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Abstract. This paper presents deep learning techniques for audio-based bird 

identification in soundscapes. Deep Convolutional Neural Networks are trained 

to classify 659 species. Different data augmentation techniques are applied to 

prevent overfitting and improve model accuracy and generalization. The pro-

posed approach is evaluated in the BirdCLEF 2019 campaign and provides the 

best system to identify bird species in wildlife monitoring recordings. With an 

ensemble of different single- and multi-label classification models it obtains a 

classification mean average precision (c-mAP) of 35.6 % and a retrieval mean 

average precision (r-mAP) of 74.6 % on the official BirdCLEF test set. In terms 

of classification precision, single model performance surpasses previous state-

of-the-art by more than 20 %. 
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1 Introduction 

For the LifeCLEF bird identification task participating teams have to identify differ-

ent bird species in a large collection of audio recordings. The 2019 edition mainly 

focuses on soundscapes. This is a more difficult task compared to previous editions 

where species had to be identified mostly in mono-directional recordings with usually 

only one prominent species present in the foreground. Soundscapes on the other hand 

are recorded in the field, e.g. for wildlife monitoring, not targeting any specific direc-

tion or individual animal. There can be a large number of simultaneously singing 

species overlapping in time and frequency, arbitrary background noise depending on 

weather conditions and sometimes very distant and faint calls. Identifying as many 

species as possible in such a scenario remains challenging but is an important step 

towards real-world wildlife monitoring and reliable biodiversity assessment. An over-

view and further details about the BirdCLEF task is given in [1]. It is among others 

part of the LifeCLEF 2019 evaluation campaign [2].  
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The approach described in this paper uses neural networks and deep learning. It builds 

on the work of previous solutions to the task and combines proven techniques with 

new methods for data augmentation and multi-label classification. 

2 Implementation 

Data Preparation 

 

All audio recordings are first high pass filtered at a frequency of 2 kHz (Q = 0.707) 

and then resampled to 22050 Hz with the Sound eXchange (SoX) v14.4.1 audio pro-

cessing tool [3]. Soundscapes from the validation set are prepared for training by 

cutting them into individual files according to their annotations. Starting from the 

beginning of a file, whenever the label or set of labels changes, a new audio file is 

generated with the corresponding labels. Additionally, a “noise only” file is created 

from each soundscape by merging all parts without bird activity via concatenation. 

Those files containing only background noise are later used together with other back-

ground recordings for noise augmentation.  

In order to also use the validation set for training, it is split into 8 folds via iterative 

stratification for multi-label data [4]. As a result, a small part of the validation set can 

be used to evaluate model performance while the rest of the set can be added to the 

Xeno-Canto [5] training set. 

To allow faster prototyping and to create a more diverse set of models for later en-

sembling, different data subsets are formed targeting different numbers of species or 

sound classes: 

 Data set 1: 78 classes (with 7342 files from the training set) 

 Data set 2: 254 classes (with 21542 files from the training set) 

 Data set 3: 659 classes (with all 50145 files from the training set)
1
 

The smallest data set covers all 78 species present in the annotated soundscapes of the 

validation set and only contains training files belonging to those classes (not consider-

ing background species). The second data set consists of all files belonging to species 

mainly present in the recording locations of the United States. To find out which spe-

cies are likely to be recorded in the US, the additionally provided eBird [6] data is 

taken into account and all files belonging to a species with a frequency value above 

zero for any time of the year are added to the first data set. The third data set finally 

covers all 659 species and all available training files. The eBird data is also used to 

create a list of unlikely species for both the Colombia and the US recording locations. 

For some submissions this list is later used to set predictions of unlikely species to 

zero for soundscapes in the test set depending on their recording location. 
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Training Setup 

 

For audio-based bird species identification Deep Convolutional Neural Networks pre-

trained on ImageNet [7] are fine-tuned with mel scaled spectrogram images represent-

ing short audio chunks. Models are trained with PyTorch [8] utilizing PySoundFile 

and LibROSA [9] python packages for audio file reading and processing. The same 

basic pipeline as for the BirdCLEF 2018 task is used for data loading and can be 

summarized as follows: 

 Extract audio chunk from file with a duration of ca. 5 seconds  

 Apply short-time Fourier transform 

 Normalize and convert power spectrogram to decibel units (dB) via logarithm 

 Convert linear spectrogram to mel spectrogram 

 Remove low and high frequencies  

 Resize spectrogram to fit input dimension of the network  

 Convert grayscale image to RGB image 

In each training epoch all training files are processed in random order to extract audio 

chunks at random position. Training is done with a batch size of ca. 100 - 200 sam-

ples using up to 3 GPUs (Nvidia 1080, 1080 Ti, Titan RTX). Categorical cross entro-

py [10] is used as loss function for single-label classification considering only fore-

ground species as ground truth targets. Stochastic gradient descent is used as optimiz-

er with momentum 0.9, weight decay 1e-4 and an initial learning rate of 0.1. Learning 

rate is decreased at least once during training by ca. 10
-1

 whenever performance on 

the validation set stops improving. If more than one species is assigned to an audio 

chunk, in case of validation soundscapes, one species or label is chosen randomly as 

ground truth target during training. Background species annotated for Xeno-Canto 

files are not taken into account. 

Besides the common single-label classification approach, multi-label classification 

models are trained as well to take advantage of the fact that there are multi-label an-

notations existing for validation soundscapes with two or more species present at the 

same time in many cases. For soundscapes, the multi-label approach also seems the 

more suited classification method since recordings are mostly not focused on a single 

target species. Two loss functions are tested for multi-label training. PyTorch’s Mul-

tiLabelSoftMarginLoss creates a criterion that optimizes a multi-label one-versus-all 

loss based on max-entropy [11]. The loss function BCEWithLogitsLoss combines a 

sigmoid layer and a binary cross entropy layer [12]. 

For the validation and test set audio chunks are extracted successively from each 

file with an overlap of 10 % for validation files during training and 80 % for files in 

the test set. Predictions are summarized for each file and time interval by taking the 

maximum over all chunks. For most submissions, different models are ensembled by 

averaging their predictions for each species after normalizing the entire prediction 

matrix to have a minimum of 0.0 and a maximum value of 1.0. To increase ensemble 

performance a little further, in some cases it helped to clip very low and high predic-

tion values to -7.0 and 10.0, respectively before normalization. 



Data Augmentation 

 

To increase model performance and improve generalization to different recording 

conditions and habitats, the most effective data augmentation techniques from the 

previous BirdCLEF edition [13] are applied in both time and frequency domain. New 

methods are highlighted and explained below. The following methods are applied in 

time domain regarding audio chunks: 

 Chunk extraction at random position in file 

 Duration jitter 

 Local time stretching and pitch shifting 

 Filter with random transfer function 

 Random cyclic shift 

 Adding audio chunks from files containing only background noise 

 Adding audio chunks from files belonging to the same bird species (single-label) 

 Adding audio chunks from files belonging to random bird species (multi-label) 

 Random signal amplitude of chunks before summation 

 Time interval dropout 

A few new methods are added for this year’s challenge to augment individual audio 

chunks in time domain before mixing them together: 

 

Local time stretching and pitch shifting in time domain. The audio signal is divid-

ed into segments, each having a randomly chosen duration between 0.5 and 4 sec-

onds. To each segment time stretching or pitch shifting or both is applied individually 

using the LibROSA library. The time stretching factor is randomly chosen from a 

gauss distribution with a mean value of 1 and a standard deviation of 0.05. The pitch 

is shifted by an offset randomly chosen from a gauss distribution with a mean value of 

0 and a standard deviation of 25 cents (8
th

 of a tone). 

 

Filter with random transfer function. With a chance of ca. 20 %, audio chunks are 

filtered in time domain using a butterworth filter design with variable transfer func-

tion. The following filter parameters are chosen randomly: 

 Type: lowpass, highpass, bandpass, bandstop 

 Order: 1-5 

 Cutoff frequency: 1-22049 Hz 

 

For bandpass and bandstop filter types the second (high) cutoff frequency is chosen 

between the (low) cutoff frequency + 1 and 22049 Hz (nyquist frequency - 1). De-

pending on filter parameters and audio input, filter stability is not always guarantied. 

To prevent unbounded signals the original input is passed as output if the filter output 

contains anything that is not a number between -1.0 and 1.0. Examples of a randomly 

filtered audio recording are visualized in Figure 1.  



 

       

       

Fig. 1. Examples of a randomly filtered audio recording. 

 

Mixing random audio chunks for multi-label classification. For multi-label classi-

fication, audio chunks from random files are mixed together and their corresponding 

labels added to the target label set during training. Up to four audio chunks are added 

with random signal amplitude to the original training sample with conditional proba-

bilities of 50, 40, 30 and 20 %. A similar technique is originally used by [14] for im-

age classification and has shown good results for multi-label audio classification as 

well [15]. Here, however, labels are not weighted by signal amplitudes (or influenced 

by weighting of the linear combination). 

 

For background noise augmentation, besides using noise from validation files, record-

ings without bird activity of the Bird Audio Detection (BAD) task 2018 [16] are used. 

The BAD data set is part of the IEEE AASP Challenge on Detection and Classifica-

tion of Acoustic Scenes and Events (DCASE) 2018 [17]. It consists of audio files 

from three separate bird sound monitoring projects each recorded under differing 

conditions regarding recording equipment and background sounds. 

The audio chunk (or sum of chunks) is transformed to frequency domain via short-

time Fourier transform with a window size of 1536 samples and a hop length of 360 

samples. Frequencies are mel scaled with low and high frequencies removed resulting 

in a spectrogram with 310 mel bands representing a range of approximately 160 to 

10300 Hz. Normalization and logarithm is applied to the power spectrogram yielding 

a dynamic range of approximately 100 dB. The final spectrogram image is resized to 

299x299 pixel to fit the input dimension of the InceptionV3 [18] network or 224x224 

pixel for ResNet [19] models. Resizing is performed with the Python Image Library 

fork Pillow using randomly chosen interpolation filters of different qualities. Because 

audio chunks are extracted with a random length (e.g. between 4.55 and 5.45 s by 

applying a duration jitter of ca. half a second) a global time stretching effect is ob-

tained after resizing the variable length spectrogram images to a fixed width. Image 



resizing is also applied to individual vertical and horizontal spectrogram segments to 

accomplish piecewise or local time and frequency stretching (see below and [13] for 

more details). Since networks are pre-trained on RGB images, the grayscale image is 

copied to all three colour channels. Further augmentation is applied in frequency do-

main to the spectrogram image during training: 

 Global frequency shifting/stretching 

 Local time and frequency stretching 

 Different interpolation filters for spectrogram resizing  

 Colour jitter (brightness, contrast, saturation, hue) 

Table 1 demonstrates the effect of augmentation and single- vs. multi-label training 

on model performance. All models were trained with the 78 classes data set using the 

same parameter settings with a learning rate of 0.1 and 0.01 until performance on the 

validation set stopped improving. 

Table 1. Influence of data augmentation on model performance. 

ID Description InceptionV3 

c-mAP [%] 

ResNet-152 

c-mAP [%] 

E1 Baseline  26.5 21.1 

E2 E1 with BAD noise augmentation 40.1 38.3 

E3 E2 with validation files for training 42.5 38.7 

E4 E3 with validation noise augmentation 50.9 51.3 

E5 E4 with 2019 augmentation methods 53.1 52.2 

E6 E4 with multi-label training
2
 49.7 52.9 

E7 E6 with 2019 augmentations (post 

challenge result) 

50.1 54.7 

 

More details on individual augmentation methods and their effect on identification 

and detection performance in previous challenges can be found in [13] and [20]. 

3 Results 

For the first two submitted runs a single model was used to predict the species for 

each file and time interval in the test set. All other runs used an ensemble of different 

models. The main properties of individual models are listed in Table 2. Selected re-

sults on the official BirdCLEF test set are summarized in Table 3 and further de-

scribed in the next section. 
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Table 2. Main properties of models used for submitted runs. 

Model ID M1 M2 M3 M4 M5 M6 M7 M8 

Included in run 1 2-10 6-10 3,4 5-10 5-10 4-10 6-10 

Number of classes 659 659 254 254 254 254 78 78 

Network type Incept. Incept. Incept. ResNet ResNet ResNet ResNet ResNet 

Input size [pixel] 299 299 299 224 224 224 224 224 

Chunk duration [s] 5 5 5 5 5 2.6 5 5 

Label type single single single single single single multi multi 

Loss function Cross 

entropy 

Cross 

entropy 

Cross 

entropy 

Cross 

entropy 

Cross 

entropy 

Cross 

entropy 

Multi 

Label 

BCEWit

hLogits 

BAD data used no yes yes yes yes yes yes yes 

Val. data (labelled) no yes yes yes yes yes yes yes 

Val. data (noise) no yes yes yes yes yes yes yes 

New augmentations no no no no yes no no no 

Val. set c-mAP [%] 29.7 49.1 51.3 51.2 53.9 52.1 53.8 49.1 

Test set c-mAP [%] 21.3 25.9 - - - - - - 

 

 

Run 1. In order to better compare results and to find out if and how much progress 

was made on identification performance since last year, the best performing model of 

the 2018 BirdCLEF edition [13] was retrained on this year’s data set. All files from 

the Xeno-Canto training set but no validation soundscapes were used for training. The 

model obtained a classification mAP of 21.3 % and a retrieval mAP of 44.7 % on the 

test set. 

 

Run 2. For the second run, a single model (M2) was trained with main properties 

listed in Table 2. Also validation soundscapes were used for training and noise aug-

mentation. The third generation Inception model M2 used all above mentioned aug-

mentations except the new time domain methods filtering and local time stretching 

and pitch shifting. For this and all following models, BAD 2018 files were used for 

noise augmentation. As a result, it is not necessary any more to segment training files 

into signal and noise parts to get background material from the training set for noise 

augmentation like done in previous challenge editions. This greatly simplifies the pre-

processing step. A c-mAP of 25.9 % and a r-mAP of 69.1 % is obtained on the test set 

resulting in a performance increase of 21.6 % and 54.6 %, respectively compared to 

previous state-of-the-art (M1). Since M1 and M2 didn’t use the exact same training 

set and for the training of M2 not all new time domain augmentations were applied 

the given progress is only a rough approximation. 

 

Run 3. For the third run, two models were ensembled: the 2
nd

 run model and a Res-

Net-152 model trained on the 254 classes training set. For this and the following runs, 

predictions of unlikely species regarding recording location were set to zero. 



Run 4. The 4
th

 run used the ensemble of run 3 plus an additional multi-label classifi-

cation model (M7) trained on the 78 classes set. This 3 model ensemble obtained the 

highest retrieval mAP of 74.6 % on the test set. 

 

Run 5. The ensemble of run 5 consists of all previous models (except M1) plus an 

additional 254 classes ResNet-152 model (M6) yielding a higher temporal resolution 

of spectrogram image inputs. It mainly differs in the following parameters: 

 FFT size: 512 (instead of 1536) samples 

 FFT hop length: 256 (instead of 360) samples  

 Chunk duration: 2.6 (instead of 5.0) seconds 

 Duration jitter: 0.2 (instead of 0.45) seconds 

 Number of mel bands: 155 (instead of 310) 

 Start frequency: 0 (instead of 160) Hz 

 End  frequency: 11025 (instead of 10300) Hz 

 Local time stretch chance: 40 (instead of 50) % 

 Local time stretch factor min.: 0.95 (instead of 0.9) 

 Local time stretch factor max.: 1.05 instead of 1.1) 

The run 5 ensemble obtained the highest classification mAP of 35.6 % on the test set. 

 

Run 6 to 10. Different combinations of the previously mentioned models were used 

for run 6 to 10. Also different snapshots of the same model were included for ensem-

bling and two models were trained on different folds of the validation set. Neverthe-

less, no further progress on identification performance on the test set was obtained. 

For run 9 the same ensemble as for run 8 was used except run 9 didn’t use the eBird 

data to set predictions of unlikely species to zero in the post-processing step. This 

demonstrates once again, performance can be increased when unlikely birds are fil-

tered out for a certain recording location where species composition is known in ad-

vance. 

Table 3. Official scores on the BirdCLEF 2019 test set (for selected runs). 

Run #Models #Snap-

shots 

c-mAP [%] 

Val. set 

c-mAP [%] 

Test set 

r-mAP [%] 

Test set 

1 1 1 29.7 21.3 44.7 

2 1 1 49.1 25.9 69.1 

3 2 2 57.5 29.7 71.0 

4 3 3 62.0 30.9 74.6 

5 4 4 63.7 35.6 71.5 

7 7 9 64.9 34.9 73.2 

8 9 12 - 35.1 74.4 

9 9 12 - 32.8 71.1 

10 all all - 35.5 72.2 



 

4 Discussion 

The 2019 BirdCLEF edition had a clear focus on identifying birds in soundscapes 

originating from real-world wildlife monitoring recordings. Although this was a much 

more difficult task compared to previous editions, progress in model performance was 

obtained by exploring new augmentation techniques and by combining different sin-

gle- and multi-label classification models. 

A large performance increase was obtained by adding random background noise 

from other and/or similar habitats. A very good source for noise augmentation is the 

data set of the DCASE 2018 Bird Audio Detection challenge (E1 vs. E2 in Table 1). It 

is easily available and published under the Creative Commons Attribution licence 

CC-BY 4.0 [17]. The BAD recordings cover a wide range of background noise and 

atmosphere from a diverse set of different monitoring scenarios and are therefore well 

suited to improve model generalization. On the other hand, in cases where the target 

monitoring location is known in advance, a model can specifically be designed for a 

certain habitat and greatly benefit by using background sounds of this particular re-

cording location for noise augmentation during training (E3 vs. E4 in Table 1). 

With additional methods like filtering audio chunks with random transfer function 

or applying local time stretching and pitch shifting in time domain, identification 

performance can be further increased (E4 vs. E5 & E6 vs. E7 in Table 1). Unfortu-

nately, training takes significantly longer especially if LibROSA’s time stretching and 

pitch shifting algorithms are applied very frequently. Due to the longer training time it 

was not possible to investigate the individual influence of each method or different 

parameter settings on model performance. To save time, those techniques were only 

applied to the original training sample (first audio chunk in the mix) and not, or only 

with very low chance, to chunks added for augmentation. Both algorithms also seem 

to blur the resulting spectrogram even with very subtle use (time stretching factor 

close to 1, pitch shifting offset close to 0). Maybe a more efficient implementation 

regarding processing time and quality would be a better choice in the future. 

Multi-label training was successfully applied for the 78 classes set (E4 vs. E6 in 

Table 1). In contrast to the single-label approach, for multi-label classification the 

residual network obtained better results compared to the Inception architecture (3
rd

 vs. 

4
th

 column in Table 1). Unfortunately, training with a larger number of classes didn’t 

work so well even when passing a weight vector as argument to the BCEWithLo-

gitsLoss function to compensate for class imbalances. One explanation for this might 

be the exponential growth of possible label combinations depending on the number of 

individual labels (classes) and the number of labels considered to be possible for a 

single audio chunk. Maybe if species combination constrains are known a priori (e.g. 

by distinguishing between diurnal and nocturnal birds) and applied to reduce the 

number of possible label sets, models can also be trained successfully in a multi-label 

fashion for a much larger number of species. 

To reproduce results and to provide a baseline for future BirdCLEF challenges and 

further research on bird species identification, source code will be made available at: 

www.animalsoundarchive.org/RefSys/BirdCLEF2019. 
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