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Abstract. Tuberculosis (TB) still remains in our days a persistent threat
and a leading cause of death worldwide. The different types of TB re-
quire different treatments, usually with antibiotics, and therefore the
detection of the TB type and the evaluation of the severity stage are
very important. In the ImageCLEF 2019 Tuberculosis, our group sub-
mitted a solution that addresses the problem of tuberculosis’ severity
prediction in low-resource environments by attempting to minimize the
information required from the CT scan using a regularized variant of the
SAMME.R algorithm.
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1 Introduction

Tuberculosis (TB) is a disease caused by bacteria (Mycobacterium tuberculosis)
that most often affects the lungs. Even though it is curable and preventable,
tuberculosis is the second biggest killer, globally (after HIV infection) [15]. In
2016, an epidemiological research estimated 10.4 million new cases and 1.7 mil-
lion deaths. Tuberculosis is spread from person to person through the air. When
people with active infection cough, sneeze or spit, they propel the TB germs into
the air. A person needs to inhale only a few of these germs to become infected.
About one-quarter of the world’s population has latent TB, which means people
have been infected by TB bacteria but are not (yet) ill with the disease and
cannot transmit it. People infected with TB bacteria have a 5-15% lifetime risk
of falling ill with TB [17].

The 2019 edition of ImageCLEF (the Image Retrieval and Analysis Evalua-
tion Campaign of the Cross Language-Evaluation Forum) [11] targets two tasks
in the direction of serving the tuberculosis diagnosis [4]. The first task involves
automated detection of tuberculosis severity, while the second one involves a
computed tomography report based on CT scans and the patient’s metadata.
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The CT report task is a binary multi-class classification problem that addresses
the presence of calcification, presence of caverns, presence of TB in the right
lung, presence of TB in the left lung, pleurisy and lung capacity decrease. The
Severity scoring task is a binary classification problem centered around labeling
the TB severity as being ”HIGH” or ”LOW”. Each instance of training data is
labelled into one of 5 classes, where 1, 2 and 3 represents ”HIGH” severity and
labels 4 and 5 represents ”LOW” severity.

The dataset provided by ImageCLEFmed Tuberculosis is composed of 218
patients CT scans for training and 117 for the test, each with a collection of
metadata regarding the respective patient. The metadata is supplied, for better
classification, in consideration to the elaborated process a doctor conducts to
give a diagnostic. Each CT scan is made of slices (Section 1, that number varies
from 50 to 400 and every slice has a dimension of 512 x 512.

Fig. 1: Slices of lung example

Considering the need for a rapid and reliable TB treatment regimens, that
is also cost effective, we investigate for the best learning algorithm that qualifies
our requirements and outputs the patient condition’s severity.

Our solution addresses the problem of tuberculosis severity prediction in low-
resource environments by attempting to minimize the information required from
the CT scan. This approach is benefic for low-buget medical organizations and
small practices as they may not have access to high-end computational resources
needed for a computer aided diagnosis.

2 State of the art

A number of different approaches were proposed for the task of severity predic-
tion. More notably, in the second edition of ImageCLEFmed TB 2018 [5][12],
the team UIIP BioMed [14] managed to obtain the highest kappa score, 0.2312,
with an accuracy of 0.4227 and root mean squared error of 0.7840. Furthermore,
the team MedGift [6] scored 0.7708 in terms of ROC AUC, the highest in that
year.

The methods used by the two teams consisted of a Deep Convolutional Neu-
ral Networks model submitted by UIIP BioMed and an SVM with RBF kernel
submitted by MedGift team. It is suitable to state that each of the two teams
had completely different pre-processing procedures.



Correlation of better outcomes given more clinical data and also the CT scans
of patients were studied before in [13], as a result in 2019 more metadata about
the patients were given. In the edition of 2019, the best Accuracy was given also
by UIIP BioMed, with a score of 0.7350.

Our experience in prediction algorithms comes from prediction of cryptocur-
rency market [3] and in predicting of user activities using GPS Collections [1]. In
the same time, we experienced with image processing in medical domain [7], in
photo annotation task of CLEF2010 [10], and in combining semantic resources
for image retrieval [9], [19].

3 Architecture

3.1 Data pre-processing

The CT scans were preprocessed trough methods whose foundation relies upon
[21]. Depending on the procedure and device that was used to make the CT
scans, the slices’ pixel spacing vary and, as a result, their number diverge for
each patient.

To simplify the process of learning we resampled the images slices number
to their mean across patients, that implying approximately 130 vertical slices.
Because we were limited by the available resources we decreased the size of each
slice from 512 x 512 to 256 x 256. Each pixel is a signal on the Hounsfield Unit
(HU) scale (Table 1), hence, we memorize each pixel as a float16 type to spare
memory and aid in accelerated learning (Figure 2).

Table 1: Hounsfield units scale

Substance HU

Air -1000

Lung -500

Fat -100 to -50

Water 0

CSF 15

Kidney 30

Blood +30 to +45

Muscle +10 to +40

Grey matter +37 to +45

White matter +20 to +30

Liver +40 to +60

Soft Tissue, Contrast +100 to +300

Bone +700 to +3000



Fig. 2: HU pixels value on a patient

The HU signals for bones can reach up to 3000+ units, starting from around
400 units. Figure 3a shows merged slices of a patient for a more reliable overview
of the patient bones section (HU signal values representing bones on axial view
were plotted in Figure 3b).

The pixels representing bones, whose value is greater than 400, were replaced
by those representing air for a better focus on the tissue of the lungs, both af-
fected and healthy, so any classifier could distinguish among those two categories.
Afterward, we normalized the values between [0, 1].

(a) Axial slice overview of bones
structure

(b) Maximal HU pixel value in each
axial point

Fig. 3: Axial slice overview (left) and Maximal HU pixel value (right)



To summarize the pre-processing of our data, these steps were applied:

• resample the height of the lung voxel (number of slices per patient);
• resample the width and height of the lung voxel (all slices of each patient);
• converting the signals to float16 type (by doing so no information is lost);
• replace pixels representing bones structure from the lung voxel;
• normalize the pixel values.

3.2 Further propossed pre-processing methods

Further pre-processing methods were conceptualized although they weren’t ex-
ploited because of a lack of time and scarce computational resources. It is proper
to acknowledge the future use of these methods for possible better results.

One such method is the application of a mask over the lung voxel to focus
on the tissue within the lung (Figure 4c) where the tuberculosis is located. This
mask [21], computes the connected regions of the voxel (Figure 4a), by labeling all
connected pixel with the same value. The same mask further computes the lung
with no internal structure by computing for every slice the maximum connected
pixels, those being the lung frontier if that slice contains lungs, or none otherwise
(Figure 4b).

(a) Lung voxel (b) Voxel of lung without
internal structures

(c) Lung internal
structure

Fig. 4: Masks of a lung

3.3 Building the prediction algorithm

Instead of training a binary classifier for severity LOW and HIGH, we instead
used the original severity score from 1 to 5 found in the patient’s metadata.
For the final prediction, we added the probabilities estimated by our model for
severity scores 1, 2 and 3 to obtain the probability of HIGH severity.

As previously stated in the introduction, the objective of our paper is to
explore methods that minimize the amount of resources used for the prediction.
This implies finding a way to reduce the amount of information used during the



prediction. Our idea is to use a model capable of selecting the most important
features. We consider each pixel as a feature for our model. In this way, by
selecting a subset of the features, we are actually restricting the information we
need from the CT to make predictions. Moreover, we would like to supply an
upper bound for the number of utilized pixels.

A good choice for such a model is the Decision Tree algorithm described
at [18]. A simple variant for limiting the number of nodes is by stopping the
algorithm when the number of nodes reaches the threshold. Another method
for building decision trees with a maximum number of nodes is provided by [8],
where they introduce constraints into the building phase of the algorithm. By
setting a size constraint on the decision tree, the best nodes will be selected
within that constraint.

Boosting algorithms use a linear combination of weak classifiers to make
predictions. They learn the coefficients of each linear classifier in a stage-wise
fashion by first training a weak learner and then selecting the weight as to
minimize a loss function. If the weak learner utilizes only a limited number of
different features, an upper bound of the boosting algorithm is the number of
weak learners times the number of different features. This motivates our choice
of using a boosting algorithm with decision tree as weak classifiers. To improve
on this, consider the small number of instances (<400). By using a boosting
algorithm, we try to prevent overfitting while also being able to limit the number
of features our algorithm is allowed to use for the prediction.

For the original severity scoring prediction, the ability to supply probabili-
ties is required. A boosting algorithm that can estimate probabilities in a multi-
labeling setting is described at [20], called SAMME.R. This particular algorithm
is able to provide class probability estimates for the prediction. For the weak
learners, we used decision stumps. The major problem that we faced while train-
ing the model was overfitting. To mitigate this problem, we used four different
approaches.

The first technique we used is limiting the number of features a weak learner
trains on. For each boosting iteration, we limited the training of the weak learner
to 1,000-10,000 pixels sampled at random from an uniform distribution. By us-
ing this method the training runtime was also decreased drastically, making
possible to train the classifier in low-resource environments, while also reducing
overfitting.

Another method that has been used was regularization of decision stumps.
This technique was already applied for the AdaBoost algorithm in [2]. We used
the same principle and changed the formula to adapt this method for SAMME.R.
Instead of minimizing the weighted training error εw while searching for the best
split, we minimize the following objective function:

εw + λ · (Pw(x < s) ·Hw(x < s|Y ) + Pw(x >= s) ·Hw(x >= s|Y ) (1)

where Hw is the weighted conditional entropy, Pw is the weighted probability
estimate, λ is the regularization factor and s is the split value.



Our third method consists of splitting the training set further into an initial
training set and an extended training set. During training, starting from the
initial training set, some samples from the extended training set are added. The
sample’s weight are then renormalized to accommodate the new samples and the
algorithm continues as normal. This method adapted for SAMME.R from [16].

Our final approach was removing weak classifiers. We start with only the
decision of the first weak classifier and increasingly add weak learners in the
trained order. Then the configuration with the highest score on validation data
is chosen.

4 Evaluation

For the ImageCLEFmed Tuberculosis SVR prediction task we submitted a trained
model based on the SAMME.R algorithm with 1,600 weak learners, where each
weak learner is trained on 10,000 features (pixels and metadata) sampled ran-
domly from an uniform distribution at each iteration.

At the time, we didn’t yet conceptualize the methods described in the train-
ing section and our algorithm suffered from overfitting. This approach obtained
a ROC AUC (receiver operating characteristic area under the curve) score of
0.5692 and accuracy of 0.5556.

In selecting the hyperparametes and the model we used 5-fold cross-validation
and ROC AUC, accuracy as metrics. To select the best model, we looked at each
fold and chose the most balanced one in terms of our metrics. These are our local
results at the time of our submission:

Table 2: 5-Fold cross-validation of the first run

# Train ACC Train AUC Train ACC B Test ACC Test AUC Test ACC B

0 0.9537 0.9967 0.9653 0.3111 0.6511 0.5333

1 0.9306 0.9913 0.9479 0.4444 0.6284 0.5555

2 0.9827 0.9998 0.9827 0.4090 0.5960 0.6136

3 0.9657 0.9969 0.9657 0.4418 0.7489 0.6511

4 0.9717 0.9979 0.9717 0.4634 0.6238 0.6585

# - fold index used for testing
Train ACC - training set accuracy original severity score
Train AUC - training set ROC AUC binary severity
Train ACC B - training set accuracy binary severity
Test ACC - test set accuracy original severity score
Test AUC - test set ROC AUC binary severity
Test ACC B - test set accuracy binary severity

After adding the regularization, validation boosting and pruning of weak
learners our scores improved significantly:



Table 3: 5-Fold cross-validation of the second run

# Train ACC Train AUC Train AUC B Test ACC Test AUC Test ACC B

0 0.7572 0.9227 0.8208 0.5555 0.7529 0.6666

1 0.9364 0.9858 0.9421 0.4222 0.5988 0.5777

2 0.9195 0.9902 0.9310 0.5227 0.6714 0.6363

3 0.9142 0.9868 0.9428 0.4883 0.7207 0.6976

4 0.8079 0.9320 0.8474 0.5365 0.6095 0.6097

The regularization factor used was 1 and the number of training samples used
at some iteration t was log t/log n, where n is the number of weak classifiers. It
can clearly be noticed that the model tested on first fold did not overfit on the
training data as badly as the other ones, having the lowest training accuracy and
the highest Test ROC AUC score. We also trained the model for 1000 iterations.

5 Conclusion

Recent work on tuberculosis severity prediction has been shown to be progress-
ing, ImageCLEFmed Tuberculosis 2019 edition yielding better results both in
terms of ROC AUC, as also in accuracy.

Current findings may be considered a further validation of the fact that
boosting, one of the modern machine learning approaches, still suffers from se-
vere overfitting when applied on a very noisy dataset with a significantly higher
number of features than training instances. However, by employing various data
cleaning and novel regularization techniques, it was demonstrated that there
are still improvements that can be made to combat this problem. With each
improvement on the subject, the prediction of tuberculosis severity will be also
made more accessible in low-resources environments to be used by low-buget
medical organizations and small practices.

6 Future work

Besides various pre-processing methods, described in the Architecture section,
we can make use of the pixels selected by the model to 3D render a helpful
voxel of the lung, with emphasis on the most important regions that contribute
to the tuberculosis prediction. The latter visualization of a patient data linked
with the low resource-demanding model makes it likely for improvement of the
tuberculosis investigations.
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