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Abstract

[Context and Motivation] Existing approaches for specification min-
ing and process mining allow to automatically identify requirements-
level system properties, which can be used for describing, verifying, or
monitoring systems. We have developed an approach that can mine
constraint candidates from event logs to support requirements moni-
toring. [Question/Problem] However, the usefulness of mining ap-
proaches is currently limited because of (i) weak support for adjusting
the algorithms and settings to the current problem, (ii) the high num-
ber of properties mined from complex systems, and (iii) the typically
high false positive rate. [Principal Ideas/Results] In this paper, we
present REMINDS-CMT, a tool that guides domain experts through-
out the mining process. [Contributions] The tool allows users to
experiment with different thresholds and configurations of our mining,
grouping, filtering, and ranking algorithms to ease the selection of use-
ful constraints. We demonstrate the tool’s features using constraints
mined from event logs of a complex cyber-physical system controlling
unmanned aerial vehicles.

1 Introduction

Researchers from different areas have proposed approaches to (semi-)automatically extract requirements-level
system properties, e.g., in the form of constraints, invariants or validity rules, by analyzing source code or
outputs of software systems. For instance, in the field of specification mining [6] static approaches [10, 14] use
the source code of programs to detect invariants, while dynamic mining approaches [2, 5] analyze the output
of programs, e.g., log statements, to derive specifications. Approaches in the area of process mining [7, 11]
automatically generate models of existing processes, e.g., in the form of Petri nets, by analyzing (event) logs. In
our own research we have developed an approach [3, 4] for mining different types of constraints from event logs
recorded from software systems to support requirements monitoring [9, 12].

The usefulness of such mining approaches is typically challenged by the high number of mined properties and
the high number of false positives. Constraints are only considered for monitoring if they describe behavior
domain experts considers as relevant. This means that experts potentially need to review many constraint
candidates to select the ones that really need to be monitored. For this purpose tool support is required. In this
paper, we present REMINDS-CMT, a tool that supports domain experts throughout the mining process, e.g., in
filtering, grouping, and ranking constraint candidates. It allows users to experiment with different parameters,
configurations and algorithms to eventually select constraints for requirements monitoring. REMINDS-CMT is
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a stand-alone tool, not an extension of REMINDS: events recorded with REMINDS [13] are just one possible
input. However, it currently uses the REMINDS DSL to output the constraints. We demonstrate our tool using
examples from a real-world cyber-physical system controlling unmanned aerial vehicles, i.e., drones [1].

2 Our event-based constraint mining approach

Our constraint mining approach [3, 4] analyzes events and data recorded from systems (e.g., through monitoring)
and derives candidates for constraints that can be used to check the compliance of these systems at runtime.

The input for our approach are event logs comprising recorded events and associated data, usually resulting
from multiple runs of different (sub-)systems completing different tasks. They contain multiple event sequence
types (patterns of multiple event types that have to occur in a given order) and event sequence instances (concrete
events matching an event sequence type). The information stored in event logs also has implications on the types
of constraints that can be mined. The minimal input needed for our mining approach is an event log containing
timestamped events. Event logs can be produced by monitoring tools such as REMINDS [13], but also by standard
logging tools used in most software systems today.

We use the REMINDS constraint DSL [8] to represent the mined constraints. Constraints in this DSL contain
a specific trigger event type to initialize their evaluation. Constraints are checked at runtime as soon as an event
of this type is encountered in the stream of events produced by the monitored system.

In the context of automation software and cyber-physical systems we have encountered the following types of
constraints: Temporal constraints define a sequence of events that has to occur in a specific or arbitrary order
and (optionally) within a specified amount of time. Such constraints typically describe a specific task of the
monitored system, which consists of several steps, e.g., for the drone example a temporal constraint could check
that a start event (the drone started flying a route) is followed by waypoint events and eventually an end
event (the drone finished flying the route). Temporal constraints can be mined from an event log containing
timestamped events without any further input. Value constraints specify the valid content of one or several
event data elements — either as one explicit value (e.g., # == 1) or with thresholds (e.g., 5 < z < 10). Often
such data elements are grouped hierarchically, e.g., coordinates (X, Y, Z) are grouped under an element location
sent as part of state events containing the status of the drone. Hybrid constraints combine temporal and value
constraints. They include multiple events that have to occur in a given order and/or time, like in a temporal
constraint, and additionally check event data elements of at least one of these events, like in a value constraint.
Hybrid constraints can also check the relation between multiple event data elements, potentially related with
multiple different events, e.g., to ensure that a certain ID remains unchanged throughout one particular event
sequence. For the drone example (cf. Figure 1) a hybrid constraint could check that after a handshake event a
state event occurs and that the state event contains the data element groundspeed with value 0, which checks
that a new drone connecting to the system by performing a handshake is waiting for commands on the ground.

3 REMINDS-CMT

For complex software systems our mining approach potentially detects a large number of constraint candidates.
While many candidates can be removed from the list automatically, e.g., by removing duplicates, the selection
of constraint candidates cannot be fully automated and relies on domain knowledge. We have thus developed
REMINDS-CMT, an interactive tool guiding domain experts through the mining process and supporting them in
selecting the relevant constraints from the candidates. The tool provides a wizard-based interface (cf. Figure 1)
supporting end users throughout the mining process. It provides an interface to the algorithms of our approach
and allows users to select the event logs to be analyzed, to (optionally) configure all stages of the mining process,
and to review the constraint candidates for selection. Users can experiment with different filtering, ranking and
grouping algorithms and can also search in the list of candidates (cf. options on top of the screenshot shown in
Figure 1). The tool further allows users to fine-tune constraint candidates, e.g., change the value or operator
used in a value constraint (cf. the spinner and combo box controls after each data check and after each ‘within’
command for the constraints shown in Figure 1). It is possible to select individual constraints or whole groups
of constraints, which are then exported to a monitoring tool such as REMINDs [13].

When designing REMINDS-CMT we put special emphasis on flexibility and extensibility. The UI is therefore
implemented in a two-level fashion: the outer level contains basic UI elements like the menu bar, whereas the
inner level contains the individual pages as described below. This allows for easy exchange and extension of
wizard pages. Further, regarding the extensibility in the model part of the application, we implemented all
algorithms — such as the filtering, ranking, and grouping algorithms — in Java and provide an API that allows to
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Figure 1: REMINDS-CMT: interactive tool support for selecting constraints.

configure thresholds and factors influencing the calculations. The tool solely relies on this API — meaning that all
algorithms can easily be replaced and new algorithms or grouping factors can easily be added by implementing
an interface.

Input file selection. The first page of the tool allows the user to choose one or multiple event logs that are
used as input for the mining algorithms. The user also has to define how the logs define the event types (e.g.,
waypoint event, handshake event, etc.), timestamps, and sources of the events (e.g., a particular drone). For
event logs recorded with our own monitoring tool REMINDS, this can be parsed automatically.

Input filters. Our tool allows to define filters on the events from the input event list read from the event logs.
Options for these filters include filters on event types, sources, and time frames. Multiple filters can be combined
and all filters can be defined inclusively or exclusively. Users can view statistics on how many events of the input
list are filtered. Additionally, the tool shows examples to illustrate which kind of events pass the filter and which
do not.

Configure algorithms. The tool then provides the possibility to choose and configure the mining algorithm,
i.e., to skip certain parts of the selected algorithm. For example, the user can choose not to mine any constraints
based on intervals calculated from the distribution of the observed event data items.

Constraint filtering. The tool allows to select and configure filters on the mined constraint candidates. Exam-
ples for such filters include filters on constraint types, accuracy (i.e., number of positive evaluations of a mined
constraint in the event log), and constraints on specific event data items.

Grouping. To support the user during the selection of useful constraints from the (potentially very long) list of
mined constraint candidates the tool groups the candidates (cf. Figure 1) based on multiple factors: the trigger
event type (e.g., handshake event), the constraint type (e.g., hybrid constraint), the event sequence (e.g., start—
waypoint—end), the event data item names (e.g., status, groundspeed), and the event data item values (e.g.,
0, ‘active’). The groups are built such that constraints with high similarity — calculated as the weighted average
of all factors — are grouped together. Figure 1 shows several constraints concerning handshake events and state
events which have been automatically grouped. The weights for all factors and the threshold for grouping
constraints are configurable.

Ranking. The user can select the ranking from a list of provided strategies (cf. Figure 1 top left). The tool
ranks the constraint candidates within each of the groups first and selects the highest ranked constraint from
each group. These constraints are then ranked to estimate the order of the groups.



Our tool supports the following ranking strategies [3]: (i) The first algorithm ranks constraints based on
accuracy, calculated as the percentage of checks evaluating to true, among all evaluations of the given constraint
for the input event log(s). (ii) The second strategy ranks constraints primarily based on their type. Temporal
constraints depict the behavior of software systems and are often less specific. They are ranked first, followed
by hybrid constraints, and value constraints. (iii) The third, combined ranking strategy sorts the constraints
based on their average rank from the accuracy-based strategy and the type-based strategy. A fourth ranking
strategy focuses on (iv) evaluations: it combines the accuracy (strategy (i)) with the relative number of positive
evaluations, i.e., the number of positive evaluations for the given constraint candidate divided by the highest
number of positive evaluations for any constraint candidate. Additional ranking strategies can be defined relying
on the provided API.

Adapt and select constraints. Finally, the user can adapt the mined constraints and select the ones that should
be exported. Possible adaptations include changing the duration and the thresholds of constraints and changing
the used operators. For example, the maximum speed for a drone in a mined constraint is set close to the
maximum speed encountered in the input data (6.1 m/s). However, in other scenarios drones can safely fly faster
than this maximum and therefore this threshold can be increased before exporting the constraint.

4 Conclusions

We have presented REMINDS-CMT, an interactive tool that supports domain experts in mining constraints for
requirements monitoring. The tool is flexible and extensible, e.g., it supports different input formats and new
pages can be added in just a few steps. It allows end users to effectively mine constraints and customize the
mining algorithm to their use case. So far, we have used our tool for constraints mined from event logs of two
complex real-world systems [3] — a plant automation software system and a cyber-physical system controlling
unmanned aerial vehicles. We recently presented our tool to several potential users of our industry partner
during a workshop and received very positive feedback. In future work we plan to evaluate our tool for further
systems and extend it based on feedback we will receive.
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