
QuARS

A NLP Tool for Requirements Analysis

Stefania Gnesi and Gianluca Trentanni

CNR-ISTI, Pisa, Italy
stefania.gnesi@isti.cnr.it, gianluca.trentanni@isti.cnr.it

Abstract

QuARS (Quality Analyzer for Requirements Specifications) is a tool
able to perform an analysis of Natural Language (NL) requirements
in a systematic and an automatic way by means of natural language
processing techniques with a focus on ambiguity detection. QuARS
allows the requirements engineers to perform an early analysis of the
requirements for automatically detecting potential linguistic defects.

1 Quality Analysis of NL Requirements: QuARS

NL requirements are widely used in software industry, at least as the first level of description of a system.
Unfortunately they are often prone to errors and this is partially caused by interpretation problems due to the
use of NL itself. An evaluation of NL requirements to address part of the interpretation problems due to linguistic
problems was considered an interesting research problem. However, as any other evaluation process, the quality
evaluation of NL software requirements needs the definition of a quality model. We defined a quality model
composed of high level quality properties for NL requirements to be evaluated by means of indicators directly
detectable and measurable on NL requirement documents distinguishing four quality types, namely syntactic,
structural, semantic, and pragmatic [2, 3, 4, 6]. The quality model was the basis for implementing a tool, called
QuARS 1 – Quality Analyzer for Requirement Specifications– for analyzing NL requirements in a systematic and
automatic way [5].

The approach provided by QuARS is mainly focused on lexical and syntactic quality aspects, while the
pragmatic aspect, which depends on the reader of the requirements, is not taken into account. In particular
QuARS performs expressiveness analysis by means of a lexical and syntactic analysis of the input file in order
to identify those sentences containing defects according to the quality model looking at:

1. Unambiguity: the capability of each Requirement to have a unique interpretation.

2. Clarity: the capability of each Requirement to uniquely identify its object or subject.

3. Understandability: the capability of each Requirement to be fully understood when used for developing
software and the capability of the Requirement Specification Document to be fully understood when read
by the user.

Indicators, in this case, are syntactic or structural aspects of the requirements specification documents that
provide information on the defects related to a particular property of the requirements themselves.

Copyright c© 2019 by the paper’s authors. Copying permitted for private and academic purposes.
1http://quars.isti.cnr.it/

Figure 1: QuARS Process

1.1 Using QuARS

QuARS performs a linguistic analysis of a requirement document in plain text format and points out the sentences
that are defective according to the expressiveness quality model according to the process depicted in Figure 1.

The defect identification process is split in two parts: (i) the ”lexical analysis” capturing optionality, sub-
jectivity, vagueness, and weakness defects by identifying candidate defective words that are identified into a
corresponding set of dictionaries; and (ii) the ”syntactical analysis” capturing implicity, multiplicity and under-
specification defects.

• Optionality means that the requirement contains an optional part (i.e. a part that can or cannot be
considered) and example of Optionality-revealing words are: possibly, eventually, in case, if possible, if
appropriate, if needed,

• Subjectivity means that the requirement expresses personal opinions or feelings, i.e. similar, similarly, having
in mind, take into account, as [adjective] as possible,. . . .

• Vagueness means that the requirement contains words having a no uniquely quantifiable meaning and
example of Vagueness-revealing words are: adequate, bad, clear, close, easy, far, fast, good, in front, near,
recent, significant, slow, strong, suitable, useful,

• Weakness means that the sentence contains a ”weak” verb. A verb that makes the sentence not imperative
is considered weak (i.e. can, could, may, . . .).

• Implicitly means that the requirement does not specify the subject or object by means of its specific name but
uses a pronoun or other indirect reference. Demonstrative adjectives (this, these, that, those) or Pronouns
(it, they...) or terms having the determiner expressed by a demonstrative adjective (this, these, that, those)
or implicit adjective (i.e. previous, next, following, last...) or preposition (i.e. above, below...) are considered
implicity indicators.

• Multiplicity: the occurrence of multiplicity-revealing terms: and/or, or, ... is considered a multiplicity
indicator, as well as the presence of itemized lists.

• Under-specification means that the requirement contains a word identifying a class of objects without a
modifier specifying an instance of this class. The occurrence of wordings needing to be instantiated (i.e.
information, interface, that must be better defined, flow instead of data flow, control flow, access instead of
write access, remote access, authorized access, testing instead of functional testing, structural testing, unit
testing, etc.) is considered an under-specification indicator.

Table 1: Example of Requirements sentences containing defects

Indicators Negative Examples
Optionality the system shall be.., possibly without..
Subjectivity ..in the largest extent as possible..
Vagueness the C code shall be clearly commented..
Weakness the initialization checks may be reported..
Implicity the above requirements shall be verified..
Multiplicity the mean time..and restore service..
Under-specification ..be able to run also in case of attack.

In Table 1 we can see some examples of requirements that contain linguistic defects.
When the analysis is performed, the list of defective sentences is displayed by QuARS and a log file is created.

The defective sentences can be tracked in the input requirements document and corrected, if necessary. Metrics
measuring the defect rate and the readability of the requirements document under analysis are calculated and
stored. The available metrics are the Coleman-Liau Formula readability metrics [1] an the defect rate (i.e. the
number of defective sentences / the total number of sentences).

1.2 Ambiguity versus Variability

Ambiguity defects that are found in a requirements document may be due to, intentional or unintentional, ref-
erences made in the requirements to issues that may be solved in different ways, possibly envisioning a set of
different products rather than a slngle product. We therefore can use the analysis ability of QuARS to elicit
the potential variability hidden in a requirement document. Variability may be due to vagueness and vagueness
occurs whenever a requirement admits borderline cases, e.g., cases in which the truth value of the sentence
cannot be decided since vague terms are used in it. QuARS allows the creation of new dictionaries useful for
defining new indicators characterising potential variability in requirements. Variability may be revealed by the
occurrence of variability-revealing terms such as: if, where, whether, when, choose, choice, implemented, imple-
ment, implements, provided, provide, provides, available, feature, range, select, selected, selects, configurable,
configurate, . . . [11].

1.3 QuARS User Interface

The QuARS GUI is composed of three main frames. The Input Frame that allows to load, display and edit input
file containing the requirements to be analyzed (the supported file format is plain text). The Dictionary Frame
that allows the user to select, display and edit the dictionary corresponding to the type of analysis of interest.
The Output Frame where the results of the analysis are displayed. Figure 2 shows the QuARS GUI. Figure 3
reports the output of an analysis performed according to the vagueness criterion.

2 QuARS: Application Experiences

QuARS has evolved from an initial prototype to the current reliable and user-friendly version after subsequent
experiments over several case studies aimed at evaluating the effectiveness of the methodology and identifying
improvement opportunities in terms of both usability and provided functionalities. Some of the case studies [4]
came from industrial projects and these belonged to several application domains. More recently, two different
experiences have been reported to automatically identify quality defects in natural language requirements in the
Railway Domain by using QuARS and the SREE tool, that is an extension of QuARS defined by means of the
GATE tool in [8] and [12].
In [?, 10] QuARS has been instead used to study a classification of the forms of ambiguity that indicate variation
points starting from the analysis of documents describing real systems, since ambiguity or underspecification
at requirements level can in some cases give an indication of possible variability, either in design choices, in
implementation choices or configurability.

All these experiments provided us with feedbacks to evolve the tool itself, and allowed us to gather a record
of information on the:

• Effectiveness of the tool in finding defects: the number of defects found in the NL requirement document
depends more on the experience and skill of the requirements engineer than on the company maturity.

Figure 2: QuARS User Interface

Figure 3: QuARS analysis

• Frequency and typology of false positives: the presence of false positives has been observed in every case
study. It can be considered as a physiological side effect of the application of the tool. The rate of false
positives respect to actual defects has been rarely over 10%.

• Effort required to apply the tool and to tailor the dictionaries for specific application: the effort required to
perform the analysis of a requirements document is relatively low. The main effort is due to the preparation
of the input document since this has to be in plain text format.

Acknowledgements

This work was partially supported by the H2020 Shift2Rail project AstRAIL.

References

[1] Meri Coleman, T. L. Liau, A computer readability formula designed for machine?scoring. Journal of Applied Psy-
chology, 60, 283-284. 1975.

[2] Fabrizio Fabbrini, Mario Fusani, Vincenzo Gervasi, Stefania Gnesi, Salvatore Ruggieri: On Linguistic Quality of
Natural Language Requirements. 4th REFSQ,57-62, Presses Universitaires de Namur, 1998.

[3] Fabrizio Fabbrini, Mario Fusani, Stefania Gnesi, Giuseppe Lami: The linguistic approach to the natural language
requirements quality: benefit of the use of an automatic tool, 26th Annual NASA Software Engineering Workshop,
97-105, IEEE, 2001.

[4] Fabrizio Fabbrini, Mario Fusani, Stefania Gnesi, Giuseppe Lami, An automatic quality evaluation for natural language
requirements, 7th REFSQ, 2001.

[5] Stefania Gnesi, Giuseppe Lami, Gianluca Trentanni: An automatic tool for the analysis of natural language require-
ments. Computer. Systems: Science & Engineering. 20(1), 2005.

[6] Daniel M. Berry, Erik Kamsties, Michael M. Krieger: From Contract Drafting to Software Specification:
Linguistic Sources of Ambiguity. University of Waterloo, 2017. https://cs.uwaterloo.ca/~dberry/handbook/

ambiguityHandbook.pdf

[7] Daniel M Berry, Antonio Bucchiarone, Stefania Gnesi, Giuseppe Lami, Gianluca Trentanni, A new quality model for
natural language requirements specifications, Proceedings of the international workshop on requirements engineering:
foundation of software quality, 12th REFSQ, 2006.

[8] Antonio Bucchiarone, Stefania Gnesi, Gianluca Trentanni, Alessandro Fantechi: Evaluation of Natural Language
Requirements in the MODCONTROL Project, ERCIM News 2008(75), 2008.

[9] Alessandro Fantechi, Stefania Gnesi, Laura Semini: Ambiguity defects as variation points in requirements. 11th
VaMoS: 13-19, ACM, 2017.

[10] Alessandro Fantechi, Alessio Ferrari, Stefania Gnesi, Laura Semini: Hacking an Ambiguity Detection Tool to Extract
Variation Points: an Experience Report, 12th VaMoS: 43-50, ACM, 2018.

[11] Alessandro Fantechi, Alessio Ferrari, Stefania Gnesi, Laura Semini: Requirement Engineering of Software Product
Lines: Extracting Variability using NLP, 26th RE 2018: 418-423, IEEE, 2018.

[12] Benedetta Rosadini, Alessio Ferrari, Gloria Gori, Alessandro Fantechi, Stefania Gnesi, Iacopo Trotta, Stefano
Bacherini: Using NLP to Detect Requirements Defects: An Industrial Experience in the Railway Domain. 23rd
REFSQ, LNCS 10153, 344-360, Springer 2017.

