CEUR-WS.org/Vol-2385/paperl2.pdf

Data Shift in Legal Al Systems

Venkata Nagaraju Buddarapu
LexisNexis
Raleigh, USA
venkatanagaraju.buddarapu@lexisnexis.com

ABSTRACT

One of the fundamental assumptions with any machine learning
(ML) system is that training data comes from the same distribu-
tion as the real world data. However, in many real-world applica-
tions, this important assumption is often violated including legal
research. A scenario where training and test samples follow dif-
ferent input distributions is known as covariate shift. This shift
in data is often responsible for the deterioration in predictive per-
formance of machine learning systems. The motivation of this re-
search is to study the effect of covariate shift on deep learning
systems used in legal research. In this paper, we propose a uni-
fied framework to detect covariate shift impacting Al systems and
formulate a strategy to adapt to this shift on a periodic basis. To
our knowledge, our work is the first to apply data shift detection
and adaption techniques to deep learning systems involving high
dimensional word embeddings. Through experiments and evalua-
tions, we demonstrate that our framework can accurately detect
data (covariate) shift on legal Al systems involving deep neural ar-
chitectures.

1. INTRODUCTION

CALR stands for Computer Assisted Legal Research and is a mode
oflegal research that uses electronic databases that comprises court
documents, statutes, secondary materials etc. Professional lawyers
and paralegals rely on CALR applications for the precise under-
standing of the law and to serve the client’s best interest. Search
engines are a crucial component of legal research technology to-
day, and its primary goal is to identify and retrieve information
needed to support legal decision making. When a user types the
query “most cited cases by judge john d roberts”, he strives to under-
stand the most often cited cases by a judge and tries to anticipate
the judge’s behavior. This plays a crucial role in uplifting his legal
research experience. Consequently, understanding a query intent
is essential for providing better search results, thus improving cus-
tomers’ overall satisfaction.

Understanding a query intent requires classifying legal queries
and identifying domain-specific legal entities, which is a complex
problem [1]. E.g., in the query: “what are the opinions by judge john
doe in civil cases dealing with dog bites ? ”, the word “judge” can
be treated as a judge search when observed along with the context
phrase “opinions by”. The phrase “civil cases” can be identified as
a <practice area> when seen alongside a supporting context and
similarly “dog bites” can be treated as keywords. However, since
we also observe the interrogative phrase “what are”, we can safely

In: Proceedings of the Third Workshop on Automated Semantic Analysis of Informa-
tion in Legal Text (ASAIL 2019), June 21, 2019, Montreal, QC, Canada.

©2019 Copyright held by the owner/author(s). Copyrighting permitted for private and
academic purposes.

Published at http:// ceur-ws.org.

Arunprasath Shankar
LexisNexis
Raleigh, USA
arunprasath.shankar@lexisnexis.com

¢ Application
Layer
Web | T l Database
Browser Layer
Service \
Layer v
Database
~——————

Figure 1: CALR Workflow

assume the topic of this query is about the opinions of a judge.
Table 1 presents examples for legal queries with different intents.

Intent Example

case search marbury v. madison, 1803

judge judge john roberts

expert witness | expert henry lee

definitions foreign corrupt practices act of 1977 ?
seminal cases seminal cases on murder

burden of proof | burden of proof for hearsay statement
doctrine what is assumed duty doctrine
elements elements of child abuse

statutes statute of limitations for mail fraud

Table 1: Query Intents

Identifying query intent is a classification problem, and the pro-
cess of recognizing domain-specific entities is known as named en-
tity recognition (NER), which also belong to the classification fam-
ily. In general, intent and entity recognition are two primary com-
ponents of any natural language processing (NLP) system. Over
the past decade, the field of NLP has heavily influenced the way
legal search works, shifting discovery from pure keyword-based
methodologies to a more context-oriented NLP techniques.

Figure 1 depicts the workflow of a typical CALR application. The
browser is a tool by which users provide input; the application
layer coordinates user interactions with a service layer that trig-
gers a search. The NLP system complements the service layer for
query understanding by leveraging a database layer. The database
layer usually retrieves relevant information in the form of legal
documents.

NLP systems are usually built using supervised approaches and
is a type of learning that uses a function to map a given input to an
output. It infers learning features from labeled data consisting of
training examples. For example, given a query “what are the opin-
ions by judge john doe in civil cases dealing with dog bites ?”, the

m
|

—

Engineering

Model
Development

— Model Scoring »| ML/DL Models

5
CALR Application | Query Log
I — Data Discovery —»
-
Case Law

Docs _/

\J

Legal Environment

Machine Learning Development Life Cycle

Figure 2: QIC and LER Model Development Lifecycle

output label for intent classification is “judge”. On the other hand,
we need to construct two output labels “john doe” as <judge en-
tity> and “civil cases” as <practice area> for the task of legal
entity recognition.

Our NLP system mainly consists of two models: (i) a model for
identifying legal query intent which we call as Query Intent Clas-
sifier (QIC), and (ii) a model for recognizing legal entities called as
Legal Entity Recognition (LER). QIC and LER model development
cycles follow a standard machine learning development life cycle
as shown in Figure 2. These cycles usually require application data
as a prerequisite. In our case, the data is derived from user logs as
mentioned previously. NLP systems usually reside within a learn-
ing environment and learn from the data collected within this en-
vironment.

In general, any legal learning environment is comprised of users
(lawyers and paralegals), continually changing legal corpus and re-
formulating legal queries. Most machine learning methods assume
the learning environments to be static, which is not the case with
real-world applications such as CALR, email spam filters, stock
market prediction systems etc. Real world applications including
legal systems are mostly dynamic in nature and often incur distri-
bution changes to its underlying data. This phenomenon is known
as data shift in the machine learning arena. These data shifts usu-
ally results in performance degradation of NLP systems deployed
as real-world applications.

The evolving nature of legal environment demands continuous
monitoring and adaption to data shifts, in order to alleviate the
issue of performance degradation in NLP systems. Data shift has
been receiving significant attention in recent years amongst the
machine learning community. Dataset shift refers to the problem
where training and real-world datasets follow different distribu-
tions. The section 2. contains formal definitions of these shifts. Since
this problem may occur in many real-life scenarios, detecting and
adapting to dataset shift becomes a vital research aspect in ma-
chine learning. This research aims to observe, detect and adapt co-
variate shift on deep learning models using high-dimensional word
embeddings, derived from a corpus of legal queries. We demon-
strate the usefulness of adapting covariate shift with incremental

learning on deep neural models as a necessary step to ensure con-
sistent quality amongst Al applications deployed for legal CALR.

2. BACKGROUND KNOWLEDGE

Dataset shift research on machine learning classification algorithms
is interesting and foreseen to become a more difficult problem to

solve in non-stationary environments. In section 2.1, we introduce

the dataset shift definitions concerning classification problems from
[2]’s extensive literature survey, section 2.2 discusses the causes of
dataset shift in general and 2.3 the various analysis methods for co-
variate shifts.

2.1 Data Shift Types

In this section, we explain the different classification and data shift
types. In general, a classification problem is defined by:

e A set of features or covariates X
o A target (class) variable Y
e A joint distribution P(Y, X)

X — Y problems are those where the class labels Y is predicted
based on the values of covariates X. Inversely, Y — X problems
are the ones where the class label Y causally determines the values
of covariates X. Thus, by analyzing the relationship between X and
Y, we can define three different types of data shifts:

2.1.1 Covariate Shift: Covariate shift refers to changes in the
distribution of input variable X= {x1,x2 - - - x,}. Here x1,x2 - - - x,
are called the covariates and any distribution changes in one or
more of these covariates is termed as covariate shift.

2.1.2 Prior Probability Shift: Distribution changes to the class
variable Y is referred to as prior probability shift, and it appears
only in Y — X problems.

2.1.3 Concept Shift: Concept shift occurs when the relationship
between input variable X and class variable Y changes. There other
shifts in theory, but we are not defining them since they emerge
sporadically. In general, dataset shift is a phenomenon that occurs
when new data distribution leads to a change in the distribution of
a single feature, a combination of features, or class boundaries.

Train Phase

User Query ——»

Original Monthly
Input Layer
Train Real Word
Set World > ord >
Set Embedding
Embedding Layer

Test Phase

RNN Layer
Train Set
Query
Output Layer
Real World
Query

Shift Model

Figure 3: Shift Model

2.2 Data Shift Causes

Selection bias and non-stationary environments are the two pri-
mary reasons for data shift in general. Selection bias occurs when
a training set does not exactly represent a real world test set. Lack
of randomness in training sample selection, improper samples, and
biased sampling rules often influence selection bias. On the other
hand, non-stationary environments often must deal with dynamic
nature. Hence, not handling dataset shift in real-world application
creates an overfitted model on training samples, hence unreliable
model predictions.

2.3 Covariate Shift Analysis

In this section, we introduce an overview of three well known co-
variate shift analysis methodologies.

2.3.1 Visualization: This methodology is the simplest, visualiz-
ing one covariate at a time. It requires humans spotting the differ-
ence in covariate distribution using histograms.

2.3.2 Statistical Distance: In this type of analysis, methods in-
volving statistical metrics such as mean, variance, population sta-
bility index (PSI), Kullback-Leibler divergence, and Kolmogorov-
Smirnov etc. are used for detecting shifts.

2.3.3 Uncertainty Quantification: This method fits a probabilis-
tic model on the training data and every prediction on new data
is associated with a confidence interval or uncertainty. Lower un-
certainty on new real world data is considered no shift and higher
uncertainty means a shift.

All the methodologies mentioned above have a common draw-
back of not being suitable for the analysis of high dimensional fea-
tures. In our work, we strive to overcome this drawback by defin-
ing a shift detection algorithm to capture performance degradation
in real world machine/deep learning systems, especially scoped to-
wards legal data.

3. RELATED WORK

Data (covariate) shift is an area of machine learning that has been
gaining popularity in recent years. In this section, we will discuss
some of the very few existing works related to this sub-domain
of Al research. First, statistics based identification methods have
been widely adopted in several fields recently yielding good re-
sults. For the area of data shift, in [3][4][5], statistical methods
such as exponential weighted moving average and Kolmogorov-
Smirnov were used as detection methodologies especially towards
time-series data, and big data online streams applications. In [6],
the authors discuss hierarchical hypothesis testing techniques for
concept shift detection in streaming applications.

Most real-world deep learning applications need training and
the training phase usually face an internal covariate shift. In [7],
Sergey et al. proposed an ensemble of batch normalized networks
to detect shifts in image classification. Word embeddings are con-
sidered as the building blocks for NLP and the problem of choosing
a right embedding for a particular NLP task is always a problem
of trial and error. In [8], authors have discussed the various fac-
tors influencing a word embedding’s stability, and one such factor
is word frequency. Insufficient vocabulary affects word frequency
and landing a perfect real-world sufficient vocabulary is not a one-
step process. In our paper, we demonstrate that continuously up-
dating word embeddings to represent real world data promotes the
model’s performance.

In [9], the researchers propose a novel minimax approach for re-
gression problems under covariate shift. Non-stationary environ-
ments influence and change the machine learning development
process. Under covariate shift, the standard model selection tech-
niques such as cross-validation do not work as expected. Hence,
an importance-based weighted cross validation strategy was pro-
posed in [10]. However, this method necessitates the presence of
covariate shift during the development phase. Sample re-weighting
and active learning are well-known methods for adapting covari-
ate shift. Sample re-weighting re-weights every training point in
the learning process based on the probability of a being inside the

QIC LER
Fpm, = 0.9344 Fm, = 0.8773
Month P R Frm A P R Fom A
mi 0.9821 0.9687 0.9725 +0.038 0.9613 0.8958 09123 +0.350
my 0.8194 0.7708 0.7726 —0.1618 0.6291 0.6102 0.6195 —0.2578
ms 0.9531 0.8541 0.8669 —0.0675 0.9028 0.7149 0.7979 —0.0794
ms 0.875 0.8041 0.8380 —0.0964 0.7821 0.6073 0.6837 —0.1936
ms 0.9791 0.9583 0.9636 +0.0292 0.9613 0.8958 0.9123 +0.0350
meg 0.7777 0.6999 0.7042 -0.2302 0.6962 0.6444 0.6599 —0.2174
my 0.8697 0.7916 0.7707 —0.1637 0.7851 0.7185 0.7289 —0.1484
mg 0.8779 0.8291 0.8396 —0.0948 0.7248 0.6999 0.7018 —0.1755

Table 2: Current System - Real World Performance Metrics (Monthly)

training set. When adequate samples are available for the train-
ing set, active learning is adapted. Active learning selects test in-
stances that dramatically influence the learning process and hopes
to reduce the uncertainty under covariate shift. Some earlier works
[11][12] have discussed these approaches.

In this paper, we scope our research to handling covariate shift
in word embeddings acquired from legal search queries. It also dis-
cusses an incremental learning approach for adapting covariate
shift to legal Al systems. To our knowledge, this work is the first of
its kind to apply data shift on word embeddings focussing on deep
learning applications. It is also the first to apply it to legal domain
space.

4. THE PROPOSED FRAMEWORK
4.1 Current System

Deep learning (DL) systems learn representations of data with mul-
tiple levels of abstraction and are composed of several processing
layers. These methods have dramatically improved the state-of-the-
art in NLP empowered by word embeddings. Learning a high di-
mensional dense representation for vocabulary terms, also known
as a word embedding, has recently attracted much attention in NLP
and information retrieval tasks. The embedding vectors are typi-
cally learned based on term proximity from a large corpus and are
used to accurately predict adjacent word(s), given a word or con-
text.

For the purpose of this study, we consider two NLP models
which we had developed earlier: (i) a model for identifying legal
query intent namely Query Intent Classifier (QIC), and (ii) a model
for recognizing legal entities termed as Legal Entity Recognition
(LER). Our DL models follow a similar architecture as described in
Figure 3. They consist of four layers - input, embedding, recurrent
neural network (RNN) and an output layer. The input layer receives
a dense representation of the word vocabulary derived from legal
queries contained in user logs. The vocabulary is a diverse mixture
of legal query types (intent), e.g., judge queries, case search, legal
definitions and others shown in Table 1.

For the embedding layer, we use pre-trained word embeddings
trained via a word2vec[13] model using ~1M queries derived from
user logs. The RNN layer consists of bi-directional Long Short Term
Memory (LSTM) units primarily used for sequence to sequence

learning. In the output layer, IOB tags [14] were used to generate la-
bels for LER. For intent classification, since the task is a multi-class
problem, we grouped and labeled all of the queries into 4 classes -
judge, expert witness, seminal cases, and other.

4.2 The Problem

Legal data, in general, is both complex and diverse. User queries
and word vocabularies extracted from these queries change over
time. This in turn leads to changes in the underlying word embed-
dings which are usually the core components behind Al system(s).
A word’s embeddings are vectors that represent some aspect of its
meaning and are generally trained on large, unlabeled corpora (in
our work - legal queries). Any change in word embeddings results
in complications and inconsistencies within feature weights that
are part of the embedding matrix. Furthermore this change makes
it harder to accomplish a consistent prediction model whose be-
havior does not change frequently in production.

Our legal queries were both natural and un-natural, meaning,
natural queries are mostly synthesized (augmented by us) and the
un-natural queries are those derived from user logs. Users tend
to type queries in more un-natural format. E.g., the query, ‘justice
marshall abortion law 2017” is a very un-natural representation of
language having multiple intents. Also, more structured queries
like boolean queries are also un-natural in its representation.

Word embeddings are almost universally useful across a wide
range of tasks, but there were many limitations to this method.
Word embeddings are generally used for shallow language mod-
eling tasks, so there is a limitation to what the word embeddings
can capture. Unlike RNNs and other complex architectures, lan-
guage models like word2vec have trouble capturing the meaning
of combinations of words, negation, etc. On the other hand, in-
stead of training a model to map a single vector for each word,
RNNs learn to map a vector to each word based on the entire sen-
tence/surrounding context.

Another key limitation is that word embedding models do not
take context into account. For instance, the word “lynch” has dif-
ferent meanings. According to California Penal Code 405a, “Lynch”
is defined as, “the taking by means of a riot of any person from the
lawful custody of any police officer” It also refers to killing some-
one without legal authority, usually by hanging; and “Iynch law”

refers to the punishment of presumed crimes or offenses, usually
by death, without due process of law. The above example illustrates
word embeddings built on non-stationary legal vocabulary are sus-
ceptible to data shift. Therefore, it is a necessity to develop strate-
gies and techniques to overcome the issue. In the next section, we
discuss the performance degradation of our DL models observed
over 8 months of experimentation showing a covariate shift.

4.3 Performance Degradation

To evaluate our DL models, we chose F1 score as a metric. In Ta-
ble 2, mg denotes the initial 0 month, and Fp, denotes the corre-
sponding F1 score for models - QIC and LER for that month (mg).
After development, the models were deployed to production in
month mg. At mg, QIC’s Fy,, = 0.9344 and LER ’s Fp,, = 0.8733.
These F1 scores set the baseline for performance comparisons, and
A represents performance gain or loss correlated to these base-
lines.

The initial performance score observed during model develop-
ment was good, significant performance degradation was observed
after month mg, QIC and LER model performance scores and the
observed shifts (delta values) for months m to mg are shown in Ta-
ble 2. Months m; and ms saw no significant performance degrada-
tion. Remaining months {m2,m3,m4,me,m7,mg} are the ones with
significant performance degradation. Month mg witnessed a max-
imum QIC degradation where A = —0.2302 and month mg ob-
served a maximum LER degradation whose A = —0.2578.

Although, we achieved good baseline performance results, the
degradation after deployment prompted us to research on the cause
of degradation. Our analysis discovered that covariate shift in le-
gal user queries consequently influences legal word embeddings
causing distribution changes. These changes include observing vo-
cabulary differences such as new words or part of speech patterns.
There is not enough research to identify word embedding distri-
bution changes or covariate shift in legal (or any) environment. In
this work, we propose a unique algorithm to detect covariate shift
in the legal queries as explained in the upcoming section.

4.4 Algorithm

Previously, we talked about how our system suffers from covariate
shift and Table 2 showed changes in Flscore clearly showing per-
formance degradation. Our proposed algorithm detects covariate
shift in legal user queries that impacts high dimensional word em-
beddings that derive from it. The degradation part was discussed
earlier. This section first introduces the intuition behind the algo-
rithm. Next, it discusses notations used for defining the algorithm,
followed by explanation and results.

4.4.1 Intuition: The core intuition behind the proposed algorithm
is to detect covariate shift by classifying “new” real-world data
(legal queries) as similar or different to the training data (“old”).
The algorithm starts with building a binary classifier over the com-
bined dataset (proprietary to LexisNexis) of current training and
monthly user queries, and then predicts a probability that a user
query is a member of a training set. We assign membership to both
training (old) and real-world (new or test) data with output labels
- train and test to create input-output pairs for the shift classifier
(binary). Inconsiderable training error (covariate shift) in new user
queries and limited accuracy indicates that new real-world data

and training data are similar. If significant word distributions shift
in the real-world test queries, then the classifier correctly classi-
fies test queries from training queries, hence proving a distribution
change in the covariates or word embeddings.

Symbol Usage

X Variable denoting current training set of user queries
Y, Target variable denoting output labels for X,

(X, Y), Variable denoting input-output pairs for X; and Y,
Xm Variable denoting current month’s user queries

Y Target variable denoting output labels for X,

(X, Y)m | Variable denoting input-output pairs for X, and Yy,
Xtm Variable denoting combined queries of X; and X,
Yim Target variable output labels for X;,

(X, Y)¢m | Variable denoting input-output pairs for Xy, and Y;p,
MA Binary classifier for the shift model

FA F1-score of M®

g Matthews Correlation Coefficient of M2

Table 3: Algorithm Notations

4.4.2 Notations: Table 3 displays the list of symbols used for
defining the algorithm. In general, X as input variables and Y as
output variables are the X and Y to the binary classifier M A (shift
model). Along with the standard F1 score, an additional qualitative
measure called Matthews correlation coefficient ¥ is also used for
assessing M2 For this work, we utilized a supplementary A sym-
bol for all shift model related symbols. Also suffixes t and m serve
as current training and current month respectively.

Algorithm 1: CSD Algorithm

Input: X; and X,

Output: YES if covariate shift, NO otherwise

Assign target labels 0 to Y; and 1 to Y,

Combine inputs X; and X}, along with their respective
output labels Y; and Yy, to create dataset (X,Y) s,

Perform the classic train-test split on dataset (X, Y):, to
create train set (X, Y) t%ain and test set (X, Y)tAest

Train a Word2Vec model using both X; and X,

Using word embeddings as features from Step 4, create a shift
detection model M2 trained on (X, Y) t%ain
(X ’ Y)t%st

Compute F1 Score F& and W using the expected labels from
Step 1 and the predicted labels from Step 5.

7 IfFFA > 0.7 and ¥ > 0.2 then return YES else return NO

[

)

@

'

«

and tested it on

a

4.4.3 Steps: Our proposed covariate shift algorithm(CSD) is illus-
trated in Algorithm 1 and contains 7 steps in total. Assignment of
target (output) variables is performed in step 1 where 0 indicates
a query from the current training set and 1 meaning it originated
from a real-world test. Step 2 creates input-output pairs (X, Y)
from (X;, Y;) and (X}, Yy,). We then perform a standard train-test
split of 80% train queries (X, Y)t%ain and 20% test queries (X, Y)t%st‘
In order to create word embeddings, a word2cec model was trained
on combined dataset X;p,; .

The architecture of our proposed shift model is shown in Figure
3 and it resembles the architecture of the previously discussed DL
models (QIC and LER), (i) an input layer, (ii) an embedding layer in
the form of pre-trained word2vec embedding, (iii) RNN layer con-
sisting of LSTM units, and (iv) an output layer with sigmoid func-
tion that outputs a binary membership (0 or 1). Tokenized input
queries are passed to the input layer along with its output labels,
using which the shift model predicts membership (0 or 1) for the
given query. The next step in the algorithm is to train a classifier

M2 on (X, Y)tA . and test it on (X, Y)tA . To determine covari-
rain est

ate shift, we calculate standard F1 test score F2 and shift score ¥
on the test set using expected labels assigned initially. If F& > 0.7
and ¥ > 0.2, then algorithm returns “YES” as an indication of co-
variate shift and “NO” otherwise. With trial and error, we arrive at
the requirement that F~ should be > 0.7 and also ¥ should exceed
0.2 to result in a covariate shift, and these values provide excellent
coverage detecting the covariate shift for our application.

Month F2 Shift Score (¥) Is Covariate Shift ?
mi 0.5 0.01 No
mo 0.96 0.22 Yes
ms 053 0.17 No
myq 0.87 0.32 Yes
ms 0.51 0.02 No
me 0.92 0.38 Yes
my 0.89 0.26 Yes
ms 0.98 0.54 Yes

Table 4: Detection Test Results

4.4.4 Results: Using our proposed algorithm, we conducted de-
tection tests for 8 months as mentioned in Table 2, and Table 4
outlines the results of the tests. It comprises a shift score U based
on Matthews Correlation Coefficient, F denoting shift model’s F1
score on current training Xy, and the column “Is Covariate Shift”
indicating “Yes” if covariate shift and “No” otherwise. Results from
Table 4 shows the algorithm was able to detect covariate shift accu-
rately for all months except month mg3. Although the performance
for month m3 has decreased, shift detection failed to detect this
with a shift score W=1.7 that did not meet our threshold.

Month Shift (¥) TP FN
my 0.01 v X
mo 0.22 v X
ms3 0.1 X v
my 0.32 v X
ms 0.02 v X
me 0.38 v X
my 0.26 v X
mg 0.54 v X

Table 5: CSD Algorithm - Evaluation

To evaluate the performance of our algorithm, we considered
recall R (in %) as a measuring metric. False positives trigger false

alarms and result in no effect on system’s performance, whereas
false negatives result in system’s performance degradation.
__ Number of Shifts Detected
Total Number of Shifts
For our shift detection, we achieved a recall of ~80% as show in
Table 5. Thus, CSD acts as an alarm and it is the first process in
the two-step procedure to learn under covariate shift. In the next
section, we explain how we adapt to covariate shift through incre-
mental learning.

X100 (1)

4.5 Incremental learning

This is the second stage of our proposed framework that facilitates
adapting to covariate shift through incremental learning. Incre-
mental learning is a method where the model’s knowledge base
is updated continuously.

Month | Train Size (X;)
mo 1,026,883
m 1,026,883
m2 1,176,640
m3 2,081,806
my 2,081,806
ms 2,327,126
meg 2,364,142
mry 2,466,806
ms 2,629,006

Table 6: Cumulative Training Size

For incremental learning, at each iteration of CSD, X is updated
on a monthly basis. Table 6 shows the cumulative X; size of train-
ing data after each incremental learning. The baseline training set
holds 1, 026, 883 queries at first month mg and through incremen-
tal learning, the training set is accumulated to 2,629, 006 at last
month mg. We address covariate shift in legal queries by incremen-
tal re-training at each detection. To retrain our QIC and LER mod-
els, we used an expert system which is a Java-based rule engine.
Subject Matter Experts (SMEs) produced the desired output labels
Y. The performance improvements after re-training is displayed
in Table 7. It contains two F1 scores, (i) an original F1 score Fp,
from Table 2 before retraining and, (ii) a new latest F1 score LF,
after retraining. Original performance degradation is A from Table
2 and the result of incremental learning is measured by subtracting
the latest F1 score from the base F1 score i.e., 5:1{7;! - Fp,.

Apart from overcoming the performance degradation, incremen-
tal learning improved the F1 score over the baseline. QIC has the
highest improvement § = +0.144 on mg and LER has § = 0.0191
on month ma. Our experimental results demonstrate the effective-
ness of the proposed covariate shift-detection and incremental learn-
ing strategy.

4.6 Environment

For training our DL and shift models, we used AWS ml.p3.8xlarge
instance with 4 NVIDIA Tesla V100 GPUs. Average time taken for
all models is ~94 minutes for 100 epochs, and training time for

QIC LER
Fing = 0.9344 Fing = 0.8773
Month Fy, A LF, 5 Fom A LFm 5
mo 07726 —0.1618 0.9493 40.0149 0.6195 —0.2578 0.8964 +0.0191
ms 0.8669 —0.0675 0.9312 —0.0032 07979 —0.0794 0.8032 —0.0741
ms 0.8380 —0.0964 0.9589 40.0245 0.6837 —0.1936 0.8790 40.0017
mg 07042 —0.2302 0.9200 —0.0144 0.6599 —0.21742 0.8529 —0.0244
my; 07707 —0.1637 0.9221 —0.0123 0.7289 —0.1484 0.8400 +0.0373
mg 0.8396 —0.0948 0.9488 +0.144 07018 —0.1755 0.8928 40.0155

Table 7: Results after incremental learning

word2vec is ~84 minutes for 10 epochs. For implementing our shift
and DL models, we used TensorFlow [15]. For our DL models, we
fixed a batch size of 512.

5. PERFORMANCE METRICS

We utilize standard measures to evaluate the performance of our
QIC, LER and shift model classifiers, i.e., precision (P), recall (R),
and F1l-measure. Precision (P) is the proportion of actual positive
class members returned by our method among all predicted posi-
tive class members returned by our method. Recall (R) is the pro-
portion of predicted positive members among all actual positive
class members in the data. F1= 2PR/(P+R) is the harmonic aver-
age of precision and recall. We also utilized Matthews correlation
coefficient (MCC) to compute the shift score and MCC is a correla-
tion coefficient between actual and expected predictions. It varies
between -1 and +1: -1 when actual and expected are entirely dif-
ferent, 1 when there is a perfect match and 0 when it is random.
Accompanying shift F1 score, MCC ¥ was used as shift score for
measuring the similarity between training and test set.

6. CONCLUSION AND FUTURE WORK

Learning strategies under covariate shift have been receiving sig-
nificant research interest recently. In non-static environments such
as legal, learning methods need to employ unique learning strate-
gies and covariate shift monitoring systems to acquire a greater
capability to generalize the learning. Our proposed framework in
this work belongs to the category of incremental learning under
covariate shift for legal AI systems, and its core component is a
covariate shift detection algorithm which detects shift in our deep
learning models - QIC and LER. The results demonstrate the ben-
efit of building a monitor system for covariate shift detection and
also its adaptation through incremental learning. For future work,
we plan to extend our current research by employing better strate-
gies to reduce false negatives. Also, we are plan to apply a similar
strategy to other data shifts such as prior probability and concept
shifts.

REFERENCES

[1] S. Arunprasath and B. Venkata Nagaraju, “Deep ensemble learning for legal
query understanding,” in Proceedings of CIKM 2018 Workshop on Legal Data An-
alytics and Mining (LeDAM 2018), CEUR-WS.org, October 2018. To appear.

[2] J. G. Moreno-Torres, T. Raeder, R. Alaiz-RodriGuez, N. V. Chawla, and F. Her-
rera, “A unifying view on dataset shift in classification,” Pattern Recogn., vol. 45,
pp. 521-530, Jan. 2012.

[3]

(10]

[11

(12]

(13]

H. Raza, G. Prasad, and Y. Li, “Dataset shift detection in non-stationary environ-
ments using ewma charts,” Proceedings - 2013 IEEE International Conference on
Systems, Man, and Cybernetics, SMC 2013, pp. 3151-3156, 10 2013.

D. Zhao, L. Bu, C. Alippi, and Q. Wei, “A kolmogorov-smirnov test to detect
changes in stationarity in big data,” IFAC-PapersOnLine, vol. 50, pp. 14260 —
14265, 2017.

H. Raza, H. Cecotti, Y. Li, and G. Prasad, “Adaptive learning with covariate
shift-detection for motor imagery-based brain—computer interface,” Soft Com-
put., vol. 20, pp. 3085-3096, Aug. 2016.

S. Yu, X. Wang, and J. C. Principe, “Request-and-reverify: Hierarchical hypothe-
sis testing for concept drift detection with expensive labels,” pp. 3033-3039, 07
2018.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.

L. Wendlandt, J. K. Kummerfeld, and R. Mihalcea, “Factors influencing the sur-
prising instability of word embeddings,” in Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Papers), pp. 2092-2102, Association
for Computational Linguistics, 2018.

X. Chen, M. Monfort, A. Liu, and B. D. Ziebart, “Robust covariate shift.” in Pro-
ceedings of the 19th International Conference on Artificial Intelligence and Statistics
(A. Gretton and C. C. Robert, eds.), vol. 51 of Proceedings of Machine Learning
Research, (Cadiz, Spain), pp. 1270-1279, PMLR, 09-11 May 2016.

M. Sugiyama, M. Krauledat, and K.-R. Miiller, “Covariate shift adaptation by im-
portance weighted cross validation,” J. Mach. Learn. Res., vol. 8, pp. 985-1005,
Dec. 2007.

A.Liu and K. Asif, “Addressing covariate shift in active learning with adversarial
prediction,” ICML 2015 Workshop of Active Learning.

M. Sugiyama, S. Nakajima, H. Kashima, P. V. Bunau, and M. Kawanabe, “Direct
importance estimation for covariate shift adaptation,” Annals of the Institute of
Statistical Mathematics, 2008.

T. Mikolov, L. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed represen-
tations of words and phrases and their compositionality,” in Proceedings of the
26th International Conference on Neural Information Processing Systems - Volume
2,NIPS’13, (USA), pp. 3111-3119, Curran Associates Inc., 2013.

L. Ramshaw and M. Marcus, “Text chunking using transformation-based learn-
ing,” in Third Workshop on Very Large Corpora, 1995.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: A system for large-scale machine learning,” in Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI'16, (Berkeley, CA, USA), pp. 265-283, USENIX Association, 2016.

	Abstract
	1. Introduction
	2. Background Knowledge
	2.1 Data Shift Types
	2.2 Data Shift Causes
	2.3 Covariate Shift Analysis

	3. Related Work
	4. The Proposed Framework
	4.1 Current System
	4.2 The Problem
	4.3 Performance Degradation
	4.4 Algorithm
	4.5 Incremental learning
	4.6 Environment

	5. Performance Metrics
	6. Conclusion And Future work
	References

