointness axiom
A1 v ¬A2 (resp., A1 v ¬∃R or ∃R v ¬A1, ∃R1 v ¬∃R2, and R1 v ¬R2), where
an atom of the form R(x, y) stands for either P (x, y) if R denotes an atomic role P , or
P (y, x) if R denotes the inverse of an atomic role, i.e., R = P−.

It is also well-known that if q is an UCQ over a satisfiable DL-LiteR ontology
O = 〈T ,A〉, then PerfectRef(q, T ) (where PerfectRef is the algorithm described in [6])
computes an UCQ whose evaluation over db(A) (i.e., the ABox A seen as a relational
database) returns exactly cert(q,O), that is, (PerfectRef(q, T ))db(A) = cert(q,O).
Note that the algorithm PerfectRef ignores the disjointness axioms in O.



3 The chase for DL-Lite6=R

The conceptual tool that we use for addressing the problem of answering UCQ6=,bs over
DL-Lite6=R ontologies is a modification of the chase used for DL-LiteR [6]. Specifically,
given a DL-Lite 6=R ontologyO = 〈T ,A〉, we build a (possibly infinite) structure, starting
from Chase0(O) = A, and repeatedly computing Chasej+1(O) from Chasej(O) by
applying suitable rules, where each rule can be applied only if certain conditions hold.
In doing so, we make use of a new infinite alphabet V of variables for introducing fresh
unknown individuals, and we follow a deterministic strategy that is fair, i.e., it is such
that if at some point a rule is applicable then it will be eventually applied. Finally, we
set Chase(O) =

⋃
i∈N Chasei(O). Observe that we make use of the additional binary

predicate symbol ineq, which is used to record all inequalities logically implied by O.
The rules we use include all the ones illustrated in [6]. For example, if A1 v

∃P ∈ T , A1(a) is in Chasej(O), and there does not exist any b such that P (a, b)
is in Chasej(O), then we set Chasej+1(O) = Chasej(O) ∪ {P (a, s)}, where s ∈ V
does not appear in Chasej(O). There are, however, crucial additions related to the ineq
predicate. In what follows, when we say that B(a) is in Chasej(O), where B is a basic
concept, we mean A(a) ∈ Chasej(O) if B = A, P (a, b) ∈ Chasej(O) for some b,
if B = ∃P , or P (b, a) ∈ Chasej(O) for some b, if B = ∃P−. Also, when we say
R(a, b) is in Chasej(O), where R is a basic role, we mean P (a, b) ∈ Chasej(O), if
R = P , or P (b, a) ∈ Chasej(O), if R = P−. The additional rules are as follows:

– If a 6= b is in Chasej(O), and ineq(a, b) is not in Chasej(O), then
Chasej+1(O) = Chasej(O) ∪ {ineq(a, b)};

– If ineq(a, b) is in Chasej(O), and ineq(b, a) is not in Chasej(O), then
Chasej+1(O) = Chasej(O) ∪ {ineq(b, a)};

– if B1 v ¬B2 ∈ T , B1(a), B2(b) are in Chasej(O), and ineq(a, b) is not in
Chasej(O), then Chasej+1(O) = Chasej(O) ∪ {ineq(a, b)};

– if R1 v ¬R2 ∈ T , R1(c, a), R2(c, b) are in Chasej(O), and ineq(a, b) is not in
Chasej(O) then Chasej+1(O) = Chasej(O) ∪ {ineq(a, b)}.

From Chase(O) it is immediate to define an interpretation IO for O, extended in
order to deal with predicate ineq, as follows:

– ∆IO = VO ∪ V , where VO is the set of individuals occurring in O;
– eIO = e for every individual o ∈ ∆IO ;
– AIO = {e | A(e) occurs in Chase(O)} for every atomic concept A;
– P IO = {(e1, e2) | P (e1, e2) occurs in Chase(O)} for every atomic role P ;
– ineqIO = {(e1, e2) | ineq(e1, e2) occurs in Chase(O)}.

Note that, by definition, 6=IO is the set of all pairs of distinct individuals in (VO∪V ),
i.e. 6=IO= {(e1, e2) | e1, e2 ∈ (VO ∪ V ) ∧ e1 6= e2}.

The next proposition shows that the interpretation IO plays a crucial role in DL-Lite6=R.

Proposition 2. If M = 〈∆M, ·M〉 is a model of a DL-Lite 6=R ontology O, then there
exists a function Ψ from ∆IO = VO ∪ V to ∆M such that:

1. for every e ∈ ∆IO , if e ∈ AIO , then Ψ(e) ∈ AM;



2. for every pair e1, e2 ∈ ∆IO , if (e1, e2) ∈ P IO , then (Ψ(e1), Ψ(e2)) ∈ PM;
3. for every pair e1, e2 ∈ ∆IO , if (e1, e2) ∈ ineqIO , then Ψ(e1) 6= Ψ(e2).

Proof (Sketch). The proofs of 1. and 2. are similar to that of Lemma 28 of [6]. The
proof of 3. is based on showing that the interpretation IO enjoys the following crucial
property: for every pair of individuals a, b ∈ VO, (a, b) ∈ ineqIO if and only if for every
modelM of O, aM 6= bM. ut

The above proposition shows the role of predicate ineq, and the importance of distin-
guishing between 6= and ineq. Indeed, since in IO two different elements e1, e2 satisfy
e1 6= e2, condition 3 in Proposition 2 does not hold with 6= in place of ineq.

Note that if IO satisfies all the axioms of O, then it is a model of O, and therefore
O is satisfiable. Otherwise, it can be seen that IO violates at least one disjointness or
one inequality axiom of O. Note in particular that IO violates a disjointness axiom if
and only if (VO)IO 6= ∅, where VO is the O-violation query (cf. Section 2). On the
other hand, by construction, IO violates an inequality axiom if and only if there exists
e in (VO ∪ V ) such that e 6= e occurs in O. In both cases, by Proposition 2, there exists
no interpretation that can be a model for O, and hence O is unsatisfiable. Intuitively,
this shows that similarly to the “canonical interpretation” of a DL-LiteR ontology, IO
is instrumental for checking the satisfiability of a DL-Lite6=R ontologyO. Also, checking
the satisfiability of a DL-Lite6=R ontology O = 〈T ,A〉 can be done in AC0 in the size of
A and in PTIME in the size of T , exactly lime in DL-LiteR.

In what follows we implicitly assume to deal only with satisfiable DL-Lite 6=R on-
tologies. Also, we denote by δ(q) the query obtained by replacing each inequality atom
t1 6= t2 in q with the atom ineq(t1, t2). The next theorem states that IO is instrumental
also for answering CQ6=,bs over DL-Lite6=R ontologies.

Theorem 1. If O is a DL-Lite 6=R ontology, and q is a CQ 6=,b over O, then cert(q,O) =
δ(q)IO .

Proof (Sketch). If t ∈ δ(q)IO , then, based on Proposition 2, we can show that t ∈ qM,
for every modelM of O.

If t 6∈ δ(q)IO , and t does not satisfy in IO all atoms of δ(q) different from ineq
atoms, then IO is itself a model of O showing that t 6∈ cert(q,O). On the other hand,
if t satisfies in IO all atoms of δ(q) different from ineq atoms, then there is at least one
atom of the form ineq(a, b) in δ(q) that is false in IO. What we do in this case is to
compute an interpretation J from IO, where aJ and bJ coincide, and then we show
that J is a modelM of O such that t 6∈ qM, thus showing that t 6∈ cert(q,O). ut

4 Answering CQ6=,bs over DL-Lite6=R ontologies

In this section, we study the problem of answering CQ 6=,bs over DL-Lite6=R ontologies.
To this aim, we start by introducing some preliminary notation.

Given an inequality atom x1 6= x2 and a disjointness axiom γ, ρ(x1 6= x2, γ),
denotes the formula defined as follows:



– ρ(x1 6= x2, A1 v ¬A2) = A1(x1) ∧A2(x2),
– ρ(x1 6= x2, A v ¬∃R) = ρ(x1 6= x2,∃R v ¬A) = A(x1) ∧R(x2, z), where z is

a fresh variable,
– ρ(x1 6= x2,∃R1 v ¬∃R2) = R1(x1, z) ∧ R2(x2, w), where z and w are fresh

variables, and
– ρ(x1 6= x2, R1 v ¬R2) = R1(x1, z) ∧R2(x2, z) ∨R1(z, x1) ∧R2(z, x2).

where an atom of the formR(x, y) stands for either P (x, y) ifR denotes an atomic role
P , or P (y, x) if R denotes the inverse of an atomic role, i.e., R = P−.

Given an inequality atom x1 6= x2 and a TBox T with disjointness axioms γ1, . . . , γm,
we denote by σ(x1 6= x2, T ) the disjunction

ineq(x1, x2) ∨ ineq(x2, x1) ∨
∨
γi∈T

(ρ(x1 6= x2, γi) ∨ ρ(x2 6= x1, γi))

Finally, we denote by τ(q, T ) the query obtained from q by substituting every in-
equality x1 6= x2 by σ(x1 6= x2, T ), and then turning the resulting query into an
equivalent union of CQs.

In Fig. 1, we present the algorithm AnsCQ6=,b(q,O) for computing the certain an-
swers to a CQ6=,b q over a DL-Lite6=R ontology O = 〈T ,A〉.

Informally, the algorithm rewrites q into the UCQ τ(q, T ), applies the algorithm
PerfectRef described in [6] to τ(q, T ), and then evaluates the resulting UCQ over the
database db ineq(A). Such database stores the object c (resp. the tuple c1, c2) in the table
A (resp. R), for each assertion A(c) (resp. R(c1, c2)) in A, and stores the pair (c1, c2)
in the table ineq for each assertion c1 6= c2 in A.

Algorithm AnsCQ6=,b(q,O)
Input: n-ary CQ 6=,b q, DL-Lite6=R ontology O = 〈T ,A〉
Output: a set of n-tuples of individuals of O
begin

PR := τ(q, T )
PR := PerfectRef(PR, T )
return PRdb ineq(A)

end

Fig. 1: The algorithm AnsCQ6=,b(q,O)

Example 2. Consider the DL-Lite6=R ontology O = 〈T ,A〉 with T = {P1 v P2, A1 v
¬A2}, and the CQ 6=,b

q = {(x1, x2) | P2(x1, x2) ∧ x1 6= c}

over O. It is easy to see that σ(x1 6= c, T ) is the formula ineq(x1, c) ∨ ineq(c, x1) ∨
A1(x1)∧A2(c)∨A2(x1)∧A1(c) and τ(q, T ) = {(x1, x2) | P2(x1, x2)∧ ineq(x, c)∨



P2(x1, x2)∧ ineq(c, x1)∨P2(x1, x2)∧A1(x1)∧A2(c)∨P2(x1, x2)∧A1(c)∧A2(x)}.
Finally, PerfectRef(τ(q, T ), T ) is {(x1, x2) | P2(x1, x2) ∧ ineq(x, c) ∨ P2(x1, x2) ∧
ineq(c, x1)∨P2(x1, x2)∧A1(x1)∧A2(c)∨P2(x1, x2)∧A1(c)∧A2(x)∨P1(x1, x2)∧
ineq(x, c) ∨ P1(x1, x2) ∧ ineq(c, x1) ∨ P1(x1, x2) ∧ A1(x1) ∧ A2(c) ∨ P1(x1, x2) ∧
A1(c) ∧A2(x). ut

Proposition 3. If O = 〈T ,A〉 is a DL-Lite 6=R ontology, and q is a CQ 6=,b over O, then
AnsCQ 6=,b(q,O) terminates and computes exactly cert(q,O).

Taking into account the computational complexity of algorithm AnsCQ6=,b, the above
proposition implies that answering CQ6=,bs over DL-Lite6=R ontologies has the same data
and combined complexity as answering UCQs over DL-LiteR ontologies.

Theorem 2. Answering CQ6=s over DL-Lite 6=R is in AC0 in data complexity, in PTIME
in TBox complexity, and NP-complete in combined complexity.

5 Answering UCQ6=,bs over DL-Lite6=R ontologies

In this section, we study the problem of answering UCQ6=,bs over DL-Lite6=R ontologies.
Observe that, differently from the UCQ case where for any UCQQ = q1 ∪ . . . ∪ qn

and any DL-LiteR ontologyO we have that cert(Q,O) = cert(q1,O)∪. . .∪cert(qn,O)
[6], the next example shows that this is not the case if we consider UCQ6=,bs.

Example 3. Consider the DL-LiteR ontology O = 〈T ,A〉, where T = ∅ and A =
{P (a, b)}. For the boolean UCQ6=,b Q = q1 ∪ q2, where q1 = {() | P (a, a)} and
q2 = {() | a 6= b}, it is easy to see that O |= Q. Indeed, for any model M of O, if
aM = bM, then M |= q1, otherwise aM 6= bM, then M |= q2. Notice, however,
that both O 6|= q1 and O 6|= q2 hold. For the former, it is sufficient to simply consider
a model M1 of O in which aM1 6= bM1 . For the latter, it is sufficient to consider a
modelM2 of O in which aM2 = bM2 = e and PM2 = {(e, e)}. ut

The next theorem implies that, unless the polynomial hierarchy collapses to the first
level, answering UCQ6=,bs over DL-LiteR ontologies does not have the same combined
complexity of the UCQ and CQ 6=,b cases.

Theorem 3. Answering UCQ6=,bs over DL-LiteR ontologies is Πp
2 -hard in combined

complexity.

Proof (Sketch). The proof of Πp
2 -hardness is by a LOGSPACE reduction from the ∀∃-

CNF problem, which is Πp
2 -complete [20]. ut

In order to present our positive results for the UCQ 6=,b case, next we introduce the
notion of e-satisfiability for an equivalence relation e. An equivalence relation e on a set
of individuals C is a binary relation over C that is reflexive, symmetric, and transitive.
In what follows, we write c1 ∼e c2 to denote (c1, c2) ∈ e. Moreover, we denote by
Oe = 〈T ,Ae〉 the DL-Lite6=R ontology obtained from O by adding e to the signature of
O as a new atomic role, and with Ae being the ABox obtained from A by adding the
extension of the relation e, i.e., Ae = A ∪ e.



Definition 1. LetO = 〈T ,A〉 be a DL-Lite6=R ontology, e be an equivalence relation on
a set C of individuals ofO, and I be a model ofO. Then, we say that I is an e-model of
O if, for any pair of constants c1, c2 ∈ C, we have that cI1 = cI2 if and only if c1 ∼e c2.
Also, we say that O is e-satisfiable if it has an e-model.

The next proposition states that checking for the e-satisfiability has the same com-
putational complexity of checking the satisfiability.

Proposition 4. Let O = 〈T ,A〉 be a DL-Lite 6=R ontology, and let e be an equivalence
relation on a set of constants C of O. Checking whether O is e-satisfiable can be done
in AC0 in the size of A and in PTIME in the size of T .

Proof (Sketch). Let V 6=,eO be the Oe-violation query obtained by extending the boolean
UCQ VO with the following CQs over the signature of Oe:

– {() | A1(x1) ∧A2(x2) ∧ e(x1, x2)} for each axiom of the form A1 v ¬A2,
– {() | A(x1) ∧ R(x2, y) ∧ e(x1, x2)} for each axiom of the form A v ¬∃R or of

the form ∃R v ¬A,
– {() | R1(x1, y)∧R2(x2, z)∧e(x1, x2)} for each axiom of the form ∃R1 v ¬∃R2,
– {() | R1(x1, y1) ∧R2(x2, y2) ∧ e(x1, x2) ∧ e(y1, y2)} for each axiom of the form
R1 v ¬R2,

where an atom of the formR(x, y) stands for either P (x, y) ifR denotes an atomic role
P , or P (y, x) if R denotes the inverse of an atomic role, i.e., R = P−.

It can be readily seen that a DL-Lite6=R ontology O is e-satisfiable if and only if
cert(V 6=,eO ,Ope) = ∅ and there exists no a 6= b occurring in A such that a ∼e b.

Intuitively, for checking e-satisfiability we check whether the equivalence relation e
contradicts a disjointness, or an inequality axiom. This also directly implies that check-
ing whetherO is e-satisfiable can be done by evaluating a suitable query over db ineq(A),
and therefore the problem is in AC0 in the size of the ABoxA and in PTIME in the size
of the TBox T , as required. ut

Based on the above result, in Fig. 2 we provide the algorithm AnsUCQ6=,b(Q,O) for
the problem of answering UCQ 6=,bs over DL-LiteR ontologies. Observe that it is enough
to consider only boolean UCQ 6=,bs. Indeed, given a UCQ 6=,b Q, a DL-Lite 6=R ontology
O = 〈T ,A〉, and an n-tuple t of individuals of O of the same arity of Q, checking
whether t ∈ cert(Q,O) is equivalent to checking whether O |= Q(t), where Q(t) de-
notes the boolean UCQ6=,b obtained by replacing appropriately the distinguished vari-
ables of each CQ q in Q with the individuals of t.

Moreover, note that every boolean UCQ 6=,b Q is such that every inequality appear-
ing in its body is of the form a 6= b, where both a and b are individuals of O. In the
algorithm, we denote by ej(q) the function that, given a CQ q, returns the set of existen-
tial variables that appears more than two times in the body of q, i.e., the set of existential
variables that are in join.

Intuitively, to say that O 6|= Q, the algorithm seeks for a relation ψ between the
individuals appearing in Q for which (i) the ontology O is e-satisfiable, where e is the
equivalence relation induced by ψ, and (ii) the reformulated UCQ Q is not entailed by
Oe. In particular, Q is first reformulated by evaluating every inequality based on the



Algorithm AnsUCQ6=,b(Q,O)
Input: a boolean UCQ 6=,b Q, and a DL-Lite6=R ontology O = 〈T ,A〉
Output: true or false
begin

let CQ be the set of all individuals appearing in Q
for each ψ ⊆ (CQ × CQ):

let e be the reflexive, symmetric, and transitive closure of ψ
if O is e-satisfiable then

for each q ∈ Q and inequality atom c1 6= c2 ∈ q:
if c1 ∼e c2 then

q = q \ {c1 6= c2}
else

Q = Q \ {q}
Q′ = Q
for each q in Q′, Y ⊆ ej(q), and y ∈ Y:

let y1, . . . , ymy denote the different occurrences of y in q
replace each occurrence yj of the variable y with a fresh existential variable zj

for each pair of newly introduced variables zk, zl with k 6= l:
q = q ∪ {e(zki , zli)}

Q = Q ∪ q
for each q in Q and individual c in q:

replace all the occurrences of c with a fresh existential variable yc
q = q ∪ {e(yc, c)}

if Oe 6|= Q then
return false

return true
end

Fig. 2: The algorithm AnsUCQ6=,b(Q,O)

equivalence relation e. Then, Q is further reformulated by allowing that in each CQ
q of Q, and for some of the existential variables y1, . . . , yn appearing in q, different
occurrences of each yi may be mapped to distinct individuals of the set CQ, provided
that these distinct individuals are in the same equivalence class of e. An analogous
consideration is for the individuals appearing in the query, where the last step of the
reformulation of Q allows that an existential variable yc may match an individual c′

that is not necessarily the individual c, but it is such that c′ ∼e c, i.e., it is in the same
equivalence class of c.

Proposition 5. If O = 〈T ,A〉 is a DL-Lite 6=R ontology, and Q is a boolean UCQ 6=,b

over O, then AnsUCQ6=,b(q,O) terminates and returns true if and only if O |= Q.

With regard to the cost of the algorithm AnsUCQ6=,b(Q,O), observe that all the
for-loops of the algorithm depend only on Q, and can be done in EXPTIME in its size.
As for the e-satisfiability check, from Proposition 4, it can be done in AC0 in the size
of A, and in PTIME in the size of T . Also, since Q′e is an UCQ, checking whether
Oe 6|= Q′e can be obviously done in AC0 in the size of A, in PTIME in the size of T ,



and in EXPTIME in the size of Q. From Proposition 5 and the above considerations, we
easily get the following result.

Theorem 4. Answering UCQ 6=,bs over DL-Lite 6=R ontologies is in AC0 in data complex-
ity, in PTIME in TBox complexity, and in EXPTIME in combined complexity.

6 Conclusion

In this paper we have singled out a specific class of queries, namely UCQ6=,bs, for
which query answering over DL-Lite6=R ontologies is still in AC0 in data complexity and
in PTIME in TBox complexity. The algorithm is EXPTIME in combined complexity,
and we have shown that the problem is Πp

2 -hard.
There are several problems to consider for continuing the work presented here, the

most obvious being trying to derive a matching Πp
2 upper bound in combined complex-

ity of the above problem. Another interesting topic is to look for more subclasses of
queries, or even more ontology languages for which answering queries with inequali-
ties is decidable/tractable.
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