CEUR-WS.org/Vol-2375/paper5.pdf

49

An ontology and a collaborative knowledge base for
history of computing

Stefano Ferilli Domenico Redavid
Department of Computer Science R&D Department
University of Bari Artificial Brain S.r.1.
Bari, Italy Bari, Italy
stefano.ferilliQuniba.it redavid@abrain.it
Abstract

In recent years, the history of automatic computing devices and as-
sociated technologies has attracted more and more interest. The area
is quite peculiar, very complex, very young, and involves rapid ob-
solescence. So, research practices and tools for handling it from a cul-
tural heritage perspective are still immature. Still missing, and urgently
needed, is an ontology that categorizes and systematizes the concepts
of interest. Also, there is a pressing need to collect, preserve and make
available precious knowledge that is at risk of going lost. It is currently
scattered across many people spread all over the world.

As a contribution to this area of research, this paper proposes: an on-
tology for computing devices and their history, the first version of a
knowledge graph for this field, and GraphBRAIN, a general-purpose
tool to design and collaboratively populate knowledge graphs, that also
provides advanced consultation and analysis tools. It may be used as an
intermediate layer to provide services to end-user applications aimed at
personalized fruition of cultural heritage, also in a touristic perspective.

1 Introduction

While Computer Science and Engineering, in the form we know them today, are quite young areas in the landscape
of human knowledge, their incredibly rapid advances in the last decades, and the relevance computers gained
in every aspect of our lives, recently raised significant interest in the study of the history of computing and in
the preservation of knowledge and artifacts related to it. So, computing is now not just a means to support and
foster all activities related to cultural heritage (which is widely known as Digital Cultural Heritage), but it is
becoming the very object of study and fruition as cultural heritage, as well. Museums and private collectors
started popping up all around the world, and some items were sold for values similar to those of works of art by
famous artists (e.g., one of the surviving units of Apple I, the first computer developed by Apple, was sold for $
375,000; one of the prototypes of Commodore 65 — a computer which was never released —, endowed with a —
probably unique — expansion board, was sold for about $ 95,000; some of the first models of personal computers,
produced in thousands units, are sold for several thousand dollars). Also, many events (conferences, seminars,

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: Carlo Meghini, Antonella Poggi (eds.): Proceedings of ODOCH 2019 — Open Data and Ontologies for Cultural Heritage
— Rome, Italy, 3 June 2019, published at http://ceur-ws.org

50

shows) on ‘vintage computing’ have been organized, attracting scholars, researchers, amateurs, collectors or other
kinds of enthusiasts. Italy is playing a leading role among the countries that are active in this field.

The ongoing excitement for this topic is leading to the discovery, retrieval and preservation of huge amounts of
precious information, also including in the loop the people that by first hand contributed to the development and
to the milestones of the field. So, this is an unprecedented opportunity, and one that probably will soon vanish
and never happen again, to collect, safely store and sensibly organize all this wealth of information, so that it
may be passed on to future generations for research, study or education purposes. Unfortunately, collecting such
information is problematic, for two reasons. First, the field is so new that there is no established research and
scholarship yet. Second, knowledge in this field is spread across many persons, each perhaps knowing just part of
the story, or specialized only on some aspects of it. What is worse, technology in this field suffers from extremely
rapid obsolescence, and thus new practitioners tend to ignore important technological information needed to
understand and handle items of just a few years earlier. Leveraging the enthusiasm of practitioners in this field,
a possible solution would be to provide a (set of) tool(s) allowing collaborative building and enrichment of a
knowledge base covering all aspects of the history of computing. In a wikipedia-like perspective, the motivation
to share knowledge would be the possibility of using also the information contributed by other people.

However, a collaborative approach in which many people, with different expertise, culture, background and
perspective contribute small pieces that together make up the big picture, cannot reach successful results unless
suitable knowledge representation schemes to organize the knowledge in this field are available and shared.
Thus, a preliminary, fundamental need, is for identifying such schemes. Unfortunately, due to both the intrinsic
complexity of the field, and to its peculiarities, the currently available resources, developed in the cultural heritage
landscape, are patently inappropriate. Hence, there is a pressing need for the definition of a new, specific scheme,
to be shared and reused by all the stakeholders involved in this area of interest.

The original contributions of this paper to tackle these problems are (1) the definition of a formal ontology
for the history of computing, and (2) the first introduction of GraphBRAIN, an on-line tool to collaboratively
design, build and maintain knowledge bases. The latter was used to define a first version of the former, to serialize
it in Web Ontology Language (OWL), and to build a first version of the knowledge graph.

GraphBRAIN is a general-purpose knowledge base management system aimed at covering all stages and
tasks in the lifecycle of a knowledge base, from knowledge acquisition, to knowledge organization, to knowledge
exploitation. It provides the administrators of the knowledge base with a tool to build and maintain the ontologies
that will act as schemes for the knowledge base, and to export them in standard Semantic Web formats. It uses
the defined general and domain-specific ontologies to drive and support all other functionalities. Knowledge is
stored in a graph structure, on which many querying, exploration and mining algorithms can be applied. The
content of the knowledge base may be published as linked open data (LOD) [7]. Finally, in addition to the tools
for building, maintaining, and enriching the knowledge base, GraphBRAIN also provides its users with a set of
advanced tools for searching and browsing the information stored in the knowledge base, and a set of analysis
and knowledge extraction tools that may be used interactively by end users or provided as services to other
systems for obtaining selective and personalized access to the stored knowledge.

This paper is organized as follows. After discussing (some of) the peculiarities and complexities of the domain
of automatic computing in the next section, the ontology for the history of computing is presented in Section 3.
Then, Sections 4 and 5 briefly describe the features and interactive interface of GraphBRAIN, and its current
content. Finally, after reporting some related work, Section 7 concludes the paper and outlines future work issues.

2 Complexity of the Computing Domain

Computing-related items are clearly different, and stand apart from all other cultural heritage items, due to
several peculiarities, including (but are surely not limited to) the following:

— devices (and sometimes components) involve, actually are symbiotic with, software, in such strict a rela-
tionship that either may be meaningless without the other (e.g., devices may require software to be able to
do anything; part of the software is often hard-wired to the machine, in the form of ROM code; software is
meaningless if suitable devices are not available to load and run it);

— however, software has very different features from hardware, and thus requires specialized concepts and
relationships to be fully and properly described (e.g., source code, libraries, support);

— since devices, parts, and software are usually mass-produced, (sometimes complex) production-related infor-
mation is to be handled (e.g., the 6502 microprocessor was produced by 3 different companies; the Amiga
computer was produced by different companies across his lifespan; the C64 ALDI was produced only by

51

USA manufacturing facilities of Commodore), and this holds both for the overall device and for its single
parts;

but all instances of a given product, albeit “mass-produced”, are not necessarily identical: while maintaining
the same product code, they may have sometimes slight, but very important, external or internal differences
in appearance or components, depending on the production site or period, on the marketing country, etc.
(e.g., the Commodore PET was labeled CBM in France, or the Commodore VIC series was labeled VC in
Germany, due to the acronyms being unpleasant words in those countries; computers sold in Europe were
equipped with parts tailored for producing and using a PAL video signal, while computers sold in the USA
were equipped with corresponding parts designed for a NTSC video signal);

and sometimes, especially concerning very early objects or recent restorations or reproduction of old objects,
devices, parts and objects are prototypes or handcrafted (“homebrew”), which requires completely different
descriptions (e.g., concerning the manufacturing processes and materials);

devices (and software) are internally composite and complex (made up of several parts), and their compo-
sition is an intrinsically relevant feature, both from a formal perspective (e.g., the schematics of a device
are fundamental to understand its inner working, and maybe to appreciate its ‘technical beauty’ — say, the
use of ingenious solutions to save board space or to reduce the number of parts) and from a practical one
(e.g., the layout of parts on an Apple I board is extremely well-organized and balanced — it might have
been different while using the same schematics);

devices (and software) are also externally composite and complex (they involve secondary objects, such as
manuals and packaging), and the external components are often as important as the main device (e.g., the
box may feature art graphics by a well-known artist, or the manual may be fundamental to know how to
use the device);

even single parts of a device, albeit considered ‘atomic’ from a functional perspective and for cataloguing
purposes, may be structurally compound (and possibly complex) objects, so it is not easy to capture and/or
describe their features (e.g., what is the ‘stuff’ of which a transistor is made?);

there may be different versions or ‘flavors’ of a device, part, software or even secondary objects (e.g.,
there are at least 10 different versions of the C64; early versions of the manual for the Commodore CP/M
cartridge include schematics that were removed from later versions; early versions of the Simons’ Basic
report “Simon’s” on the label, due to an error in spelling the author’s surname);

devices and software, while interesting by themseleves, sometimes are fully operational, or make full sense,
only in combinations, which we may call systems; so, it is interesting to store knowledge about systems, as
well (e.g., typical systems, systems purposely set up for specific purposes);

even when not parts of a system, devices and software are not isolated objects; they may connect to each
other, and there are very strict and sometimes subtle constraints for hardware and software compatibility
(e.g., some software would not work with some versions of some parts in the devices; some peripherals
cannot be used with some computer models — sometimes connectors are different, sometimes the problems
are subtler);

in addition to the hardware-software compatibility between computers and peripherals, there are also issues
of compatibility among different models and among different versions of the same model (e.g., the Com-
modore VIC-20 is compatible with the C-64 only for BASIC programs, not for ASSEMBLY programs, due
to the different memory maps; not all hardware and software for the C64 computer can be used with the
newer C64c version released in the 90s, albeit they are generally considered as being equivalent machines);
devices and systems may have different configurations, concerning both hardware and software (e.g., dif-
ferent amounts of storage, different expansion boards, different operating systems or applications, different
peripherals); this requires an ability to express limits for the configurations (e.g., maximum RAM storage),
or the configuration of specific items owned by a private, company or organization;

devices (and systems) are for use, not just for show; as a consequence, true preservation must involve keeping
them operational, which in turn requires to store knowledge about how to operate them, how to diagnose
faults and how to fix them; while much of this knowledge is in books, manuals and data sheets, but as long
as original parts are not available anymore, information about if, when and how different parts can replace
original ones may be precious;

in addition to this, repairing or personalizing functionality may have required sometimes so peculiar, inge-
nious, strange or anyhow noteworthy solutions that the tricks and restoring or personalization process are
themselves of interest and should be recorded;

both devices and their parts have (possibly complex) functionality, which should be described as well;

52

Table 1. Statistics on the content of the ‘Computing’ and ‘General’ ontologies

Ontology ||Main Classes|Subclasses|Attributes| Relationships|Attributes
Computing 15 97 111 117 21
General 17 27 79 88 23

— there is no standard, nor precise categorization for devices (and sometimes for parts), which makes it difficult
to establish a generally agreed taxonomy and to assign stable attributes to super- and sub-classes; some
devices are so peculiar that considering a ‘class’ for them seems too much;

— additionally, some devices have multiple functionalities, which makes it hard to properly assign them to
classes;

— the development of all kinds of objects, even seemingly simple ones, involves many contributors, at different
levels and with different roles (e.g., chief architect, design team, authors of documentation, designers of
external cases, etc.), and it would be unfair to record just the main person in charge of the development as
the only author.

Some of these peculiarities are shared with other kinds of modern technological instruments, especially electronic
ones, but computing-related devices take the complexity to the extreme. Given the lack of a specific knowledge
representation scheme for this field, and the inappropriateness of existing schemes developed for other branches
of knowledge, we set up to defining an ontology for this field.

Also, the ontology for computing devices must use entities coming from other, both general and domain-
specific, ontologies. Indeed, in addition to representing knowledge about items, any knowledge base aimed at
supporting research, education and, more in general, spread of awareness about a given topic, cannot ignore
all the context-related information that provide background to the items, often explain and justify them, or
connect them to the more general knowledge. E.g., one must also consider the need for representing people,
companies, intellectual works, records and firsts, historical events, etc. Moreover, the raising interest in the
history of computing, along with an increase in awareness about its relevance, also started a demand for fruition
of this kind of cultural heritage items. Thus, also knowledge that is specific to cultural heritage and tourism
should be connected to the strictly technical and historical part of the representation.

3 An Ontology for Computing Devices and the History of Computing

Based on the motivations reported in the previous section, we developed an ontology for systematizing knowledge
about computing devices, their history and, more in general, their background (e.g., events and people that were
relevant in the development of the field). It currently includes 112 classes, 117 relationships and 132 attributes,
some of which are domain-specific, while some others may be considered as borrowed from other (general or
domain-specific) ontologies (see Table 1 for overall statistics). In the following we will review its main components,
presenting them in an informal and intuitive style.

The top-level classes, and their immediate subclasses (if any), are the following (a short description is provided
when not obvious).

— Award: any kind of recognition that can be awarded to, or record that can be marked by, persons, companies,
devices, documents, or components. It has 3 subclasses:
e Education: associated to (more or less formal) educational levels (e.g., B.Sc., M.Sc., PhD, etc., but also
certifications, etc.).
e Prize: awards formally granted (usually by some institution);
e Record: the recognition of being the first or the best in doing something;
— Collection: any conceivable grouping of items. At the moment 4 specific kinds of groupings are considered,
corresponding to subclasses:
e Persons (e.g., families, teams, etc.).
e Devices (e.g., families of electronic devices).
e Documents (e.g., series, archives, etc.).
e Components (e.g., families of electronic components).
— Company, currently used to represent both companies and institutions, corresponding to 2 subclasses of
this class.
— Component: a part, useful or needed to build a Dewvice but not providing a high-level (i.e., perceivable or
meaningful for a final user) functionality on its own. It has 11 subclasses, the definition of most of which
should be intuitive:

53

AuxiliaryBoard: a PCB that is separate from the main board but still necessary to the proper func-
tionality of a device (e.g., a PCB collecting RAM chips).

e Capacitor
e CoProcessor: a dedicated processor for specific kinds of tasks (e.g., graphics, sound, etc.).
o ExpansionBoard: a PCB that can be added to a device to add non-fundamental functionality to it

(e.g., an internal modem).
EPROM: an Erasable Programmable Read Only Memory chip.

e MainBoard: the PCB representing the motherboard of a device (usually, the one on which the micro-

processor is located).

MicroProcessor: a processor devoted to carrying out the main tasks in a computer.
PROM: a Programmable Read Only Memory chip.

RAM: a Random Access Memory chip.

Resistor

ROM: a Read Only Memory chip.

— Configuration: a relevant group of Dewvices, relevant because typical or determined in order to satisfy
specific needs (e.g., a configuration of devices for desktop publishing);

— Device: a manufact having some kind of use at the human level of interaction. It starts a hierarchy of 54
subclasses, of which the following are immediate subclasses:

Calculator (5 subclasses);

Computer (5 subclasses);

InputDevice (8 subclasses);

OutputDevice (3 subclasses);

InputOutputDevice (3 subclasses);

StorageDevice: a device that provides storage functionality, either by itself or by handling some kind
of external storage medium (10 subclasses);

StorageMedium: a storage support, that can store information but lacks the machinery to actually
store and read it (6 subclasses);

NonComputers: devices that, while not being computers, have a strict relationship to computers, or
have played a role in the history of computers and of their development (6 subclasses).

— Document, in its most general definition as “something that serves as evidence or proof”. As such, it
is not limited to printed documents (or documents that might in principle be printed, such as a PDF or
word-processor file), but also includes audio-video recordings. It has currently 13 subclasses:

Advertisement, AudioRecording, Book, Booklet, Card, Leaflet, Letter, Magazine, Manual,
Movie, Picture, Postcard, Poster

— Event (6 subclasses),

Conference: a meeting with mainly research or educational purposes.

Fair: a convention mainly oriented towards selling products and commerce.

Show: a convention mainly oriented towards showing new products.

Concert

Lecture

Historical Event: any significant event that should be recorded (e.g., the unveiling of a new product,
the discovery or invention of a new technology, etc.).

— IntellectualWork: the original result of an intellectual effort, relevant for methodological or practical
purposes (9 subclasses)

Algorithm (e.g., Quicksort);

Approach (e.g., Step-Wise Refinement for algorithm design);

Invention (e.g., the Microprocessor);

ProgrammingLanguage

Subject (e.g., Information Theory, started by Shannon, or Graph Theory, started by Euler);
Technology

Theorem

TheoreticalModel (e.g., Turing’s machine);

WorkOfArt (e.g., a novel).

— Item: a specific, identifiable specimen of a (mass-produced) object. It has 5 subclasses, corresponding to
the main classes to which the item belongs:

54

e Component, Device, Document, Software, System

— Package: a specific packaging of a Device (or of a set of devices sold together);
— Person: reporting personal data about persons;
— Place It is the root of a hierarchy currently made up of 27 subclasses, of which its direct subclasses are:

e Administrative, Building, Geographic, Mansion
Software (19 subclasses),

e Development, Educational, Embedded, OfficeAutomation, OperatingSystem, Videogame
System: a group of Devices that is functional only as a whole; it differs from a Configuration in that, in a
Configuration, at least one of the Devices would be functional if taken alone.

Domain-specific classes are those under Component, Configuration, Device, Package, Software and
System. Classes borrowed from the general ontology, also constructed as part of this work, are Event, Person,
Place, Collection, and Item. In particular, the set of subclasses of Collection and Item is extended by defin-
ing additional domain-specific subclasses. Classes borrowed from other domain-specific ontologies are Award,
Company, Document, IntellectualWork!.

As regards the relationships, in addition to those specified by each partial ontology, other relation-
ships were included to bridge the gap between classes belonging to different partial ontologies (e.g., Doc-
ument.concerns.Device, Device.wasIn.Place). Moreover, the proposed ontology provides for relation-
ships specifically designed to express the connections among computing devices and software (e.g., De-
vice.clones.Device, Software.compatibleWith.Software) and to record useful information concerning
restoration of devices (e.g., Component.mayReplace.Component). This is extremely important, because
restoration of computing devices has peculiarities that cannot be expressed in existing ontologies designed for
other kinds of cultural heritage.

As regards attributes, each class or relationship may have its own attributes, and inherits those of its super-
classes (if any). E.g., subclass Microprocessor of class Component has its own attributes (speed, bits, etc.) in
addition tho those of Component (e.g., name, technology, etc.).

The development of the above conceptualization of the history of computing field also brought some side-
products and opportunities. In addition to providing us with an ontology that allows to carry out formal reasoning
tasks on the collected knowledge, it may also be interpreted as a data schema for hosting the knowledge and
consulting it efficiently in a DataBase Management System. Moreover, it may be a starting point for the definition
of cataloguing standards for cultural heritage material related to the history of computing. Indeed, existing
standards for cultural heritage, even those developed for technological and scientific stuff (e.g., [12]), are totally
unable to express the complexity and subtleties of this specific field.

4 GraphBRAIN

GraphBRAIN? is a general-purpose system for the development, management and (personalized) fruition of a
knowledge base. The underlying data management structure is a graph database. More specifically, Neodj [11] was
used as a DBMS. Nodes and arcs may have associated attribute-value maps; nodes (representing individuals) may
be labelled with one or many labels (usually representing classes), while each arc (representing a relationship)
may be labeled with one type only. No schema handling is provided for by Neo4j, meaning that the user is totally
free to use any type and/or attribute name for any single node and arc. While ensuring great flexibility, this does
not allow to associate a clear semantics to the graph items. For this reason, GraphBRAIN requires its users to
work according to pre-specified data schemes, expressed in the form of ontologies. Thus, a characterizing feature
of GraphBRAIN is its bringing to cooperation a database management system for efficiently handling, mining
and browsing the individuals, with an ontology level that allows it to carry out formal reasoning and consistency
or correctness checks on the individuals.

Using a suitable tool, GraphBRAIN administrators may create, build and maintain ontologies by specifying
the types of entities and relationships to be considered, each with its attributes and associated datatypes. The
universal class is implicit, so the user must start the ontology description from the top-level classes, which are
automatically considered as disjoint by the system. Each top-level class may be the root of a hierarchy of sub-
classes, for which no assumption about disjointness is made. Several ontologies may be handled by GraphBRAIN;

! Additional links will be possible in the future, e.g. with other cultural heritage and tourism ontologies (e.g., concerning
the class PointOfInterest, representing museums and other places where the cultural heritage material is on show).
2 A demo of the system can be found at http://193.204.187.73:8088/GraphBRAIN/

55

[ele.] | Asserted ¢ A= |_Asserted #/ [B]8.] =] | Asserted :|
- » @ InputDevice + @ owl:Thing
AuxiliaryBoard » @ InputOutputDevice » @ Award
Capacitor » © NonComputers » ® Collection
CoProcessor » @ OutputDevice » ® Company
EPROM » © StorageDevice » ® Component
ExpansionBoard StorageMedium Configuration
MainBoard » @ Document » © Device
MicroProcessor » @ Event » © Document
PROM » @ IntellectualWork v
RAM Item Concert
Resistor Conference
ROM Person Fair
Place HistoricalEvent
AL]Device Series Lecture
v @ Calculator T Show
AddingMachine v © Development » ® IntellectualWork
ElectricCalculator IDE Item
ElectroMechanicCalculator Translator Package
ElectronicCalculator Educational Person
MechanicCalculator » © OfficeAutomation Place
v ® Computer OperatingSystem Series
Board v © Videogame » ® Software
Home Adventure System
Mainframe Maze
Mini Simulation
Personal Sports
» @ InputDevice (a) (b) (C)
Gle] =] [Asserted ¢ [*a]8.] 3= [Asserted :| Asserted ¢
v ® owl:Thing v ®owl:Thing v ® owl:Thing
» @ Award T » @ Award
v Education » ® Collection
ComponentCollection Prize » ® Company
DeviceCollection Record > Component
DocumentCollection » @ Collection Configuration
PersonCollection Y s Device
» ® Company Private > Document
» ® Component Public » @ Event
Configuration PublicPrivate T
» @ Device » @ Component Algorithm
» @ Document Configuration Appm_ﬁd’l
@ Event y~® Device :’r:':e'::r:r:nin Language
» @ IntellectualWork T Sub?ect granguss
Advertisement Technology
Package Book Theorem
Person Booklet TheoreticalModel
Place Card WorkOfArt
Series Leaflet Item
» @ Software Letter Package
System Magazine Person
Manual Pla?e
Movie Series
Picture » @ Software
Poster System
Song
(@ s (© (0

Fig. 1. OWL ‘history of computing’ ontology: Domain-specific (a) and b)), general (c) and d) and other domin specific
(e) and f)) main classes.

some classes and relationships may appear in different ontologies, but different ontologies may define different
attributes for the shared classes and relationships, in order to reflect different perspectives on them. In particu-
lar, in addition to various domain-specific ontologies, GraphBRAIN provides a top-level ontology defining very
general and highly reusable concepts and relationships (e.g., Person, Place; Person.wasIn.Place). This top-
level ontology plays a crucial role to interconnect the domain-specific ontologies, ensuring an overall connected
knowledge graph. Indeed, there is a single, shared graph underlying all the domains. Thanks to the classes shared
across different domains, this allows the system to reuse knowledge across domains, and thus to reach a wider
range of outcomes for satisfying the user information needs. So, if an individual is used by different ontologies, it
acts as a bridge among those ontologies, allowing the users of a domain to obtain additional information coming
from other domains.

The ontologies are saved in an internal format, used as a schema for the graph database. The tool may
also export them into standard Semantic Web formats, to make them publicly available for reuse. Currently,
it can serialize them to Ontology Web Language (OWL)? format, with namespace prefix cpg, so that it can
be published and exploited for ensuring semantic access to the knowledge base and make it interoperable with

3 http://www.w3c.org/owl

56

< > @ retrocomputing Search... < > @ retrocomputing Search...
belongsTo) compnentBelongsTo rasnppearance
Active ontology | Entities |Individuals by class | DL Query Active ontology | Entities | Individuals by class | DL Query
Datatypes [Individuals | Object property hierarchy | = | mm ¢ To — http://www nticweb.org/domenicoredavid/on ~ [Datatypes | individuals | Object property hierarchy. | = | mm hasAppearance — http://www.semanticweb.org/domenicoredavid/ontologie
Classes | Data properties | Annotation properties Classes | Data properties | Annotation properties
Annotations | Usage - Annotations | Usage
7 -
=[S Asserted ¢ =[S Asserted ¢
v == owl:topObjectProperty et v == owl:topDataProperty et
m=acquire = boxed
m=acquiredBy =complete
» m=aliasOf = hasAcronym
v mbelongsTo I asAppearance]
i componentBelongsTo] =hasAwardType
= deviceBelongsTo = hasButtons
= documentBelongsTo = hasCapacity
= personBelongsTo = hasCollectionEntityType
= clonedBy = hasCollectionType
= clones Description: componentBelongsTo ELELCE] = hasColorDepth
» == compatibleWith = hasComponentType
= concerns Functional == hasDate Functional
= developed = hasDescription
= evaluated Iverse func. supopen = hasEndDate s
= evolves Transitive =belongsTo = hasFrequency
=includes = haslntellectualWorkType Dorrais (niersects
= instanceOf Symmetric == hasKeys StorageMedium
= interactedWith Asymmetric = hasLayout
-=isA intersect = hasMark fan
= isComponentCompatibleWith Reflexive Component = hasName ®{"Card", "Cartridge" , "Cassette" , "Disk" ,
= mayBeReplacedBy Irreflexive = hasOriginalPrice "Stick" , "TapeReel"}
=mayReplace — = hasPartNumber
=owned ComponentCollection = hasProductionDate
= packagedWith = hasRank
= partOf = hasResolution
== proposed o == hasRole
= repaired . = hasSerialNo
=requires o == hasSize
m=wasin = hasSpeed

== hasStandard
== hasStartDate

No Roasoner ot Saoct a resoner

No Rassone s, Saectaressoner fom the Ressonermany (7] Snow nfernces [) Shownfernces [

Fig. 2. OWL ‘history of computing’ ontology: Object and DataType properties.

other resources. Figure 1 shows the main OWL ontology classes and subclasses, object properties and datatype
properties, of the history of computing ontology described in Section 3. The tool models the particular case
of different collection types by declaring some specific OWL classes and sub-properties. For example, con-
cept Collection is the range of object property cpg:belongsTo, whose domain can be any of the disjoint
classes cpg:Component, cpg:Device, cpg:Person, and cpg:Document. The tool defined one sub-property
of cpg:belongsTo for each of these domain classes (see Figure 2). In this way, instead of having a generic prop-
erty (cpg:Component or cpg:Device or cpg:Person or cpg:Document) cpg:belongsTo cpg:Collection,
one may assert instances of cpg:Component cpg:componentBelongsTo cpg:ComponentCollection
or cpg:Device cpg:deviceBelongsTo cpg:DeviceCollection or cpg:Person cpg:personBelongsTo
cpg:PersonCollection or cpg:Document cpg:documentBelongsTo cpg:DocumentCollection.

After setting up the ontologies, information is fed into the knowledge base by interaction with users or by
automatic knowledge extraction from documents and other kinds of resources (e.g., the Internet). The interac-
tive interface consists of two form-based tabs, one for entities and one for relationships, allowing the user to
insert/update/remove instances. The forms are automatically generated by the system from the internal format
specification of the ontologies. For this reason, albeit GraphBRAIN may handle several ontologies, each specify-
ing a different domain, the form-based interface for data management and querying requires the user to select
one of the available domains in order to load the corresponding scheme/ontology to be used.

Additional functionality is also provided. First, users may manage (add, show, delete) attachments for each
instance. In this way GraphBRAIN goes beyond knowledge management tools, becoming a full-fledged digital
library, whose content is indirectly organized according to formal ontologies, and thus may foster interoperability
with other systems. Second, users may add comments, or approve/disapprove, each entity or relationship instance,
and even each single attribute value thereof. This can be used to ensure some kind of ‘distributed’ quality
assurance on the content of the knowledge base, and to establish a trust mechanism for the users. Using the
comments, the users may also provide useful suggestions to improve and extend the ontologies?. Also, users are
encouraged to provide high-quality knowledge, because using a combination of their number of contributions and
trust they are assigned ‘points’ that they may spend in using advanced features provided by GraphBRAIN.

The same form-based interfaces can be used to query the knowledge base for instances of entities and relation-
ships. The retrieved instances may be graphically displayed in another tab, as nodes and arcs in the graph. This
allows the user to continue his search in a less structured way, by directly browsing the graph (by expanding
or compressing node neighbors). This is useful to explore the available knowledge without a pre-defined goal in

4 This is especially useful in domains such as the history of computing, where, as discussed in Section 2, the knowledge
to be handled is so complex that, even defining an initial scheme to the best of one’s capabilities, it is likely that
sooner or later it will turn out to be insufficient or utterly unsuitable to grasp some part of the domain, in which case
practitioners might suggest how to extend or adapt the problematic parts of the scheme.

57

Credit Hall of Fame

Suggestions

N @BRAINl |Gr@RAIN §

Entity Attributes Attachments Subject Relationship Object

(Edit mode) [tosesrenm s Load new file

Evaluation Evaluation Attributes

Attachments

Loaded fi
oaded files (Edit mode) | tosewcnmese

Load new file

ﬂ'\ . Loaded files (TEST)

- Dotte | sent | upane No. | e

m
h Search results{ et
r Y = -

Fig. 3. GraphBRAIN interface for managing and consulting the knowledge base.

mind, but letting the data themselves drive the search. Thus, serendipity in information retrieval is supported,
and the users may find unexpected information that is relevant to their information needs.

The on-line end-user interface of GraphBRAIN is shown in Fig. 3. The top-left screenshot shows the selection
of a domain, while the top-right screenshot shows an overview of a portion of the overall graph. The bottom-
right screenshot shows the interface for modifying and consulting the entities in the knowledge base, while the
bottom-left screenshot shows the interface for modifying and consulting the relationships.

Moreover, several analysis, mining and information extraction functionalities are provided, such as:

— assess relevance of nodes and arcs in the graph, and extract the most relevant ones;

— extract a portion of the graph that is relevant to some specified starting points (nodes and/or arcs);
— extract frequent patterns and associated sub-graphs;

— predict possible links between nodes.

Some of the underlying algorithms are reused from the literature; others have been purposely extended to improve
their ability to return personalized outcomes that may better satisfy the user’s information needs. This would
ensure that each user obtains tailored information, which is another novelty introduced by GraphBRAIN. For
instance, since the graph is too large to be entirely displayed, when opening the graph tab, the neighborhood
(computed by a modified version of the Spreading Activation procedure) of the most relevant nodes (based on
PageRank, betweenness and harmonic centrality, etc.) is shown. If a user model is available, based on statistics
collected about his previous interaction with the system, the starting nodes may be those more related to his
interests, preferences, aims, background, etc. Of course, the displayed portion of the graph may also be the result
of a specific user query.

5 Current Content of GraphBRAIN

A prototype of GraphBRAIN was used to build ontologies and a knowledge graph, as part of a larger ongoing
project [5] in which GraphBRAIN will act as the knowledge base management platform underlying an inte-

58

Table 2. Statistics on the current content of the GraphBRAIN knowledge base

Classes Relationships
Ontology Inst Attr|A/C Inst| Attr|/A/R|R/C|A/C + R/C
tourism 93 389(4.18 160 5410.34(1.72 5.90
computing 449 1 506(3.35 540| 208]0.39(1.20 4.55
general 333 020(1 744 116|5.24|488 639|39 186|0.08|1.47 6.71
Total 333 562(1 746 011|5.23|489 339|39 448|0.08|1.47 6.70
Total knowledge items 2 079 573 528 787

grated system, currently under development, aimed at supporting all stakeholders involved in touristic activities
(tourists, entrepreneurs and institutions). Four ontologies are currently present in the system:

general including very general concepts and relationships that are expected to be present in almost all domains;
tourism concerning history, cultural heritage items, points of interest, logistics and services, etc.;

food especially concerning the perspective of typical dishes and beverages from specific touristic regions;
computing (the ontology presented in Section 3).

So, the part concerning the history of computing is included as a specific kind of cultural heritage, with the
aim of integrating it with more traditional kinds of cultural heritage, both from a scholarly perspective and for
fostering its fruition in a touristic perspective. E.g., a tourist interested in the history of computing, while in
Bari, might be spotted the chance to visit the collection at the Department of Computer Science, in order to see
a specimen of the Olivetti Programma 101 computer.

The available ontologies share some classes and relationships, which allow to relate knowledge items from
different domains, extending in this way the available scope of search beyond the single perspectives. In particular,
the general ontology acts as a kind of hub to inter-link the other ontologies, and allow specific information
from one domain to be connected to specific information from other domains. Some concepts expressed by the
general ontology are: Category, Document, Person, Place, Word. Class Category is aimed at hosting
items from different taxonomies. Currently, it is filled with the concepts included in WordNet [10,4] and with
the subject categories included in the standard part of the Dewey Decimal Classification (DDC) system [2].
All relationships from WordNet (hyperonymy, several kinds of meronymy, etc.), plus other typical relationships
among concepts, are included in the ontology to interlink the concepts. Note that the classes in these taxonomies
are reified, becoming individuals in the knowledge graph. This allows to handle them within the graph, instead
of formalizing thousands of classes in the ontology. Also, in this way the concepts may be linked to individuals of
other classes (e.g., documents, persons, places) and used as tags to express information about them (e.g., ‘Alan
Turing’ might be linked with ‘Computer Science’, ‘World War IT’; etc.). Class Word is used both to express the
synset definitions in WordNet, and to express linguistic information in the knowledge base. Words may be also
used for lexically tagging other items, just like concepts may be used to semantically tag them.

The current content of GraphBRAIN is summarized in Table 2. For each ontology, the number of instances
(Inst) and attributes (Attr), for both classes and relationships, is shown, along with the average number of
attributes (A/C) and relationship instances (R/C) per class instance. Column A/C + R/C reports the average
amount of information (i.e., the sum of number of attributes and number of relationships) associated to each
class instance. Obviously, the vast majority of knowledge items is in the general ontology, where WordNet and
the DDC taxonomy were automatically loaded, in addition to other items manually entered by the users. Next
comes the computing ontology, which was the main focus of our work and the first domain-specific ontology
built in GraphBRAIN. Finally, the tourism ontology is the most recently added, while the food one was only
defined but not published yet for users to enter individuals. There are less class instances than relationship
instances, indicating a quite connected graph, which is important for interlinking the knowledge and providing
the users with information based on graph browsing. The R/C parameter reveals that the tourism subgraph is
the most connected, followed by the general subgraph and finally by the computing subgraph. As expected, the
average number of attributes per instance is larger for class instances than for relationship instances. Indeed,
relationships are by themselves information carriers. Comparing A/C and A/R, we see that the ‘information
density’ is different between classes and relationships for the various domains. For classes, the richer information
is in the general subgraph, followed by tourism and then by computing. For relationships, it is in the computing
subgraph, followed by tourism and then by general, which is significantly poorer than the others.

While available according to the linked data perspective, the GraphBRAIN knowledge graph is not available
in its entirety as Linked Open Data. Indeed, it is not directly accessible to the public. Access is available only

59

through the querying and graph browsing facilities in the on-line interface, or through pre-defined tools exposed
as services, that, based on their input parameters, return relevant portions of the graph serialized as RDF.

6 Related Work

Some related work concerns the development of ontologies, and associated knowledge graphs, for cultural heritage.
Focusing on the Italian landscape, we mention the following initiatives, that we plan to connect to GraphBRAIN:

Cultural-ON (Cultural ONtology) ° an ontology aimed at modeling the data regarding cultural institutes
or sites, their contact points, all multimedia files which describe them, the agents that play a specific role in
them, events that can take place in them, and any other information useful to the public in order to access
them. Tt is aligned with external ontologies (FOAF, PROV, schema.org, Dublin Core, etc.) [9].

ArCo (Architecture of Knowledge) an ontology for, and a knowledge graph of, Italian Cultural HeritageS.
It models many types of cultural properties (including technological heritage), for which it allows to cap-
ture details such as elements affixed on cultural properties, copies, forgeries and other works related to a
cultural property, specific surveys, cadastral information, historical locations, the communication medium
of intangible demo-ethno-anthropological heritage, etc. It currently reuses, and is aligned to, CIDOC-CRM,
EDM, Cultural-ON, and OntoPiA. The resulting knowledge graph currently includes, and provides as LOD,
293 classes and 469 properties, and a dataset of 173M triples (data from 800.000 records of the General
Catalogue of Cultural Heritage”, a database of Italian cultural heritage entities).

Concerning the use of ontologies together with graph DBs, some works exist that analyze the possibilities for
cooperation. In [3] the potential of applying graph DBMSs to an ontological context in order to create essentially
an ontological tensor, e.g. the algebraic counterparts of the combinatorial multilayer graphs, is outlined, and
its complexity is assessed. Interestingly, both representations were applied to an open dataset with persons and
relationships extracted from the official biography of Steve Jobs and the 1999 film Pirates of Silicon Valley. [8]
discusses technical issues that might limit the impact of symbolic Knowledge Representation on the Knowledge
Graph area, and summarizes some developments towards addressing them in various logics.

Several kinds of tools have been proposed in the literature for ontology development, each one with specific
targets as regards the construction, editing, annotation and merging of ontologies [1]. Among them, the most
popular and mature tool is protégé (https://protege.stanford.edu), based on the OWL-API, which is fully
compliant with the OWL specifications by W3C (http://owlcs.github.io/owlapi). For this reason, Graph-
BRAIN adopted the same OWL-API for its ontology handling functionality, so that the generated ontologies are
fully compliant with the standard and may be edited using protégé. We decided to develop a specific ontology
definition and handling tool for several reasons. First, it had to be embedded into GraphBRAIN’s interface,
so that the administrators could seamlessly and collaboratively build and refine the ontologies. Second, while
existing tools are mainly aimed at defining formal ontologies starting from an RDF knowledge base model, our
perspective stemmed from the need to define a schema for the graph DB, and the translation in standard on-
tology format was a consequential objective. For this reason, the tool was developed so as to allow the users to
comfortably define a schema to be used for building the knowledge base, on which the ontological perspective
was added in order to enable OWL reasoning capabilities. It is also important to point out that there are various
approaches to assessing the quality of tools for the construction of ontologies [6]. In particular, these can be a
valid guide for the extension of our tool with advanced features.

7 Conclusions and Future Work

While most people are used to consider computers as a modern object, pervasive in our lives and thus of little
cultural importance by itself, Computer Science and Engineering are starting to raise significant interest also
from a cultural heritage perspective. Indeed, in spite of them being quite young disciplines in the landscape of
human knowledge, their steady advancements and quick technological obsolescence cause even devices that are
just a few decades old to become historic pieces. While, on one hand, this situation resulted in the current lack
of ontological resources to describe computer devices along with their background and history, the peculiarities

® http://dati.beniculturali.it/lodview/cis/.html
6 Release of the first stable version expected shortly on http://dati.beniculturali.it/

Currently available as an unstable resource at http://wit.istc.cnr.it/arco/index.php?lang=en
7 http://www.iccd.beniculturali.it /it /per-consultare

60

and complexity of this branch of human knowledge makes all available resources, developed for other areas,
unsuitable for it. Hence the need for a new, domain-specific ontology, which is the main objective of this paper.

Also, there is a current lack of formal and well-established resources reporting knowledge about the field.
Instead, precious knowledge about this domain is scattered across many people spread all over the world. This
also causes an urgent need to collect this information in a knowledge base, to make it available to all interested
stakeholders (scholars, researchers, but also common people). As a contribution in this direction, this paper also
proposes a knowledge graph on computing devices and their history.

As a third contribution, it also introduces GraphBRAIN, a general-purpose tool developed to design and
populate knowledge graphs, and to allow collaborative enrichment thereof, in addition to advanced fruition,
consultation and analysis tools, that may be used as an intermediate layer to provide services to end-user
applications aimed at personalized fruition of cultural heritage, also in a touristic perspective.

There are several directions for ongoing and future work. On the ontological side, we are currently extending
the number and content of ontologies in GraphBRAIN, and specifically we are refining the ontology on the
history of computing, based on the feedback emerging from actual use of the system. Starting from the ontology,
we will try and define a cataloguing standard for this kind of cultural heritage items, which is still missing
but would be extremely important. Having the standard, a catalogue might be extracted automatically from
the knowledge base. Concerning the knowledge base, we plan to contact pilot users and associations willing
to contribute their knowledge about the history of computing and of computing devices. As to the platform,
we are continuously improving the interface, also adding functionalities and features. The analysis and mining
algorithms, in particular, will be extended and adapted for providing ever more advanced tools and services
aimed at supporting researchers, scholars and other stakeholders in tailored fruition of the knowledge base.

References

1. Abburu, S., Babu, G.S.: Survey on ontology construction tools. International Journal of Scientific & Engineering
Research 4, 1748-1752 (2013)

2. Dewey, M.: A classification and subject index for cataloguing and arranging the books and pamphlets of a library.
Ambherst, Mass. (1876)

3. Drakopoulos, G., Kanavos, A., Mylonas, P., Sioutas, S., Tsolis, D.: Towards a framework for tensor ontologies over
neo4j: Representations and operations. In: 8th International Conference on Information, Intelligence, Systems &
Applications, IISA 2017, Larnaca, Cyprus, August 27-30, 2017. pp. 1-6. IEEE (2017)

4. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998)

5. Ferilli, S., De Carolis, B., Buono, P., Di Mauro, N., Angelastro, S., Redavid, D.: Una piattaforma intelligente per la
gestione integrata del settore turistico. In: Primo Convegno Nazionale CINI sull’Intelligenza Artificiale — Workshop
on AT for Cultural Heritage. p. 2 pages (2019), http://www.ital-ia.it/submission/163/paper, in Italian

6. Gherasim, T., Harzallah, M., Berio, G., Kuntz, P.: Methods and tools for automatic construction of ontologies from
textual resources: A framework for comparison and its application. In: Guillet, F., Pinaud, B., Venturini, G., Zighed,
D.A. (eds.) Advances in Knowledge Discovery and Management - Volume 3 [Best of EGC 2011, Brest, France]. Studies
in Computational Intelligence, vol. 471, pp. 177-201. Springer (2011)

7. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic
Web, Morgan & Claypool Publishers (2011)

8. Krotzsch, M.: Ontologies for knowledge graphs? In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Proceedings of
the 30th International Workshop on Description Logics, Montpellier, France, July 18-21, 2017. CEUR Workshop
Proceedings, vol. 1879. CEUR-WS.org (2017), http://ceur-ws.org/Vol-1879 /invited2.pdf

9. Lodi, G., Asprino, L., Nuzzolese, A.G., Presutti, V., Gangemi, A., Recupero, D.R., Veninata, C., Orsini, A.: Semantic
web for cultural heritage valorisation. In: Hai-Jew, S. (ed.) Data Analytics in Digital Humanities, pp. 3-37. Springer
International Publishing, Cham (2017)

10. Miller, G.A.: Wordnet: A lexical database for english. Communications of the ACM 38, 39-41 (1995)

11. Robinson, 1., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, 2nd edn. (2015)

12. Vannozzi, F.: Catalogare il patrimonio scientifico e tecnologico: da sic a sts a pst, storia di un percorso (e di
una collaborazione). In: Pratesi, G., Vannozzi, F. (eds.) I valori del museo. Politiche di indirizzo e strategie di
gestione, pp. 98-101. Economia e management della cultura e della creativitad, Franco Angeli Edizioni (2015),
https://core.ac.uk/download/pdf/53672194.pdf, in Italian

