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Abstract. Finding alignments between ontologies is a challenging and
time-consuming task. When the aligned ontologies change, these align-
ments need to be changed as well. A recent approach to this problem
proposes using embeddings as a representation for classifying changes. In
this work, we compare embedding-based approaches to a neural network
architecture built for node classification in knowledge graphs, namely re-
lational graph convolutional networks. In our evaluation on two datasets
from the biomedical domain, the best-performing embedding-based meth-
ods are RDF2Vec and TransE. The Graph convolution approach achieves
similar results as the best-performing embedding based methods on a
smaller dataset but outperforms all other approaches in standard classi-
fication metrics on a bigger dataset.

Keywords: Ontology Alignment · Alignment Adaption · Graph Em-
bedding · Graph Neural Network.

1 Introduction

Ontologies that cover overlapping topics are often connected by so-called on-
tology alignments, that describe the relation of concepts in different ontologies.
Finding these alignments is challenging and requires some degree of manual work,
which can be supported by approaches from the area of ontology matching. On-
tology matching has been an important area of semantic web research for years
[17]. However, finding these alignments is only a part of the puzzle. As ontologies
should change with the knowledge they represent, not only the ontologies need
to be adapted, but the alignments as well. As with finding alignments, adapting
them is often done manually and is very time-consuming. This is especially the
case in the area of biomedical ontologies, given the changes required in this area
as well as the size of the ontologies. Hence, automation of this task is desirable.

Rule-based approaches like [7] and [14] can be used to automate this task.
These methods are based on a set of hand-crafted rules, that need to be adapted
and maintained as ontology evolution itself may change over time. To automat-
ically classify changes, we proposed a learning based method that first learns
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graph embeddings as a change representation and then applies established clas-
sification approaches [10].

In this work, we examine the application of relational graph convolutional
networks [16] to the same problem. This approach can be applied directly to
the graph and does not require a separate pre-training to generate a meaningful
graph representation. Also, we compare its performance regarding established
classification methods to approaches with intermediate representation learning.
To achieve a fair comparison, we evaluate several embedding-based methods on
an established dataset for mapping adaption and compare the results to results
obtained by applying a graph convolution.

The remainder of this paper is structured as follows: Section 2 presents foun-
dations and related work and identifies a research gap. Our approach is discussed
in Section 3. In Section 4, an evaluation of different classification approaches is
presented. Results of this evaluation are discussed in Section 5. Section 6 closes
this paper with a conclusion and an outlook.

2 Foundations and Related Work

Ontology Alignments (sometimes referred to as Ontology Mappings) are used
to connect concepts in different ontologies. When these ontologies change, an
adaption of these alignments is usually done manually. The problem of adapting
these alignments is referred to as the mapping adaption problem [7]. Work on
this topic is usually divided into the area of compositional mapping adaption and
incremental adaption [4]. To create a new alignment A′
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The incremental approach applies a set of rules that determine how alignments
should be adapted to ontology changes. While these approaches stem from the
area of database and XML schema adaption [19,22], works by Gross [6] and Dos
Reis [5] have shown that both ideas can be applied to ontologies.

The mentioned approaches either rely on ontology mapping approaches be-
tween versions or a set of hand-crafted rules. Therefore, adaptions are either
dependent on the quality of automatic ontology matching techniques or rely
on manual work by an expert for creating rules. To automate incremental ap-
proaches using machine learning, a representation of nodes in the ontologies is
required. An approach with manual feature engineering for predicting changes
in ontologies in general was proposed by [2]. Features considered included back-
ground information from other ontologies on the same topic and records from
publication databases as well as simple structural features such as the number of
siblings and sub- or superclasses. [10] proposed using graph embeddings, specifi-
cally RDF2Vec-Embeddings [15] as a node representation, which provides a more
detailed representation of the graph structure. This representation is then used
to train established classification approaches for the mapping adaption problem.
However, only one kind of graph embedding, namely RDF2Vec, is regarded.
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Over the last ten years, several approaches for embedding knowledge graphs
have been proposed. Some of these approaches are inspired by language model-
ing techniques such as Word2Vec [12]. The aforementioned RDF2Vec [15] and
an approach based on global embeddings [3] are methods from this category. An-
other category of techniques is based on knowledge base completion approaches,
where entity and relation embeddings are learned to provide some kind of scor-
ing function to predict whether a triple should be part of the graph. The scoring
function is mostly based on some kind of translation [1,20] or multiplication
[21,18]. Embeddings from both categories can theoretically be useful when pre-
dicting alignment changes, however only one approach from the first category
has been evaluated in [10].

The aforementioned idea focuses on first creating embeddings and then learn-
ing the actual task at hand, namely, predicting which part of an ontology align-
ment should change as a consequence of an ontology change. [16] has presented
a graph network architecture that can be used for end-to-end learning on RDF
graphs. However, this kind of approach has not yet been evaluated for predicting
ontology alignment changes.

To our knowledge, the state of the art on ontology mapping adaption lacks an
evaluation of graph network approaches and a comparison of different knowledge
base embedding methods as a foundation for change classification tasks. This
aspect is at the core of the research presented in this paper.

3 Approach

The classification task we try to solve in this work is the same as in [10]: For
each changed entity c that is near an alignment statement, we predict whether an
alignment statement near c needs to be changed. To do so, we train a classifier on
data extracted from a version history. The classes we extract represent whether
in a given version change, for a changed entity c, alignment statements in the
neighbourhood of c have also been changed. For the classification itself we use two
approaches in several variants: (1) the approach with intermediate representation
learning, where we train a model for embedding all entities in the knowledge
graph and subsequently apply established classification techniques and (2) the
graph-network-based approach, where we use a relational graph convolutional
network [16] for end-to-end classification.

For the approach with intermediate representation learning, an embedding is
learned by creating a single graph out of both ontologies and the mapping and
applying a knowledge graph embedding approach to this graph. As embedding
approaches we compare the established knowledge base completion approaches
TransE [1], TransH [20], Distmult [21] and Complex [18] and RDF2Vec [15]
from the area of language-modeling based approaches. These approaches have
been chosen because of their easy accessibility in the OpenKE framework and
their general popularity. The classification approaches we apply on top of these
embeddings are from the area of Regression, Naive Bayes, Tree-Based Algorithms
as well as Support Vector Machines and Multilayer Perceptrons.
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For the graph-network-based approach we apply relational graph convolu-
tional networks (RGCNs) [16]. RGCNs are an extension of graph convolutional
networks [11] to relational graphs. The core idea of RGCNs is that the prop-
agation between RGCN-layers is based on the direct connections of a node in
the relational graph. At each layer of the network, each neuron represents the
activation at a graph node. In detail, the propagation function for a forward pass
is
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σ is an activation function, ci,r is a normalization constant and W l
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matrix in layer l for relation r. Hence, neural network activation travels through
the graph. The weight matrices determine what kind of relations at each layer
transport what kind of information. The depth of the network determines how
many steps in the graph the activation is propagated. To create the sets R and
Nr

i for all relations, we use a graph constructed from both ontologies and the
alignment prior to the changes we want to classify.

4 Evaluation

The main research question of our evaluation is how a graph-convolution-based
approach compares to a two-step approach with separated representation learn-
ing and classification. To evaluate this question, the impact of the graph em-
bedding choice in relation to the performance of the approach when separating
classification and representation learning also needs to be examined. To address
these issues, we conducted a series of experiments that are described in the
following subsections.

4.1 Dataset

The dataset we use has been extracted from biomedical ontologies by [9] and
has been made publically available by the authors of [6] on the web1. This
dataset consist of three biomedical ontologies – SNOMED, FMA and the NCI
Thesaurus, with version from 2009-2012 and mappings between all ontologies
for each of those versions.

These ontology versions are used as a silver standard, since ontology and
mapping versions are not necessarily perfect but contain errors. For each changed
entity close to an alignment statement in a new version of the ontology, we
examine, if an alignment statement has been changed. If this is the case, we

1 https://dbs.uni-leipzig.de/de/research/projects/evolution of ontologies and
mappings/ontology mapping adaption

https://dbs.uni-leipzig.de/de/research/projects/evolution_of_ontologies_and_mappings/ontology_mapping_adaption
https://dbs.uni-leipzig.de/de/research/projects/evolution_of_ontologies_and_mappings/ontology_mapping_adaption
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assign the changed entity the class Cchange, else, we assign the class Cnochange.
Table 1 gives an overview of the datasets we use. For each pair of ontologies, we
use two sets of changes: one set consisting of changes from 2009-2011, which is
always used as the training set, and one set of changes from 2011-2012, which is
used as the test set. In general, Cchange is always smaller than Cnochange. This
effect is present to a larger extent in SNOMED-FMA than in FMA-NCI.

Table 1. Datasets

Version Entities Triples #Cchange #Cnochange

FMA-NCI 2009-2011 2M 7M 725 984
2011-2012 352 421

SNOMED-FMA 2009-2011 4M 15M 1526 13435
2011-2012 177 6925

4.2 Approach with Intermediate Representation Learning

For comparing different embedding methods as a part of the representation learn-
ing process, we first train embeddings and then compare the performance of clas-
sifiers that use these embeddings as features on our dataset. To train embeddings
from the knowledge graph completion area, we use the OpenKE-Framework [8].
To train RDF2Vec-embeddings, we use the implementation2 provided by the au-
thors of [15]. Hyperparameters where chosen based on recommendations in the
documentation.

The classification itself was implemented using scikit-learn[13]. We used clas-
sifiers from several areas, including classic regression, naive bayes and nearest
neighbour approaches as well as tree-based algorithms, SVMs and a feed-forward
neural network. A list of all classifiers used is shown in Table 2. In order to
find the optimal embedding-classifier-combination all possible combinations were
evaluated, yielding a total of 40 combinations.

As evaluation metrics we use standard classification metrics, namely preci-
sion, recall, f1-measure, accuracy, roc-auc score and average precision. Precision,
recall and f1-score are measured regarding the class Cchange, since classifica-
tion performance regarding this aspect is the most important for this task. We
evaluated each classification method on each embedding on both datasets, FMA-
NCI and SNOMED-FMA. The only exception is that we did not use RDF2Vec-
embeddings on SNOMED-FMA. RDF2Vec uses a two-step approach: first, ran-
dom walks through the graph are created (typically around 200 random walks
per entity). With the SNOMED-FMA graph containing 4 million entities and
more than 15 million triples, creating random walks for all entities would have
taken too long to be feasible given the hardware we had available. The main
issue here was the size and number of random walks.
2 http://data.dws.informatik.uni-mannheim.de/rdf2vec/code/

http://data.dws.informatik.uni-mannheim.de/rdf2vec/code/
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Table 2. Classifiers

Category Method

Regression Logistic Regression (LR)
Naive Bayes Gaussian Naive Bayes (NB)
Nearest Neighbour KNN
Tree-Based Algorithms CART, Random Forest (RF)
Support Vector Machines RBF-Kernel, Linear Kernel
Multilayer Perceptron MLP

4.3 Graph Network Based Approach

For the graph network based approach, we used the RGCN implementation
written by the authors of [16] that is available on GitHub3. For trainining

the model we used 5 hidden layers, a l2 penalty of 0.005, a dropout rate
of 0.05 and a learning rate of 0.01 with 50 training epochs. We choose only
5 hidden layers, since otherwise the model would consume too much memory
on the SNOMED-FMA dataset. The other parameters were determined by a
grid search over the hyperparameters. This approach was evaluated on the same
dataset with the same metrics as the embedding-based approach.

4.4 Results

Results of this evaluation procedure for the dataset FMA-NCI are shown in Table
3. Underlined entries represent the best values for each metric. For readability
purposes, we only show the best and the second-best results for every metric of
the combinations of embedding methods and classification approaches. For each
embedding method, we also show the two best combinations of classification
method and embedding regarding f-measure. The graph embedding is nondeter-
ministic. To account for graph embedding stability, we repeated the embedding
step and evaluation. Since the differences between different runs of the embed-
ding models were insignificant, we only report results of the first experiment.

Of the embedding-based methods, RDF2Vec with Naive Bayes achieves the
best performance comparing all metrics except precision. At least one of the
other classifier/embedding combination achieves a similar performance given
one specific metric. The RGCN approach achieves very similar results to the
RDF2Vec-based classifier.

Results for SNOMED-FMA are shown in Table 4. When observing the met-
rics for this dataset, it is important to reconsider the distribution of classes
in the test set: only 2.6% of changes in the test set are in class Cchange. As
already mentioned, RDF2Vec is missing from this evaluation, as creating the
embeddings would have taken to much time on this dataset. On this dataset, no
embedding based method is better than the other methods in nearly all metrics.
The RGCN approach clearly outperforms the embedding-based methods on this

3 https://github.com/tkipf/relational-gcn

https://github.com/tkipf/relational-gcn
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Table 3. FMA-NCI Results

embedding classifier f1 acc prec rec roc auc avg. prec

TransE KNN 0.587 0.659 0.642 0.541 0.648 0.553
RF 0.551 0.659 0.672 0.467 0.641 0.553
SVM(RBF) 0.265 0.602 0.771 0.160 0.561 0.500
MLP 0.550 0.683 0.756 0.432 0.659 0.582

TransH MLP 0.555 0.655 0.659 0.479 0.638 0.549
RF 0.567 0.657 0.655 0.500 0.643 0.552

DistMult RF 0.516 0.639 0.647 0.429 0.619 0.534
MLP 0.560 0.656 0.657 0.488 0.640 0.551

Complex MLP 0.572 0.611 0.565 0.580 0.608 0.516
LR 0.398 0.542 0.485 0.337 0.523 0.461

RDF2Vec NB 0.657 0.548 0.701 0.619 0.501 0.701
LR 0.735 0.647 0.774 0.700 0.611 0.752

RGCN 0.624 0.778 0.706 0.561 0.723 0.540

dataset. Applying RGCNs results in significantly higher values in nearly all met-
rics except for accuracy, where the combination of TransE and linear regression
obtains similar results, which is not a remarkable score given the distribution of
classes in the test set.

To adapt our approach to the unbalanced dataset, we conducted two further
experiments: We repeated our experiments on the SNOMED/FMA-Dataset us-
ing (1) oversampling and (2) undersampling of training data so that the training
set was balanced in both experiments. Table 5 shows an excerpt of the results.
We only show the results with highest f-measure for each embedding method out
of both experiments. All best results of embedding-based methods stem from the
experiment with oversampling, whereas the best RGCN-result stems from the
undersampling experiment. Using oversampling, the RGCN overfitted despite
regularization and dropout. While the f-measure values look similar to the best
results without oversampling or undersampling, as expected, recall is higher,
whereas precision is lower.

5 Discussion

When comparing the approaches that combine embeddings with traditional clas-
sification methods, we can observe that RDF2Vec in combination with Naive
Bayes seems to show the best results where the computational effort allows it.
However, since generating random walks is very costly, using this approach is
not possible for large knowledge graphs. Another embedding method that seems
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Table 4. SNOMED-FMA Results

embedding classifier f1 acc prec rec roc auc avg. prec

TransE LR 0.070 0.974 0.318 0.040 0.519 0.037
NB 0.155 0.857 0.091 0.525 0.695 0.060
KNN 0.155 0.965 0.192 0.130 0.558 0.047
RF 0.189 0.944 0.148 0.260 0.611 0.057

TransH MLP 0.248 0.966 0.276 0.226 0.605 0.082
RF 0.191 0.944 0.149 0.266 0.613 0.058

Distmult MLP 0.193 0.943 0.150 0.271 0.616 0.059
RF 0.221 0.943 0.168 0.322 0.641 0.071

Complex RF 0.243 0.944 0.183 0.362 0.660 0.082
MLP 0.221 0.937 0.160 0.356 0.654 0.073

RGCN 0.542 0.978 0.508 0.581 0.784 0.305

Table 5. SNOMED-FMA Over/Undersampling

embedding classifier f1 acc prec rec roc auc avg. prec

TransE RF 0.222 0.896 0.137 0.598 0.751 0.091
TransH CART 0.224 0.896 0.138 0.605 0.754 0.093
Distmult MLP 0.223 0.895 0.136 0.605 0.753 0.092
Complex MLP 0.222 0.895 0.136 0.599 0.751 0.091
RGCN 0.461 0.965 0.355 0.656 0.814 0.241

very promising is TransE. TransE-based classification is present in all top two
performers for every metric. Hence, the choice of embedding makes a difference
regarding classification performance. RDF2Vec and TransE as representations
perform best on the presented datasets.

Given the performance of the RGCN approach on both datasets we can see
that RGCN can achieve similar or better results than a combination of em-
bedding and classification approaches. On the first dataset, its performance was
similar to the best combined approach, on the second dataset it was significantly
better. Another advantage of this end-to-end learning approach is that it is signif-
icantly faster than first training the embeddings, especially for large databases.
Training embeddings using OpenKE-Embeddings or RDF2Vec at this scale was
slower then the complete RGCN classification by a factor of 20-50. On the larger
dataset, embedding the graph using RDF2Vec even took to long to be actually
usable. Therefore the answer to the research question is that a graph-network-
based approach can achieve similar or superior performance than a separated
representation learning and classification approach.
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6 Conclusion and Outlook

In this paper, we presented two approaches to predicting, whether alignment
statements need to change after an ontology update: a two-step approach that
consists of representation learning as a first step and established classification
methods as a second step and an end-to-end approach that uses a neural net-
work architecture specialized on node classification in relational graphs. In our
evaluation, we could show that on the dataset we used, the best-performing rep-
resentation learning approaches where RDF2Vec and TransE. The end-to-end
learning approach was able to achieve similar results on one dataset and outper-
form the other approaches on a second, much larger dataset while in both cases
needing much less computing time.

As future work, the integration of node and change features seems promising,
since the current approach only uses the graph structure to reason about possible
changes. Naturally, this can not be sufficient information to determine everything
about the nature of a change and how to react to it. To evaluate the capabilities of
the presented approach in other domains besides biomedical ontologies, another
dataset is required. To our knowledge, the dataset used in this paper is the only
dataset currently available for ontology mapping adaption. Hence, a new dataset
needs to be built that contains knowledge from a different domain.
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