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Abstract. Image-based plant identification is a promising tool consti-
tuting the automation of agriculture and environmental conservation as
stated in. As an attempt to tackle the data deficient challenge in Plant-
CLEF 2019, the DenseNet architecture with competitive performance
and relatively low number of parameters is augmented with a non-local
block. A variety of data sampling schemes are also evaluated as a part
of the work. The evaluation of the model and the methods is detailed in
the content of the paper.
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1 Introduction

Various types of plants grow all around us, yet, little amongs us are plant ex-
perts. Indeed, knowing what plant available and where they are will be extremely
helpful in pharmacy, from productional and academical perspective, environ-
ment protection. The rising of machine learning with artificial neural networks
and convolutional neural networks which, are able to performs at near-human
capability in image processing task, the popular use case of such technologies
are for the automation of the task which human already excels: face recognition,
image classification, etc. Still, it is would be highly beneficial if we can leverage
these technologies in the task that human are yet to excel at in mass: Plant
Identification.

The image-based plant identification can be formulated as a plant classifica-
tion problem, where the input is an image containing the plant and the output is
the id of the plant pre-defined by user. Formulating the problem of PlantCLEF
contest as an image-classification task, the task itself in general has observed
drastic improvement with the deep learning based methods, in the summariza-
tion of PlantCLEF 2017[2], it is shown that the best competitors have got over
90% accuracy using the aforementioned method. Notably, in the LifeCLEF 2018
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contest[3], the are quite a number of software that achieved comparable accuracy
to that of the top experts.

In this work, we present our proposed methods for the PlantCLEF 2019
[4] which is part of the LifeCLEF 2019 [1] which focus on 10,000 species from
data deficient regions. The rest of this paper is structured as follows: Section
2 gives an overview of related works on automatic plant-identification in deep
learning from previous contests, section 3 describe the proposed architecture for
prediction, section 4 provides additional information on data augmentation and
data sampling schemes and finally we conclude our works in section 5.

The source code and trained models are made available under the github
link: https://github.com/datvo06/PlantCLEF2019MRIM.

2 Related Work

Ever since AlexNet[9] won the competition of ImageNet classification 2012, Con-
volutional Neural Networks(CNNs) has always been at the center of image clas-
sification. Following AlexNet, there have been three lines of research focusing on
the CNNs: modifying the operations in the CNNs, dividing the networks into
several sub-modules and make improvement on each of them, and finally, altering
the information flow by adding connections.

Fine-tuning modules and adding auxiliary loss The inception model [12,13,11]
follows the principle of repeating many carefully designed block of filter stacked
horizontally (receive the same input and the output feature map are concate-
nated). Each time with new version of Inception Net, the authors often optimiz-
ing one of these blocks so that the number of computations, memory consump-
tion, number of parameters can be optimized. The Inception-v1 is used for the
baseline of PlantCLEF 2017, achieving the Top 1 accuracy of 0.513

Adding Residual connections One of the problem with original deep neural net-
works is that the more layers added, there more model prone to gradient vanish-
ing. Various works have been proposed to amend this problem, (i.e LSTM [7] for
sequenced input, highway network [7] which introduce a gated mechanism for
ANNs), for convolutional neural network, residual additive connection proposed
by [5] is one of them, the author later analyzed carefully the effect of the order
of each Residual Block, resulting in [6], a modified version of the ResNet used
in PlantCLEF 2017 [2], achieved the best score among non-ensemble runs with
top 1 accuracy of 0.853.

Combining Inception and ResNet The inception design and the ResNet design
has merged together, first in the Inception-ResNet design [11]. The network
architecture still bases on the original principle of carefully designed block, the
authors did this by adding the residual connection in a few variant of inception
blocks. Inception-ResNet v2 achieved similar score to ResNet modified in the
PlantCLEF 2017 [2] with MRR 0.847, Top 1 0.794, Top 5 0.913 and are used by
the majority participants in PlantCLEF 2018.

https://github.com/datvo06/PlantCLEF2019MRIM


Ensemble prediction The top performer of PlantCLEF 2017 [10] utilized ensem-
ble prediction of multiple predictions with bagged averaging, the models used
are ResNet, ResNeXt [10] and Inception-v1.

DenseNet As the residual connections has been proven to allow better gra-
dient flow and performance boost to the convolutional neural networks, the
DenseNets author[8] has tested the idea of densely connected layers. The model
capable of achieving state-of-the-arts accuracy in classifying tasks with a rela-
tively low number of parameters, making it a potentially good baseline for the
data-deficient context. For this reason we choose the DenseNet as the baseline
for the model.

Data Sampling Schemes To the best of our knowledge on data-sampling for
training, there are little overlapping works with the strategies proposed.

3 Model Architecture

3.1 Non-local Networks

The non-local neural network [14] was proposed to solve the problem of limited
information propagation from CNN and LSTM. The idea is to performs inter-
pixels correlations from different position in the feature maps, leading to generate
more power pixel-wise representation. The non-local operation, according to [14]
is defined as:

yi =
1

C (x)

∑
∀j

d (xi,xj)h (xj) (1)

Where i is the index on the output feature maps (in space, time, or spacetime in
the original case of video classification, annotation), j is the index on the input
feature maps x and d computes the scalar representing the pairwise relationship
between the entities in the items reside in these locations.
We shall see on the next section where the non-local block is added to the
DenseNet baseline.

3.2 Adding Non-local operation to the DenseNet

The non-local operation is added between the output of the third dense block
and the 1× 1 channel-squashing convolution.

The non-local block was added after the third dense block for several reason:

– First, in the original introduction of the non-local block [14], multiple non-
local position has been tested, of which, the best position is after the third
Residual Convolution Block

– We have known based on the mechanism of self-attention, the non-local block
performs pairwise dot product between two transformation of every pair of
pixels on the grid. That why it is necessary to place a few convolution blocks
before the non-local block so that the operation may potentially leverage
informations from local neighbors.



Fig. 1. Non-local block, f(x), g(x), h(x) are three 1 × 1 convolutions, where f(x), g(x)
are channel-squashing functions.

Fig. 2. Placing Non-local block within DenseNet.

3.3 Ensemble prediction

When applied into the final predictions, each instance of observation has multiple
samples, so that there either has to be some middle layer to aggregate prediction
in order to combine the prediction of multiple models on multiple instance. For
this, a two-level pooling is leveraged:

The first level of pooling is used for ensembling the predictions of multiple dif-
ferent trained prediction instances and the second is used for aggregation of
predictions from multiple observations.

4 Experiments and Results

4.1 Data Augmentation

Several data augmentation strategies have been applied:

– Randomly resizing image



Fig. 3. Ensemble prediction using two-level pooling.

– Randomly crop
– Random Horizontal Flip
– Random alternating the brightness and contrast

Fig. 4. Illustration of data-augmentations.

4.2 Data Sampling

Notation:

– N : total number of samples
– ni: number of samples for ith class
– oi: oversampling factor for ith class
– wi: sampling weight for ith class
– m: the median number of samples
– µ: the mean number of samples per classes.

Minimum Threshold Resampling This strategy only focus on augmenting
the classes having less number of samples than the average number of samples



per classes. Here, for each class with number of samples ni, the oversampling
factor oi will be assigned the value of µ/ni.
The oversampling might make some samples in the classes appears too many
times compared to the others, making the model prone to overfit and also, so on
each epoch, the classes samples are reshuffled and resampled.
Another problem is that the training times will be prolonged due to the increase
in number of samples. For this, another strategy is also applied which is described
below.

Smoothed Re-sampling This strategy partly oversampling small classes while
also performs subsampling on classes with large number of samples. All of the
aforementioned parameters are constant during training. The number of total
samples which will be used throughout the training session is the sample: N . On
each epoch however, each of the classes will be under-sampled or oversampled
based on the weight wi, total weight on one epoch will be normalized so that
the number of total samples will always be equal to N :

∑
i wioini. We will now

turn to how to choose the oi and wi factors. With the m = 10 for examples,
all the classes will initially applied the oversampling factor oi. The oversampling
ensures a minimal number and diversity via data augmentation.

– oi = 1 for ni > m (no oversampling beyond median).
– oi = (1 +m/ni)/2 for ni ≤ m (oversampling for linear importance between
m/2 and m).

Oversampling reduces the imbalance from about 1000:1 to about 100:1.
Weighting further ensures a better balancing using a power law.
wi = (oini)

γ−1.

– With γ = 1.0, no weighting, original case (except the oversampling effect).
– With γ = 0.5, weighting further reduces the imbalance from about 100:1 to

about 10:1.
– With γ = 0.25, weighting further reduces the imbalance from about 100:1 to

about 3:1.
– With γ = 0.15, weighting further reduces the imbalance from about 100:1 to

about 2:1.

In all cases, re-normalize (divide each wi by the same value so that Σi(wioini) =
N).

4.3 Experiment Results on the PlantCLEF 2017

All the candidate models have been trained on the PlantCLEF 2017 for prelimi-
nary testing before being used on the PlantCLEF 2019. The models are trained
on the EOL set and tested on Web dataset with the data augmentation strategies
mentioned in the subsection 4.1. The result is shown in the table 1.

It is can be easily seen that the Non-local addition added an increase of
accuracy in both the DenseNet-121 and DenseNet-201 and the DenseNet slightly
out performs the ResNet.



Table 1. Evaluation of trained models on PlantCLEF 2017 Web.

Model Top 1 Accuracy

ResNet-18 0.5111

ResNet-152 0.7888

ShuffleNet 0.7222

DenseNet-121 0.8126

Non-local DenseNet-121 0.8618

DenseNet-201 0.8515

Non-local DenseNet-201 0.8744

4.4 Experiment results on PlantCLEF 2019

Initial result The model are further tested on the PlantCLEF 2019 dataset.
The initial result is shown in Table 2. Thus, we can easily observe a drastic

Table 2. Model Performance on PlantCLEF 2019 Validation Set.

Model Top 1 Accuracy

DenseNet-121 0.2510

DenseNet-201 0.3503

Non-local DenseNet-201 0.4525

performance drop. The further inspection of the dataset shows some challenging
properties:

1. The classes are imbalanced
2. Repeated samples across the classes makes the learning harder.
3. Noisy Samples

Experiment Results on the Class-Filtered PlantCLEF 2019 We first
test the effects of following strategies:

– Temporary removing all the classes with less than 5 samples
– Further remove noisy/incorrect formatted images.

The result is a 8500-classes dataset with still over 400,000 samples. The evalua-
tion of the model is shown is Table 3. The result does not show much differences.

Experiment Results on the Repetition-Filtered PlantCLEF 2019 Fur-
ther experiments are performed on the dataset with different thresholds for rep-
etition, the following training/validation split strategy is applied: for each class,
at least dnsamples/5e is taken as part of the validation set, if the class has only
one samples, the training set for that class would be empty. Here, the mini-
mum threshold sampling is applied. The evaluation result is shown in table 4.



Table 3. Model evaluation from small-class-filtered dataset.

Model Top 1 Accuracy Additional Condition

DenseNet-121 0.3020 None

DenseNet-201 0.4220 None

DenseNet-201 0.4890 Balanced Sampling

Non-local DenseNet-201 0.5215 Oversampling data-deficient classes

Table 4. Filtering out inter-class repeated samples makes training and validating set
different.

Max repetitions Number of empty classes Top 1 Training Top 1 Testing

1 1539 0.8425 0.1925

2 1040 0.6530 0.1512

3 778 0.6930 0.1451

It can easily be seen that removing the all repetitions from duplication creates
empty classes, which would heavily differentiates the training and validating set,
making it hard to validate the model.

Experiment Results on conditional repetition filtered PlantCLEF 2019
On the final try of filtering the dataset involves filtering out all repeated samples
unless it creates empty class. The statistics of the resulting dataset is stated in
Table 5.

Table 5. Conditional Repetition Filtered PlantCLEF 2019.

Attributes of Dataset Attribute Value

Number of classes 10,000

Number of samples 279,832

Mean number of samples 27.98

Minimum number of samples per class 1

Median number of samples 5

Max number of samples per class 1202

Number of unique samples 278,906

Number of samples duplicated 158

With all the repeated samples trimmed, the distribution is still pretty im-
balanced, Figure 5 shows the distributions with Smoothed Resampling strategy.
Since this is the final try, the whole dataset has to be used for training, for
this, other external datasets has to be used for testing. More inspections on the
PlantCLEF 2017 dataset reveals that there are 551 common categories betweens
the PlantCLEF 2017 and PlantCLEF 2019 dataset. The samples are sorted by
sizes and filtered to avoid having them in the training set. The statistic of the
dataset is shown in table 6.



(a) γ = 0.5 (b) γ = 0.25

Fig. 5. Effect of different γ.

Table 6. Validation Dataset Statistics.

Dataset PlantCLEF 2017 EOL Common PlantCLEF 2017 Web Common

Number of classes 551 551

Number of samples 10,803 63,242

The final obtained results before submission testing on these dataset are
described in the table 7:

Training Set γ No. instances Pooling 2017 EOL 2017 Web 2017 EOL + Web

Conditional 0.25 4 Mean 0.9171 0.6635 0.6983
Filtered Max 0.9169 0.6637 0.6984

PlantCLEF 0.5 4 Mean 0.9455 0.6970 0.7311
2019 Max 0.9413 0.6941 0.7280

1 2 Mean 0.9138 0.6476 0.6842
Max 0.9011 0.6338 0.6705

Mixed 10 Mean 0.9478 0.6957 0.7303
Max 0.9371 0.6812 0.7163

All Data No 1 No 0.7852 0.5497 0.5821
Table 7. Non-local DenseNet 201 Evaluation on PlantCLEF 2017 Common Cate-
gories.

We can see that with the same model, trained on the same number of epochs,
the filtering strategies shows the differences: The ensemble of 4 model trained
with γ = 0.5 gives of the best performance, the model which trained with all
data from PlantCLEF 2019 is also evaluated and compared.

Final Test Results The final results are given by the top 1 accuracy on the
test dataset and the hand-picked subset by experts. The detail of each run is



given in table 8. The best accuracy of top 1 on the expert-chosen samples set
is achieved with the mean of 4 instances trained with γ = 0.25 with 2 means
pooling, and best accuracy of top 1 on all samples is chosen with γ = 0.5 and
two max pooling.

Run γ No. Pooling Pooling Top 1 Top 1 Top 3
instances 1 2 (expert) (all) (expert)

1 0.25 4 Mean Mean 0.043 0.042 0.051

2 0.5 4 Mean Max 0.017 0.036 0.043

3 0.25 4 Max Mean 0.017 0.030 0.060

4 0.25 4 Max Max 0.009 0.027 0.060

5 0.5 4 Mean Mean 0.017 0.036 0.043

6 0.25 4 Mean Max 0.017 0.028 0.051

7 0.5 4 Max Mean 0.026 0.042 0.085

8 0.5 4 Max Max 0.034 0.046 0.068

9 1 2 Mean Max 0.017 0.031 0.043

10 Mixed 10 Mean Max 0.026 0.034 0.068
Table 8. Final Run evaluation.

5 Conclusion

Plant Identification is an important step in medical, agricultural and environ-
ment resource planning. However, the problem is currently still a challenging to
both human and computer vision-based technologies even with the development
of deep learning. With data-deficient challenge, the problem is even harder to
conquer. The work aims to provide a decent-performing model proven with ex-
tensive experiments along with a variety of data-handling strategies, yet it still
cannot solve the whole problem. The remaining problems are avoiding of bias
between classes belonging to the same genus, this perhaps can be performed
by adding hierarchical classification where the system first identifies the genus
and then the species. The data-deficient challenge still need to be tackled, ei-
ther by leveraging unsupervised or semi-supervised learning methods. On the
model designing perspective, the authors believe that the model can potentially
be improved by adding inter-channel correlations in the non-local block.
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