
Legal Query Reformulation using Deep Learning
Arunprasath Shankar

LexisNexis
Raleigh, USA

arunprasath.shankar@lexisnexis.com

Venkata Nagaraju Buddarapu
LexisNexis
Raleigh, USA

venkatanagaraju.buddarapu@lexisnexis.com

ABSTRACT
Query reformulation is the process of iterativelymodifying a query
to improve the quality of search engine results. In recent years,
the task of reformulating natural language (NL) queries has re-
ceived considerable diligence from both industry and academic
communities. Traditionally, query reformulation has been mostly
approached by using the noisy channel model. Since legal queries
are diverse and multi-faceted, these traditional approaches can-
not effectively handle low frequency and out-of-vocabulary (OOV)
words.Motivated by these issues, we rethink the task of legal query
reformulation as a type of monolingual neural machine translation
(NMT) problem, where the input (source) query is potentially er-
roneous and the output (target) query is its corrected form. We
propose a unified and principled framework with multiple levels
of granularity. Specifically, (i) an encoder with character atten-
tion which augments the subword representation; (ii) a decoder
with attentions that enable the representations from different lev-
els of granularity to control the translation cooperatively and (iii) a
semi-supervisedmethodology to extract and augment a large-scale
dataset of NL query pairs combining syntactic and semantic opera-
tions. We establish the effectiveness of our methodology using an
internal dataset, where the training data is automatically obtained
from user query logs. We further demonstrate that training deep
neural networks on additional data with synthesized errors can
improve performance for translation.

1. INTRODUCTION
Technology and innovation are transforming the legal profession
in manifold ways. The legal industry is undergoing significant dis-
ruption and arguably machine intelligence is most advancing in
the area of discovery and search. Technologies are moving from
basic keyword searches to predictive coding, which involves algo-
rithms that predict whether a document is relevant or not. In [1],
McGinnis et al. envisage two phases of technological changes in
this area. The first phase, expected to come in the next 10 years, in-
volves perfecting semantic search that will allow lawyers to input
NL queries to interfaces and systems responding to those queries
directly with relevant information.The second phase involves tech-
nology that is able to identify issues, given a set of facts and then
suggest relevant authorities that might apply to those issues.

Query reformulation or correction is a crucial component for
any service that requires users to type in NL, such as a search en-
gine. It is an iterative process where a user reformulates (rewrites)
queries to improve search results or gain new information. He

In: Proceedings of the Third Workshop on Automated Semantic Analysis of Informa-
tion in Legal Text (ASAIL 2019), June 21, 2019, Montreal, QC, Canada.
©2019 Copyright held by the owner/author(s). Copyrighting permitted for private and
academic purposes.
Published at http:// ceur-ws.org.

achieves this by using either his own prior knowledge or through
assisted tools. Legal query reformulation is not a trivial task, as
legal search queries are often short, complex and lack context. Au-
tomatic query correction systems are one of the most widely used
tools within NL applications. Search engines support users in this
task in two ways, (a) explicitly by suggesting related queries or
query completions, or (b) implicitly by expanding the query to im-
prove quality and recall of organic results. Successful reformula-
tions must closely align with the original query both syntactically,
as sequences of characters or words, and semantically, often in-
volving transparent taxonomic relations.

From a probabilistic perspective, given an incorrect query q−

that we wish to reformulate to a correct query q+, we seek to
model q+ = arg maxqP (q|q−) where q is the original query or
ground truth. In a traditional noisy channel model [2], the model
consists of two parts: (i) a language model i.e., P(q) that represent
the prior probability of the intended correct input query; and (ii)
an error model i.e., P (q|q−) that represent the process in which
the correct input query gets corrupted to its incorrect form. There
are several drawbacks with this approach: (i) we need two sepa-
rate models and the error in estimating one model would affect
the performance of the final output, (ii) it is not easy to model the
channel since there is a lot of sources for thesemistakes e.g., typing
too fast, unintentional key stroke, phonetic ambiguity, etc. and (iii)
it is not easy to obtain clean training data for language model as
the input does not follow what is typical in NL. Since the end goal
is to get a query that maximizes P (q|q−), can we directly model
this conditional distribution instead.

In this work, we explore this route, which by passes the need
to have multiple models and avoid suffering errors from multiple
sources. We achieve this by applying the encoder-decoder frame-
work combined with attention learning using recurrent neural net-
works [3] and rethink the query correction problem as aNMTprob-
lem, where the incorrect input is treated as a foreign language.
We also propose a semi-supervised methodology to perform er-
ror detection and construct a large-scale dataset for training and
experimentation. To the best of our knowledge, there is no prior
research work on the idea of using attention learning in a legal
setting. Also, our work is the first that uses neural machine trans-
lation based methodologies on user generated legal data for query
reformulation. We demonstrate that NMT models can successfully
be applied to the task of query reformulation in a legal background
and validate that the trained models are naturally capable of han-
dling orthographic errors and rare words, and can flexibly correct
a variety of error types. We further find that augmenting the net-
work training data with queries containing synthesized errors can
result in significant gains in performance.

2. APPLICATION
An “answer card” is a search feature, usually displayed in a box or
panel, that occurs above organic results and tries to directly answer
a question. Most answer boxes are primarily text, containing a rel-
atively short answer and may provide limited information based
on user’s entered query. In legal context, the source can be a legal
question, profile search or can take many forms. Figure 1 shows a
card that is an answer to a legal question “define motion to com-
pel” and Figure 2 shows a profile card for a judge search using the
query “who is judge antonin scalia ?”.

A motion to compel asks the court to order either the opposing
party or a third party to take some action.

Motion to compel

Figure 1: Answer Card

Vertical engines are search engines that specialize in different
types of search. Answer cards are usually backed by vertical search
engines that are tightly coupled with AI/NLP systems. These NLP
systemsmay be amachine/deep learningmodel(s) recognizing and
classifying entities that trigger and render respective cards based
on user’s query intent[4]. NLP models rely heavily on vocabulary
and any OOV words contained in the query can have an adverse
effect on the coverage or functioning of answer cards.

Antonin Scalia

Former Associate Justice
Supreme Court (U.S.)

Born: March 11, 1936, Trenton, NJ

Died: February 13, 2016

Appointed by: Ronald Reagan

Figure 2: Profile Card

The scope of this research is to develop a framework to detect
these erroneous queries and autocorrect them.The framework acts
as an extra layer between the answer cards and NLP recognition
systems to facilitate a coherent mechanism for coping up with
missing information (vocabulary); which in turn enable us to re-
turn more appropriate cards. For e.g., for the above mentioned
answer card queries, lets say a user typed in “defin e motiom
to compell” or “whi is jufge antonin scakia?” instead, our de-
ployed frameworkwould fix (reformulate) the queries to its correct
form and display the cards successfully.

3. BACKGROUND AND RELATED WORK
There are twomajor areas related to our research and the proposed
models. First is the work on the task of query reformulation in
information retrieval involving traditional, statistical and neural

approaches and, second is the process of error detection (selecting
candidate queries that are incorrect) for training the reformulation
models. We will introduce related studies specific to these areas in
the this section.

3.1 Query Reformulation
3.1.1 Traditional Approaches: In [5], Xu et al. used top results
retrieved by the original query to perform reformulation by expan-
sion. This method is popular and influenced by the initial ranking
of results, however it cannot utilize user-generated data. Other ap-
proaches focused on using user query logs to expand a query by
means of clickthrough rate [6], co-occurrence in search sessions,
or query similarity based on click-through graphs [7]. The advan-
tage of these approaches is that user feedback is readily available
in user query logs and can efficiently be precomputed. However,
these approaches all face the problem of requiring some resource
dependency on a specific search engine.

3.1.2 StatisticalMachineTranslation: The task ofmachine cor-
rection is defined as correcting aN -character or word source query
S = s1, . . . , sN = sN1 into a M-character or word target query
T = t1, . . . , tM = tM1 . Thus, the correction system can be defined
as a function F:

T̂ = F (S) (1)

which returns a correction hypothesis T̂ given an input word S .
Recently, several studies have been adopting data from user query
logs as input to Statistical Machine Translation (SMT) for query re-
formulation and expansion [8][9].Thesemethods treat user queries
as one language and the reformulated queries as another language.
However, their major drawback is the difficulty of modeling cor-
rections in different granularities, e.g., characters or words, which
is necessary to reduce the rate of unknown words that are detri-
mental to their proper functioning.

Our approach differs in several ways. First, we consider full
query pairs as training data, and do not use single word tokens
as a primary mode of operation. Second, we do not train explicit
error models P(w |s) for words w and observed corrections s , but
use standard word/character based NMT models to derive more
meaningful and accurate lexical translation models.

3.1.3 Neural Machine Translation: Recently, the use of neu-
ral networks has delivered significant gains for mapping tasks be-
tween pairs of sequences due to to their ability to learn a better
representation of the data and context. Recurrent Neural Networks
(RNNs) are a set of neural networks for processing sequential data
and modeling long-distance dependencies which is a common phe-
nomenon in human language. NMT models [10] use RNNs and
learn to map from source language input to target language input
via continuous-space intermediate representations effectively. We
use an encoder-decoder bound uni/bi-directional RNNs with an at-
tention mechanism as the core component of our proposed system.
[11]. The encoder maps the input query to a higher-level represen-
tation with a uni or bi-directional RNN architecture similar to that
of [12]. The decoder also employs a RNN that uses content-based
attention mechanism [13] to attend to the encoded representation
and generate the output query one character at a time.

2

3.1.4 Character Level Reasoning: Word-level NMTmodels are
poorly suited to handle OOV words due fixed vocabulary [14]. Re-
cent works have proposed workarounds for this problem. Since a
word is usually thought of as the basic unit of language commu-
nication [15], early NMT systems built these representations start-
ing from the word level [16]. Machine learning/NLP models typi-
cally limit vocabulary size due to the complexity of training [17].
Therefore, they are unable to translate rare words, and it is a stan-
dard practice to replace OOV words with unknown (UNK) symbol.
By doing so, useful information is discarded, resulting in systems
that are not able to correct erroneous words. In our framework,
we strive to circumvent this issue by using smaller units such as
subwords to address the problem of OOV words.

3.2 Error Detection
In most translation systems, before any reformulation is carried
out, a detection process is conducted on the input query to extract
any potentially incorrect words. In [18], He et al. proposed a learn-
ing to rewrite framework that focuses on candidate ranking for
error detection. A non-word error refers to a potentially incorrect
word that does not exist in a given dictionary. Dictionary lookup
is one of the basic techniques employed to compare input strings
with the entries of a language resource, e.g., lexicon or corpus [19].
Such a language resource must contain all inflected forms of the
words and it should be updated regularly. If a given word does not
exist in the language resource, it will be marked as a potentially
incorrect word which is a huge disadvantage of this approach.

Minimum edit distance is one of the most studied techniques
for error detection. It is based on counting edit operations, which
are defined in most systems as insertion, deletion, substitution and
transposition. Jaro-Winkler [20], Wagner-Fischer [21], and Leven-
shtein [22] are among the most famous edit distance algorithms.
This approach has a main drawback, in that it penalizes all change
operations in the same way, without taking into account the char-
acter that is used in the change operation. In contrast to above
mentioned approaches, our error detectionmethodology combines
both syntactic and semantic attributes of a user query to extract in-
correct non-word occurrences. Here, we establish a unified frame-
work (see Figure 3) that encompasses aspects like frequency dis-
tribution, query rank and subword representations for error detec-
tion alongside NMT and attention learning.

4. PROPOSED FRAMEWORK
4.1 Query Preparation
For our experiments, we collected a total of ∼ 62M distinct queries
grouped by frequency, collected over a period of 5 years.The queries
under study included a considerable proportion of boolean queries
∼ 32M of them.We used a heuristic approach to filter search queries.
Using a combination of regular expressions and strict constraints,
we excluded any query with boolean or special character connec-
tors; this left us with ∼ 29M NL queries.

We used the punkt sentence tokenizer [23] to tokenize the queries
into words. The tokens were further filtered down to remove noise
and short forms. Any token that is a digit and of length ⩾ 5 was
excluded from our study. The created vocabulary contained ∼ 1M

words (tokens). Table 1 shows top 10 ranked queries (left) and to-
kens (right) at the end of query preparation process.

Rank Query
1 breach of contract
2 unjust enrichment
3 summary judgement
4 res judicata
5 fraud
6 motion to dismiss
7 conversion
8 statute of limitations
9 defamation
10 civil procedure

Rank Token
1 motion
2 contract
3 court
4 judgment
5 insurance
6 evidence
7 property
8 attorney
9 liability
10 statute

Table 1: Top 10 Queries and Tokens

4.2 Query Representation
The first step in creating a model, is to choose a representation for
the input and output. For instance, a query can be represented in
word-level, which is transferring the data with indices that refer to
the words or in character-level, which is transferring the data with
indices that refer to a closed vocabulary of language specific char-
acters and symbols. However, in this work, we anticipate the need
to handle an exponentially large input space of tokens by choosing
a character-level query representation. Thus, model inputs are in-
dividual characters which are a sequence of indices corresponding
characters.

Legal
Corpora

Query
Log

Error
Detection

FastText
Embeddings

NMTTraining Pairs

User Input

Reformulated
Input

Legal
Names

Data
Augmentation

Figure 3: Proposed Framework
We have defined specific characters like <START> and <END>

in order to specify start and end of each query. This character will
be later used in the training process as a criteria. Note that in
the character-level representation, we have also considered spaces,
certain diacritics and punctuations as unique characters, i.e., 40
unique characters in all. Once a query is mapped into indices, the
characters are embedded, i.e. each character is represented by a
one-hot vector and is multiplied by a trainable matrix with the size
of the input X embeddings size. The embedding allows the model
to group together characters that are similar for the task.

4.3 Candidate Selection
Our scoring heuristic calculates a sequence of feature scores for
each token from the prepared vocabulary. The key motivation is
to separate these tokens into +ve (correct) and −ve (incorrect)
buckets.We achieve this by combing three distributional attributes.

3

First, since our vocabulary is derived from user log queries, we
can associate the individual tokens to the rank of its constituent
queries. Second, we can also affiliate a token to its individual fre-
quency within the vocabulary. And third, by the membership of
the tokens to selected legal lexicons. Our selected lexicons com-
prise of extracted vocabulary from headnotes (∼ 217K) derived
from US legal caselaw documents, legal names consisting of judge
(∼ 67K) and expert witness (∼ 388K) names derived legal master
databases. We also use a secondary lexicon of common US english
names (∼ 234K).

Let Q be an ordered set of distinct legal queries derived from
user logs and ranked by frequency. Q ⇒ {q1,q2, . . . ,qr } where r
is the rank of the query; r ∈ R. Let R denote an ordered set of ranks;
R ⇒ {1, 2, . . . ,L}, where L is the length of Q i.e., total number of
distinct queries. Let ▽ ⇒ {x1,x2, . . . ,xl } denote the vocabulary of
distinct tokens derived from Q where l is length of the individual
query. For any given token x in vocabulary ▽, it can belong to a
subset of queries Q̂ ; Q̂ ⊆ Q .This implies that the token canmapped
to a closed set of ranks R̂; R̂ ⊆ R. E.g., the token discriminatory can
belong to multiple queries within Q, hence R̂ could be a closed set
e.g., {6, 37, 763, 23445}.

4.3.1 Mean Rank Score: Given R̂ ⊆ R, for a token x ∈ Q , R̂ can
be defined as {r1, r2, . . . , rl }. We compute the mean rank score (ξ)
as follows:

ξ =

l∑
i=1

1 − ri
L

|R̂ |
(2)

where |R̂ | is size of R̂.

4.3.2 Neighbor Rank Score: Given a token x0, it can co-occur
alongside other tokens from the vocabulary contained to the queries
under investigation. Let ▽̂ ⇒ {x1,x2, . . . ,xl } denote the subset of
tokens co-occurring alongside x . For every candidate token inside
▽̂, we have a corresponding mean rank score ξ derived from equa-
tion 2.We restrict the window of co-occurrence to 2 neighbors, one
before and after the token. Let ξ̂ be the set of corresponding mean
rank scores; ξ̂ ⇒ {x1,x2, . . . ,xl } The neighbor rank score (χ) is
computed as:

χ =
l∑

i=1

ξi

|ξ̂ |
(3)

4.3.3 Frequency Score: Let ϵ denote the frequency of a token;
x ∈ ▽. Frequency score (ζ) is a normalized value representing the
importance of frequency of occurrence of a token in the corpus. It
is defined as follows:

ζ =

 ϵ

|▽|

 (4)

4.3.4 Lexicon Membership Score: Let ▽H denote the vocabu-
lary of tokens derived from headnotes. Let ▽J denote the vocab-
ulary of tokens derived from judge master (judge name database)
and let ▽E denote tokens from expert witness database. Let ▽C
indicate all the tokens from common valid US English names vo-
cabulary. For any given token x , the lexicon membership score (ϕ)

is computed as follows:

ϕ =

1, if (x ∈ ▽H) ∨ (x ∈ ▽J) ∨ (x ∈ ▽E) ∨ (x ∈ ▽C)
1

2
, otherwise

(5)

4.3.5 Relevance Score: Finally, a relevance score (Ω) is com-
puted by combining all the scores derived from equations 2, 3, 4
and 5 as follows:

Ω =

ϕ ·

(
1 − 1

e2ξ + 1

)
·
(
1 − e−χ

)
·
(
1 − 1

1 + ζ

)

 (6)

The relevance score expresses the relative importance of a token
and can be used to classify a word into +ve or −ve bucket. We es-
tablish this separation by using a cut-off threshold (∼0.83) obtained
via trial and error experiments.

4.4 Ranking Strategy using FastText
Traditional approaches to representing rare andOOVwords follow
assigning a random vector [24] or binning all rare words into a new
“UNK” word type. Another popular technique is to encode word
definitions with an external resource (Long et al., 2016) and train
at the morpheme level [25]. Creating semantic representations for
OOV words is a difficult NLP task. And word-based (Mikolov et
al., 2013; aka word2vec)[26] approaches do not contribute well to
resolve this problem.

Token Score
roberds 0.9967
robers 0.9962
robergs 0.9913
robertus 0.9851
robertson 0.9797
robertt 0.9777
rowert 0.9766
rochfort 0.9758
rogerts 0.9756
robtert 0.9731

Token Score
cbreach 0.9839
fbreach 0.9771
onbreach 0.9684
breachh 0.9683
bebreach 0.9659
breachj 0.9657
breachn 0.9643
ofbreach 0.9641
mcbreach 0.9627
orbreach 0.9612

Table 2: Top-10 Similar Words by fastText
Character-based embedding approaches are more suited to han-

dle the OOV problem (Bojanowski et al., 2017; aka fastText)[27].
For mapping the +ve tokens to their corresponding variants (in-
correct −ve counterparts), we used fastText [28]. fastText is a
character-based embedding approach that it is well-suited to pro-
duce embeddings for OOV words. It’s able to do this by learning
vectors for character n-grams within the word and summing those
vectors to produce the final vector or embedding for the word itself.
For training, we set the embedding size to 100 and the training win-
dow to 10. We also set alpha value to 0.025, min and max values of
n to 2 and 6 respectively. The embedding matrix was created using
a batch size of 10K words in 100 epochs. We trained fastText em-
beddings on the 29M NL queries using a p3.2x large EC2 instance
with 1 Tesla V 100 GPU. Table 2 shows top 10 most similar words
for the OOV+ve word “roberts” (left) and OOV −ve word “breach”.

4.5 Query Augmentation
Legal names like judge, expert witness, attorney names etc. are
often misspelled by users during search. Since we were not able

4

to capture a considerable amount of these errors from query logs
(real world data), we decided to synthetically augment these type
of errors and generate queries for legal names algorithmically. For
this purpose, we took all the names (+ve instances) from our legal
corpora and applied a variant of Needleman-Wunsch algorithm
to create its −ve counterparts.

The distance computation is identical to Levenshtein except that
character mistakes are given different weights depending on how
far two characters are on a standard keyboard layout (QWERTY).
The weights are assigned by projecting the keyboard characters
onto a cartesian system. For e.g., A to S is given a mistake weight
of 0.4, while A toD is a 0.6.We generate query pairs using 4 types of
transformation - addition, deletion, replacement and transposition.
Table 3 shows a few of the generated examples for augmentation.

Misspelled Corrected Operation
mchael lowy michael lowy addition
david yamhamoto david yamamoto deletion
christibe ballard christine ballard replacement
warren glciker warren glicker transposition

Table 3: Augmented Queries

4.6 Training Pairs
In previous sections, we discussed the need to segregate the vocab-
ulary into +ve and −ve tokens and the use of fastText character
n-grams or subwords to capture word mappings (+ve to −ve). At
the end of the candidate selection process, the entire vocabulary is
broken into two groups of ∼180K +ve and ∼830K −ve tokens. At
the end of ranking using fastText, we end up with around ∼2.4M
legal termmapping and ∼50K legal namemapping.The legal name
mapping is expanded via the augmentation process elaborated in
the previous section to around ∼1.5M pairs. The legal term and
name mappings are then matched against the indexed 60M user
queries to create query pairs that will be used for training our
translation models.

4.7 Neural Machine Translation
Most NMT systems follow the encoder-decoder framework with
attention mechanism proposed by Bahdanau et al. [29]. Given a
source query q− = q−1 · · · q

−
i · · ·q

−
I and a target query q+ =

q+1 · · ·q
+
j · · ·q

+
J , we aim to directly model the translation proba-

bility as:

P(q+ |q−; Θ) =

J∏
1

P
(
qj |q+<j ,q

−; Θ
)

(7)

whereΘ is a set of parameters and q+<j is a sequence of previously
generated target characters.

4.7.1 Encoder: We use an RNN to architect an encoder. The En-
coder outputs a value for every character from the input query.
The task of the encoder is to provide a representation of the input
query. The input is a sequence of characters, for which the embed-
ding matrix is constructed using fasttext[28]. Also to get the right
context, we explore both uni and bi-directional RNNs here. For ev-
ery input character the encoder outputs a vector and a hidden state,

and uses the hidden state for the next input character. Figure 4(a)
portrays a simple overview of the encoder.

GRU

HiddenOutput

Input Previous
Hidden

Embedding

(a) Encoder

GRU

HiddenOutput

Input Previous
Hidden

Embedding

ReLU

Softmax

(b) Decoder

Figure 4: Encoder and Decoder

Following [29], we use a bi-directional RNN with Gated Recur-
rent Units (GRUs) to encode the source query:

#»

hi = GRU
(

»

hi−1, si ;
#»
Θ

)
#»

hi = GRU
(

»

hi−1, si ;
#»

Θ
) (8)

where si is the ith source embedding,GRU is a gated recurrent unit,
#»
Θ and #»

Θ are the parameters of forward and backward GRU, respec-
tively. The annotation of each source character q−i is obtained by
concatenating the forward and backward hidden states:

#»#»

hi =


#»

h i
#»

hi

 (9)

4.7.2 Decoder: Thedecoder is also built using a RNN. It takes the
same representation of the input context along with the previous
hidden state and output character prediction, and generates a new
hidden decoder state and a new output character prediction. The
decoder is a forward RNN (uni-directional) with GRUs predicting
the translation y character by character. This prediction takes the
form of a probability distribution over the entire output vocabulary
(100 characters). At every step of decoding, the decoder is given
an input character and hidden state. The initial input character is
the start of query character <START>, and the first hidden state
is the context vector (the encoder’s last hidden state). Figure 4(b)
illustrates a decoder and its associated states. The probability of
generating the jth word yj is:

P
(
q+j |q

+
<j ,q

−;θ
)
= softmax *.,


ψj−1
ϕ j
κj


+/- (10)

whereψj−1 is the character embedding of the j−1th target word,ϕ j
is the decoder’s hidden state of time j, and κj is the context vector
at time j. The state ϕ j is computed as:

ϕ j = GRU
(
ϕ j−1,

[
ψj−1
κj

]
; Θϕ

)
(11)

5

Input Character Embeddings

Left-to-Right GRU

Right-to-Left GRU

Attention

Input Context

Hidden State

Output Character Predictions

Error

Given Output Characters

Output Character Embeddings

S C A K I A <END>

S C A L I A <END>

Figure 5: Encoder Decoder with Attention

4.8 Attention Mechanism
The attention mechanism was introduced to address the limitation
of modeling long dependencies and the efficient usage of memory
for computation. It intervenes as an intermediate layer between the
encoder and the decoder, having the objective of capturing the in-
formation from the sequence of tokens that are relevant to the con-
tents of the query [13]. The mechanism is shown in Figure 5. The
basic problem that the mechanism solves is that instead of forcing
the network to encode all parameters into one fixed-length vector,
it allows the network to make use of the input sequence.

Key to our approach is the use of a character-based model with
an attention mechanism, which allows for orthographic errors to
be captured and avoids the OOV problem suffered by word-based
NMT methods. Unlike the encoder-decoder model that uses the
same context vector for every hidden state of the decoder, attention
computes the context vector c j as a weighted sum of the source
annotations:

κj =
I∑

i=1

∆ji ·
#»#»

hi (12)

where the attention weight∆ji is computed as:

∆ji =
exp

(
Ξji

)
∑I
i=1 exp

(
Ξji

) (13)

Ξji = αTa tanh
(
βaϕ j−1 + γa

#»

hi
)

(14)

where αa , βa and γa are the weight matrices, and Ξji is the model
that scores how well ϕ j−1 and

#»#»

hi match.

4.9 Gated Recurrent Unit (GRU)
In practice, a simple RNN is difficult to train properly due to the
problems of the vanishing/exploding gradient as described in [30].
Therefore, in this work, we utilize GRU (Cho et al., 2014 [11]) as an
improved version of simple RNN which can alleviate the gradient
problem. Along the lines of Long Short Term Memory (LSTM), in
GRUs the forget and input gates are coupled into an update gate zt .
The advantage of GRUs over LSTMs is the smaller number of gates
that makes them less memory as well as computationally intense,
which is often a critical aspect for NMT.

Given an input sequence (x1, x2, . . . , xN), GRU can be adopted
as an encoder to compute the corresponding sequence of hidden
state ht = (h1, h2, . . . , hN) as:

zt = σ (Wxzxt + Uhzht−1) (15)

rt = σ (Wxrxt + Uhrht−1) (16)

h̃t = tanh (Wxhxt + Urh (r ⊗ ht−1)) (17)

ht = (1 − zt) ⊗ ht−1 + zt ⊙ h̃t (18)
where σ is the sigmoid function and ⊗ is an element-wise multipli-
cation operator. zt , rt and h̃t are the update gate, reset gate and
candidate activation, respectively.Wxz ,Wxr ,Wxh ,Uhz ,Uhr and
Urh are related weight matrices.

5. EXPERIMENTS
5.1 Sequence Representation
An input or output sequence for an error correction system can be
represented in different levels. At the character-level, a sequence
is processed character by character. When searching for errors, hu-
mans often consider a bigger sequence of characters at word-level.

6

Clause-level, phrase-level, sentence-level and text-level are other
common representations for modeling NMT sequences. In our re-
search, we worked at character-level where each character in an
input sequence is mapped to a real-valued number and its corre-
sponding embedding. In order to model linguistic dependencies in
each sequence, we took a selected list of characters into account
including space. This enabled us to deal with different kinds of er-
rors and a larger range of characters in each sequence. On the other
hand, the output of our models were also represented at the char-
acter level.

5.2 Selection Strategy
In our experiments, for tuning and evaluation purposes we used
a gold reference annotation following a simple selection strategy.
The strategy is used to check whether for a search query pair (x ,y),
the left query x is erroneous, and if so, whether the similar candi-
date y is a correct correction or else provide the most likely cor-
rection. If x was not incorrect, we propagate query x to the gold
reference y, i.e. for those cases, we have it identity as a true neg-
ative. For training our models, we split the ∼4M query pairs into
three splits - train, dev and test in the ratio 99.995 : 0.005 : 0.005
respectively. This produces 20K queries for dev and test set each.
The true negatives in these sets (i.e. entries that do not need to be
corrected) account to about ∼2%.The validation of annotation was
mostly done via subject matter experts.

5.3 Model Architecture
In this section, we discuss about the various architectures experi-
mented for neural machine translation.

5.3.1 NMT I:. The first architecture we experimented with, for
the task of NMT is a word-based model. The input layer uses a
dense vector representation of the vocabulary (144,964 words) de-
rived from query pairs followed by an embedding layer of dimen-
sion 10X1024.The length of the sequence of the query is constrained
to a maximum fixed length of 10 words. This architecture uses a re-
peat vector alongwith 1024 GRU units.This is the only word-based
architecture we experimented with for NMT.

5.3.2 NMT II:. Architecture II follows a similar architecture as
NMT I, except the word sequence is replaced with a character se-
quence. The sequence length here is constrained by two factors: (i)
the total number of characters that constitute the vocabulary (40
characters) which includes special characters and, (ii) the length
of the sequence which is set to fixed maximum length of 100 char-
acters. Both architectures NMT I and II do not use attention and
use a single embedding at the character level. Figure 6 shows the
architectural layers for NMT models I and II.

5.3.3 NMT III. In the third architecture setup, we use two charac-
ter embedding layers which is different fromNMT I and II architec-
tures which uses only one embedding. NMT III also does not use
a repeat vector layer. This is a character-based only architecture
and does not use attention. Figure 7 illustrates the architecture of
NMTmodel III.The dimensions of embedding and time-distributed
layers are similar to NMT II.

Input
10

Embedding
10 X 1024

GRU
1024 tanh

Repeat Vector
10 X 1024

GRU
1024 tanh

Time Distributed
10 X 144964 ReLU

(a) Word-based

Input
100

Embedding
100 X 1024

GRU
1024 tanh

Repeat Vector
100 X 1024

GRU
1024 tanh

Time Distributed
100 X 40 ReLU

(b) Char-based

Figure 6: Architecture - NMT I and II

Input 1
100

Embedding 1
100 X 1024

GRU 1
1024 tanh

Time Distributed
100 X 40 ReLU

Input 2
100

Embedding 2
100 X 1024

GRU 2
1024 tanh

Figure 7: Architecture - NMT III

Input 1
100

Input 2
100

Embedding 1
100 X 1024

Embedding 2
100 X 1024

GRU 1
100 X 1024

GRU 2
100 X 1024

Dot 1
100 X 100

Attention
100 X 100

Dot 2
100 X 1024

Concatenate
100 X 2048

Time Distributed 1
100 X 1024

Time Distributed 2
100 X 40

Figure 8: Architecture - NMT IV

5.3.4 NMT IV. Model IV is the first setup to use an attention
layer. It is similar to NMT III in using two character embeddings,
one at the encoder and other at the decoder level. See Figure 8.

5.3.5 Bi-directional Architectures. We also experimented the
previously discussed neural architectures (NMT I to IV) by replac-
ing uni-directional GRUs with bi-directional GRU units. This is
only applied to the encoder component of the architecture.

7

5.4 Training
For our experiments, we used p3.16x large EC2 instance with 8
TeslaV 100 GPUs. Table 4 shows the training time (in minutes) for
the various architecture setups (100 epochs with a batch size of
512). The NMT models were implemented using TensorFlow.

Model Avg Time
NMT I (Uni) 87.41
NMT I (Bi) 126.32
NMT II (Uni) 95.76
NMT II (Bi) 163.73
NMT III (Uni) 114.05
NMT III (Bi) 239.81
NMT IV (Uni) 168.25
NMT IV (Bi) 320.94

Table 4: NMT - Training Time

6. EVALUATION METRICS
This section presents evaluationmethods used to evaluate theNMT
models. Although various methods can be used to evaluate a ma-
chine translation system, for our use case of query reformulation,
evaluation is limited to a binary classification of predictions where
the matching elements are considered as true predictions and oth-
ers as false. However, a good evaluation must include more details
about this comparison. Over the years, a number of metrics have
been proposed for evaluation of query correction, each motivated
by weaknesses of previous metrics. There is no single best evalu-
ation metric and the performance of a metric depends on the re-
search goals and application. Thus, we have evaluated our system
based on the most popular metrics to date.

In classification tasks, accuracy is one of the most widely used
performance measure. Accuracy corresponds to the ratio of cor-
rectly classified inputs to the total number of inputs. One drawback
of this metric is that correction actions are completely ignored. In
order to take the correction actions into scope, we use additional
performance metrics like precision, recall and F-score. For our ex-
periments, we use F0.5, since it places twice as much emphasis on
precision as on recall. This metric has also been used in CoNLL-
2014 shared task [31]. We also use more modified metrics such as
BLEU ,GLEU and Character n-gram F-score (CHRF) thus gaining
better insight into translation system’s performance.Thesemetrics
are explained in the following subsections.

6.1 BLEU
TheBilingual Evaluation Understudy Score (BLEU) is a widely pop-
ular metric for machine translation [32]. For our evaluations, in or-
der to apply BLEU to individual queries, we used smoothed BLEU ,
whereby we add 1 to each of then-gram counts before we calculate
the n-gram precisions. This prevents any of the n-gram precisions
from being zero, and thus will result in non-zero values even when
there are not any 4-gram matches.

6.2 GLEU
Recently, Napoles et al. ameliorated BLEU metric for evaluation
of grammatical error correction systems and proposed the Gener-
alized Language Evaluation Understanding (GLEU) [33][34]. For
GLEU , the precision is modified to assign extra weight to the n-
grams that are present in the reference and the hypothesis, but
not those of the input. We have used the last update of the original
implementation of the GLEU introduced in [34].

6.3 Character n-gram F-score (CHRF)
CHRF calculates the sentence level character n-gram F -score as
described in Maja Popovic, 2015 [35]. It is shown to correlate very
well with human rankings of differentmachine translation outputs,
especially for morphologically rich targets. For our study, we use
CHRF1 (standard F -score, β = 1) with uniform n-gram weights.

7. RESULTS
In the previous section, we presented the translation models for
the task of query reformulation and the details of the models were
explained. In this section, the results obtained from the models are
discussed. Table 6 and 7 shows results of our correction models
using the evaluation metrics discussed in the previous section.

7.1 Baseline
We define pairs of source queries and their ground-truth annota-
tions as the baseline of our NMT models. In this baseline, we as-
sume that none of our implementedmodels intervene in the task of
correction and only references are considered as correction. Simply
saying, baseline is a model that makes no corrections on the input
query. It enables us to interpret the performance of each model in
comparison to the default results.

7.2 Winners
As we expect, since the baseline system contains the ground-truth
correction, the BLEU and the GLEU scores for the baseline system
have a maximum value 1.00. Using these metrics, the bi-directional
NMTmodel (model IV)with the attention layer shows higher scores
in comparison to othermodels, i.e., F -score = 94.11%,BLEU = 0.9255
and GLEU = 0.9256. Interestingly, CHRF scores of models III and
IV (bi-directional) are almost identical. The choice of metric also
portrays few other insights, for example CHRF performs poorly
on the addition operation. Similarly, GLEU metric is a bad choice
for operations replacement and transposition while performs very
well on other type of operations.

Uni Bi
Model P R F0.5 P R F0.5

NMT I 83.76 85.37 84.08 83.91 81.01 83.31
NMT II 86.24 84.61 85.90 88.64 87.22 88.35
NMT III 91.17 80.04 90.74 92.77 93.86 92.98
NMT IV 93.08 90.79 92.61 93.61 96.19 94.11

Table 6: NMT Results - Standard Metrics (%)

8

Incorrect Correct

contact void due to barratry or champterty contract void due to barratry or champerty

nondisclsoure unenforceable lackof consideration nondisclosure unenforceable lack of consideration
summary judgment for breach o fcontract summary judgment for breach of contract

declaratry judgmentnd discovery declaratory judgment and discovery

business judgment rulegross negligencce business judgment rule and gross negligence

tennesee power of attorneyey tennessee power of attorney

collaterale stopp el amount of damages collateral stoppel amount of damages

agreement to remove fence statue of drauds agreement to remove fence statute of frauds

purpose of motion inlimine are evidentary purpose of motion in limine are evidentiary

officerwilliam alexsander karabelas officer william alexander karabelas
associate justise ruth bader ginsberg associate justice ruth bader ginsburg

officerwilliam alexsander karabelas officer william alexander karabelas

Table 5: Sample Results - Query Reformulation

Uni Bi
Model BLEU GLEU CHRF BLEU GLEU CHRF

NMT I 0.8253 0.8341 0.8601 0.8352 0.8476 0.8632
NMT II 0.8305 0.8484 0.8519 0.8524 0.8742 0.8849
NMT III 0.8645 0.8924 0.8734 0.8752 0.8994 0.9056
NMT IV 0.9024 0.9255 0.9145 0.9255 0.9256 0.9055

Table 7: NMT Results - Modified Metrics

7.3 Limitations
A few examples of source queries and its output corrections for
some of our trained NMTmodels are illustrated in Table 5. The red
tags refer to the incorrect tokens in the input and the green tags
are the correctly predicted tokens by our trained models. Looking
carefully at the distribution of incorrect prediction of correct in-
put words, we can deduce that the models perform less sensibly
when the size of sequence become gradually bigger. To prove this,
we evaluated the models by limiting the sequences to a fixed size.
Figure 9 shows the attention heatmap for a sample query.

8. CONCLUSION
In this paper, we have investigated the potential of using character-
level information and subword-based NMTmodels for the problem
of query reformulation. First, we extended the encoder with a char-
acter attention mechanism for learning better source side repre-
sentations. Then, we incorporated information about source side
characters into the decoder with attention, so that the character-
level information can cooperate with the word-level information
to better control the translation. Our experiments demonstrate the
effectiveness of ourmodels and proves that bothOOV and frequent
words benefit from the character-level information.

9. FUTURE WORK
For future research, we plan to explore translation models with
action level, i.e., prevent over learning of models by not training
them over correct input tokens (action =“OK”). Recently, reinforce-
ment learning techniques [36] and End-to-End Memory Networks

[37] have been used for the task of error correction. We plan to
explore these networks to read the input sequence multiple times
in order to make an output and also update memory contents at
each step. We also plan to extend our work to question answering
for grammar error correction and apply reformulation to boolean
queries.

REFERENCES
[1] R. Pearce and J. Mcginnis, “The great disruption: How machine intelligence will

transform the role of lawyers in the delivery of legal services,” Fordham Law
Review, vol. 82, p. 3041, 05 2014.

[2] M. D. Kernighan, K. W. Church, and W. A. Gale, “A spelling correction program
based on a noisy channel model,” in Proceedings of the 13th Conference on Compu-
tational Linguistics - Volume 2, COLING ’90, (Stroudsburg, PA, USA), pp. 205–210,
Association for Computational Linguistics, 1990.

[3] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learningwith neural
networks,” in Advances in neural information processing systems, pp. 3104–3112,
2014.

[4] S. Arunprasath and B. Venkata Nagaraju, “Deep ensemble learning for legal
query understanding,” in Proceedings of CIKM 2018 Workshop on Legal Data An-
alytics and Mining (LeDAM 2018), CEUR-WS.org, October 2018. To appear.

[5] J. Xu and W. B. Croft, “Query expansion using local and global document anal-
ysis,” in Proceedings of the 19th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’96, (New York, NY,
USA), pp. 4–11, ACM, 1996.

[6] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma, “Probabilistic query expansion using
query logs,” in Proceedings of the 11th International Conference on World Wide
Web, WWW ’02, (New York, NY, USA), pp. 325–332, ACM, 2002.

[7] B. M. Fonseca, P. Golgher, B. Pôssas, B. Ribeiro-Neto, and N. Ziviani, “Concept-
based interactive query expansion,” in Proceedings of the 14th ACM International
Conference on Information and Knowledge Management, CIKM ’05, (New York,
NY, USA), pp. 696–703, ACM, 2005.

[8] J. Gao and J.-Y. Nie, “Towards concept-based translation models using search
logs for query expansion,” in Proceedings of the 21st ACM International Conference
on Information and Knowledge Management, CIKM ’12, (New York, NY, USA),
pp. 1:1–1:10, ACM, 2012.

[9] S. Riezler, Y. Liu, and A. Vasserman, “Translating queries into snippets for im-
proved query expansion,” in COLING, 2008.

[10] D. Britz, Q. V. Le, and R. Pryzant, “Effective domain mixing for neural machine
translation.,” inWMT (O. Bojar, C. Buck, R. Chatterjee, C. Federmann, Y. Graham,
B. Haddow, M. Huck, A. Jimeno-Yepes, P. Koehn, and J. Kreutzer, eds.), pp. 118–
126, Association for Computational Linguistics, 2017.

[11] K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder–decoder for
statistical machine translation,” in Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP), (Doha, Qatar), pp. 1724–
1734, Association for Computational Linguistics, Oct. 2014.

9

c h r i s t i b e e d w w a r d
Misspelled

c
h

r
i

s
t

i
n

e

e
d

w
a

r
d

C
or

re
ct

ed

0.20 0.59 0.14 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.39 0.28 0.27 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.02 0.83 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.28 0.65 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.09 0.87 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.01 0.84 0.11 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.04 0.30 0.57 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.51 0.28 0.17 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.39 0.49 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.91 0.01 0.00 0.01 0.00 0.00 0.00 0.00

0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.52 0.36 0.04 0.01 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.42 0.48 0.05 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.36 0.55 0.06 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.11 0.83 0.03 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.72 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

0.0

0.2

0.4

0.6

0.8

Figure 9: Attention Mechanism Heatmap

[12] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend and spell,” CoRR,
vol. abs/1508.01211, 2015.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.

[14] A. Graves, “Generating sequences with recurrent neural networks.,” CoRR,
vol. abs/1308.0850, 2013.

[15] R. Jackendoff, Semantic Structures. Cambridge, MA: MIT Press, 1990.
[16] R. Weng, S. Huang, Z. Zheng, X.-Y. Dai, and J. Chen, “Neural machine transla-

tion with word predictions.,” in EMNLP (M. Palmer, R. Hwa, and S. Riedel, eds.),
pp. 136–145, Association for Computational Linguistics, 2017.

[17] S. Jean, K. Cho, R. Memisevic, and Y. Bengio, “On using very large target vocab-
ulary for neural machine translation,” in Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 1–10,
Association for Computational Linguistics, 2015.

[18] Y. He, J. Tang, H. Ouyang, C. Kang, D. Yin, and Y. Chang, “Learning to rewrite
queries,” in Proceedings of the 25th ACM International on Conference on Informa-
tion and Knowledge Management, CIKM ’16, (New York, NY, USA), pp. 1443–
1452, ACM, 2016.

[19] K. Kukich, “Techniques for automatically correcting words in text,” ACM Com-
put. Surv., vol. 24, pp. 377–439, Dec. 1992.

[20] W. E. Winkler, “String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage,” in Proceedings of the Section on Survey
Research, pp. 354–359, 1990.

[21] R. A.Wagner andM. J. Fischer, “The string-to-string correction problem,” J. ACM,
vol. 21, pp. 168–173, Jan. 1974.

[22] V. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions and
Reversals,” Soviet Physics Doklady, vol. 10, p. 707, 1966.

[23] E. Loper and S. Bird, “Nltk: The natural language toolkit,” in Proceedings of
the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural
Language Processing and Computational Linguistics - Volume 1, ETMTNLP ’02,
(Stroudsburg, PA, USA), pp. 63–70, Association for Computational Linguistics,
2002.

[24] B. Dhingra, H. Liu, R. Salakhutdinov, andW.W. Cohen, “A comparative study of
word embeddings for reading comprehension,” CoRR, vol. abs/1703.00993, 2017.

[25] T. Luong, R. Socher, and C. Manning, “Better word representations with recur-
sive neural networks for morphology,” in Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learning, pp. 104–113, Association for
Computational Linguistics, 2013.

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word rep-
resentations in vector space,” CoRR, vol. abs/1301.3781, 2013.

[27] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with
subword information,” TACL, vol. 5, pp. 135–146, 2017.

[28] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with
subword information,” Transactions of the Association for Computational Linguis-
tics, vol. 5, pp. 135–146, 2017.

[29] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.

[30] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 2,
pp. 157–166, 1994.

[31] H. T. Ng, S. M. Wu, T. Briscoe, C. Hadiwinoto, R. H. Susanto, and C. Bryant,
“The conll-2014 shared task on grammatical error correction,” in Proceedings of
the Eighteenth Conference on Computational Natural Language Learning: Shared
Task, pp. 1–14, Association for Computational Linguistics, 2014.

[32] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic
evaluation of machine translation,” in Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, 2002.

[33] C. Napoles, K. Sakaguchi, M. Post, and J. Tetreault, “Ground truth for grammati-
cal error correction metrics,” in Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Papers), pp. 588–593, Associa-
tion for Computational Linguistics, 2015.

[34] C. Napoles, K. Sakaguchi, M. Post, and J. R. Tetreault, “GLEU without tuning,”
CoRR, vol. abs/1605.02592, 2016.

[35] M. Popović, “chrF: character n-gram f-score for automatic MT evaluation,” in
Proceedings of the Tenth Workshop on Statistical Machine Translation, (Lisbon,
Portugal), pp. 392–395, Association for Computational Linguistics, Sept. 2015.

[36] K. Sakaguchi, M. Post, and B. Van Durme, “Grammatical error correction with
neural reinforcement learning,” in Proceedings of the Eighth International Joint
Conference on Natural Language Processing (Volume 2: Short Papers), pp. 366–372,
Asian Federation of Natural Language Processing, 2017.

[37] S. Sukhbaatar, a. Szlam, J. Weston, and R. Fergus, “End-to-end memory net-
works,” in Advances in Neural Information Processing Systems 28 (C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, eds.), pp. 2440–2448, Curran
Associates, Inc., 2015.

10

	Abstract
	1. Introduction
	2. Application
	3. Background And Related Work
	3.1 Query Reformulation
	3.2 Error Detection

	4. Proposed Framework
	4.1 Query Preparation
	4.2 Query Representation
	4.3 Candidate Selection
	4.4 Ranking Strategy using FastText
	4.5 Query Augmentation
	4.6 Training Pairs
	4.7 Neural Machine Translation
	4.8 Attention Mechanism
	4.9 Gated Recurrent Unit (GRU)

	5. Experiments
	5.1 Sequence Representation
	5.2 Selection Strategy
	5.3 Model Architecture
	5.4 Training

	6. Evaluation Metrics
	6.1 BLEU
	6.2 GLEU
	6.3 Character n-gram F-score (CHRF)

	7. Results
	7.1 Baseline
	7.2 Winners
	7.3 Limitations

	8. Conclusion
	9. Future Work
	References

