CEUR-WS.org/Vol-2378/shortAT3.pdf

CLEF, a Java Library to Extract Logical
Relationships from Multivalued Contexts

Jessie Carbonnel

LIRMM, CNRS and Université de Montpellier, Montpellier, France
jcarbonnel@lirmm.fr

Abstract. Binary contexts and their associated conceptual structures
embody several types of information that are true for the considered set
of objects. Extracting binary implications and implicational bases re-
ceived a lot of attention at first, but over the past years, notably in the
domain of software reverse engineering, several methods and algorithms
have been proposed to extract other kinds of information from concep-
tual structures, e.g., complex implications, mutual exclusions, prime im-
plicants. In this paper, we present CLEF, a Java library implementing
some of the literature algorithms for logical relationship extraction from
conceptual structures. The library allows to process multivalued contexts
with pattern structures and to automatically build a meet semi-lattice of
patterns representing the similarities between objects having non-binary
descriptions. The library is generic enough to extend it with (1) new
extraction algorithms based on (2) different types of conceptual struc-
tures, and (3) new automated or semi-automated methods to build meet
semi-lattices of patterns.

Keywords: Formal concept analysis, Pattern structures, Knowledge dis-
covery, Multivalued contexts

1 Pattern Structures

Pattern structures [?] are a generalisation of formal concept analysis to charac-
terise a set of objects O with more complex data than binary attributes. There-
fore, objects of O may be described by multivalued contexts such as the one
presented in Fig 1 (left). This excerpt presents a set of five objects (being ver-
sioning software systems) described by both binary and multivalued attributes.

In this generalised approach, each object is characterised by a pattern taken
from a set of patterns (denoted D) having the same type. It is then necessary to
define similarities between these patterns; the similarity of two patterns dy, ds €
D is given by a similarity operator (denoted M) that returns the most specific
pattern (having the same type as dy and ds) representing the similarity of dy and
do. For instance, Kaytoue et al. [?] define the similarity of two intervals by the
smallest interval containing them: [1986,1986] M;pery [1998,1998] = [1986,1998],

Copyright (© 2019 for this paper by its author. Copying permitted for private and

academic purposes.

2 J. Carbonnel

Software |[Merge|Lock|Program.Language |FirstRelease 1986,2005

Git X C; shell scripts; perl 2005

CVS X C 1986

ClearCase X x |C; java ; perl / ’ “986’]998]‘ ’”99&2005]‘
GnuArch X C; shell scripts 2005 / \ / \
CVSNT X x |CH++ 1998 ’ 1986 ‘ ’ 1998 ‘ ’ 2005 ‘

Fig. 1. (Left-hand side) Excerpt of a multivalued context about versioning software
systems; (Right-hand side) Meet semi-lattice for the values of the attribute FirstRelease

with Mjntery the associated similarity operator. A subsumption relation C is
associated to a similarity operator and partially orders the pattern set D by
“specialisation”™ a C b <= aMb = a,Va,b € D. The pair (D,) is a meet semi-
lattice, i.e., a structure in which each subset of elements possesses an upper-
bound representing their similarity. Figure 1 (right) presents the meet semi-
lattice of values (patterns) taken from the column FirstRelease of Fig. 1 (left)
and built with the interval similarity operator M;pzery. The set of objects O, the
meet semi-lattice of patterns (D, M) and the mapping § : O — D that associates
each object o € O with a pattern d € D form a pattern structure.

Patterns can be of atomic types (e.g., dates, numerical values, literals), but
it is possible to combine several pattern types (from different pattern sets) in
a vector of patterns [?]. A pattern vector is of the form (dy,da,...,d,), where
di,i € {1,2,...,n} is a pattern of the compound meet semi-lattice (D;, ;). The
similarity between two pattern vectors (denoted by M,,) can be obtained by
computing the similarity of patterns with the same rank in the vectors:

(db,ds, ..., dE) Ny (&, d5, ... d3)) = (db Ty &, dE My d), ..., dE 1, d2).

Therefore, one can automatically build a pattern structure from pattern vectors
thanks to the compound meet semi-lattices. We estimate that pattern vectors are
good candidates to handle objects described by several multivalued attributes,
with potentially different types of values. From this kind of pattern structures,
we can apply a binary scaling where each value of each compound meet semi-
lattice becomes one binary attribute. The produced formal context can therefore
be processed with traditional formal concept analysis algorithms and tools to
build the conceptual structures associated with the scaled pattern structure.
The obtained conceptual structures highlight the same information as the one
found in the conceptual structures built without binary scaling.

2 Overview of the Java library CLEF

In what follows, we present the Java library CLEF! enabling to handle multivalued
contexts, construct pattern vectors and their corresponding patterns structures,

! https://gite.lirmm.fr/jcarbonnel/CLEF

A Java Library to Extract Relationships from Multivalued Contexts 3

and extract information from the associated conceptual structures. It is com-
posed of three packages: two focus on representing and managing multivalued
contexts to be processed with pattern structures and formal concept analysis
(Fig. 2) and one aims at extracting information from the conceptual structures
(Fig. 3) obtained thank to the two previous packages.

[multivaluedcontext
% 8
2 . = isti <<Enum>>
é MultivaluedContext ‘% Characteristic CharacteristicType
2 - name: String £ | -name: String binary, integer,
< | - objectNames: String]] 5 |- values: String[] double, literal
2| _ opiects: Stri - distinctValues: String[] ’
objects: String[I[] K> g
L . . +scaling(MultivaluedContext):
+ initFromCSVfile(String) .
+ computeScaledContext() Mui{;_valueggffvtext
+ exportInRcft() + getType(): String
+ computeLattice()
MultivaluedAttribute BinaryAttribute
- type: CharacteristicType
P P +scaling(MultivaluedContext):
+scaling(MultivaluedContext): MuItivaIuedCo_ntext
MultivaluedContext + getType(): String
+ getType(): String
1]

-

[1 [?
AbstractSimilarities parents

root Node

similarities I

- similarity Values: String[][]

-

- values: String[][]
+ computeMissingValues()
+ subsume(Node,Node): boolean
+ computeSemilattice()
+ similarity(Node,Node): Node
+ getNodeOfValues(String[]): Node

children U
le Extends

I I]

DefaultDoubleSimilarities

DefaultintegerSimilarities

####Similarities

+ computeMissingValues()
+ subsume(Node,Node): boolean
+ getNodeOfValues(String[]): Node

+ computeMissingValues()
+ subsume(Node,Node): boolean
+ getNodeOfValues(String[]): Node

+ computeMissingValues()
+ subsume(Node,Node): boolean
+ getNodeOfValues(String[]): Node

Fig. 2. UML class diagrams of CLEF (part 1)

Representing multivalued contexts (multivaluedcontext) The class Multival-
uedContext is the core class of this package and represents objects, character-
istics and their values. The class possesses one list of objects’ names (e.g., [Git,
CVS, ClearCase, GnuArch, CVSNT|) and one list of objects, an object being rep-
resented by the list of its values. For instance, the object CVS is represented by
the list: [true, false, "C", 1986]. The class also has one list of Characteristics,

4 J. Carbonnel

represented by an abstract class describing one column of the multivalued con-
text and possessing a list of values (one per object). The class Characteristic
has two sub-classes representing BinaryAttributes (having boolean values) and
MultivaluedAttributes (having non-boolean values). We identified three types
of values for MultivaluedAttributes: “integer”, “double” or “literal” (but this list
can be extended). For instance, the characteristic Lock is a BinaryAttribute
having the list of values [false, false, true, false, true], and the characteristic
FirstRelease is a MultivaluedAttribute of type “integer” having the list of val-
ues [2005, 1986, /, 2005, 1998]. A characteristic has a method applying binary
scaling on its values which produces a set of BinaryAttributes. The scaling de-
pends on the meet semi-lattice of values which are manage in the second package
of Fig. 2 called similarities.

Building pattern structures (similarities) Each MultivaluedAttribute is as-
sociated with an instance of AbstractSimilarities structuring its set of (dis-
tinct) values depending on their similarities. As the set of distinct values may not
be sufficient to build the meet semi-lattice of similarities, it is necessary to com-
pute the missing values, i.e., the ones which are not present in the multivalued
context. For instance, the three italic values in Fig. 1 (right) are “missing values”
which are not present in the column FirstRelease. The construction of the meet
semi-lattice (i.e., computing the missing values thanks to the similarity operator
and organising the values by subsumption) depends on the type of values of the
attribute as well as the user needs. Therefore, different strategies of construction
may be implemented through sub-classes of AbstractSimilarities. We devel-
oped three strategies: DefaultDoubleSimilarities automatically builds a meet
semi-lattice for values of type “double” based on the Sturges’ rule; DefaultInte-
gerSimilarities automatically builds a meet semi-lattice for value of type
“integer” using the similarity operator M;,tery; DefaultLiteralSimilarities
automatically builds a meet semi-lattice for values of type “literal” using formal
concept analysis. If another strategy is needed, e.g., semi-automatically building
a meet semi-lattice by asking the missing values to the user, one can add a new
sub-class to AbstractSimilarities.

Applying binary scaling on a MultivaluedAttribute creates one BinaryAt-
tribute for each value of the meet semi-lattice. Once the binary scaling applied
on the whole multivalued context, it provides another MultivaluedContext hav-
ing only binary attributes, i.e., a formal context. It can be saved in .RCFT for-
mat to be processed by the tool RCAExplore? to build the associate conceptual
structures with traditional formal concept analysis algorithms.

Extracting relationships from conceptual structures (relationshipeztraction)
Concept lattices and their sub-hierarchies naturally highlight relationships be-
tween attribute values that can interest designers and domain experts. Binary
implication extraction has received a lot of attention, partly because they are
a compact and equivalent representation of the lattice and the formal context.

2 http://dataqual.engees.unistra.fr/logiciels

A Java Library to Extract Relationships from Multivalued Contexts 5

Over the past years, notably in the domain of software reverse engineering, con-
ceptual structures were used as a support to detect other kinds of information
(e.g., complex implications, mutual exclusions, prime implicants) having in mind
the same objective about compactly representing knowledge extracted from the
conceptual structures and the context (i.e., extracting knowledge models).

The third package (Fig. 3) gathers classes implementing extraction algo-
rithms. The class AbstractACPosetExtractor reads the information describing
the AC-poset (i.e., the concept lattice sub-hierarchy limited to concepts intro-
ducing attributes) such as the concepts’ intent and extent and their partial order.
Extraction algorithms are then implemented through concrete sub-classes. For
instance, we implemented a naive algorithm to extract all binary implications
based on the AC-poset through BinaryImplicationExtractor, a sub-class of
AbstractACPosetExtractor. We can imagine implementing a different algo-
rithm by adding another dedicated sub-class. New abstract classes gathering
information about other conceptual structures may also be added, for instance,
a class AbstractLatticeExtractor with sub-classes implementing extraction
algorithms based on concept lattices.

relationshipextraction

AbstractACPosetE; BinarylmplicationExtractor c renceExtract

- conceptMap: Map<integer, String> + getRelationshipType(): String + getRelationshipType(): String
- suborder: String[][] + computeRelationships () + computeRelationships()

- completeSuborder: String[][]

- correspondences: Map<String, String> I I
- variabilityRelationships: String[] 4

+ getRelationshipType(): String Q

+ computeRelationships() I I

+ extractConcepts()

+ extractCorrespondences() MutexExtractor #HHHHEXtractor

+ extractSuborder()

+ computeCompleteSuborder() + getRelationshipType(): String + getRelationshipType(): String

+ exportsinTextFile() + computeRelationships() + computeRelationships()

Fig. 3. UML class diagram of CLEF (part 2)

References

1. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Proc. of
the 9th Int. Conference on Conceptual Structures (ICCS’01). pp. 129-142 (2001)

2. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression
data with pattern structures in formal concept analysis. Inf. Sci. 181(10), 1989-
2001 (2011)

3. Kaytoue-Uberall, M., Assaghir, Z., Messai, N., Napoli, A.: Two complementary clas-
sification methods for designing a concept lattice from interval data. In: Proc. of
the 6th Int. Symposium on Foundations of Information and Knowledge Systems
(FoIKS’10). pp. 345-362 (2010)

