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ABSTRACT
This research project develops a methodology to utilize machine-
learning analysis of live disputes to assist legal professionals in
narrowing issues and comparing relevant precedents. An important
part of this research project is an ontology of target court decisions,
which is first constructed from relevant legal statutes, probably
assisted by human legal experts. Utilizing the ontology, we extract
and classify sentences in court decisions according to type. Since
court decisions are typically written in natural languages, such
as English and Chinese, chosen court decisions are pre-processed
with the Natural Language Processing library spaCy, and then fed
into the machine learning component of the system to extract and
classify the sentences of the input court decisions.

KEYWORDS
Ontology; Machine-Learning; spaCy; Natural Language Processing

1 INTRODUCTION
This research project develops a methodology to utilize machine-
learning analysis of live disputes to assist legal professionals in
narrowing issues and comparing relevant precedents. At this early
stage of the research, we limit the scope to a specific methodology
for legal research of breach of contract issues that also creates a
general template for all other legal issues with common elements
and/or factors. Our first step is to extract and classify sentences in
breach of contract court decisions according to type. Such court
decisions have five basic sentence types: sentences on contract
law, sentences on contract holding, sentences on contract issues,
sentences on contract reasoning, and sentences on contract facts.
Classifying sentences is an important first step of our long-term
research goal: developing a machine learning system that analyzes
hundreds or thousands of past breach of contract court decisions
similar to the case at hand, thus providing a powerful tool to legal
professionals when faced with new cases and issues. Further down-
stream processing can be made possible by this project, such as
constructing decision trees that predict the likely outcome for the
case at hand, displaying the rationales on which court decisions are
based, and calculating the similarity of previous legal precedents.

An understanding of the document structure of breach of con-
tract court decisions is crucial to this research. Ontologies, or formal
representations, have been created for many applications of diverse
academic disciplines, including Artificial Intelligence and Philos-
ophy. An ontology of the target court decisions, which formally
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defines the components and their relationships thereof, is therefore
first constructed from relevant legal statutes, likely assisted by hu-
man legal experts. The constructed ontology will later be utilized
in the machine-learning phase of the system.

Court decisions are typically written in natural languages, such
as English and Chinese; hence, the proposed system must be able to
process natural language. At this early stage of the research we fo-
cus on English. In recent years, Natural Language Processing (NLP)
has made significant progress. Years of research in linguistic and
NLP have produced many industrial-strength NLP Python libraries.
Due to its ease of use and generality, spaCy [10] is chosen for this
research project. Chosen court decisions are first preprocessed with
spaCy. After that, the court decisions, and the information added by
spaCy, are fed into the machine learning component of the system.

The rest of the paper is organized as follows. Relevant past
research activities are presented in Section 2, which also puts our
research into a boarder perspective. The ontology of breach of
contract court decisions is given in Section 3. Classification of the
sentences with respect to the chosen sample court decisions, based
on our implementation of the logistic regression algorithm and
that of scikit-learn [5], is demonstrated in Section 4. We present
possible research directions in Section 5 and we conclude the paper
in Section 6.

2 LITERATURE REVIEW
The organization and formalization of legal information for com-
puter processing to support decision making and enhance search,
retrieval, and knowledge management is not recent; the concept
dates back to the late 1940s and early 1950s, with the first legal
information systems being developed in the 1950s [2, 15]. Knowl-
edge of the legal domain is expressed in natural languages, such
as English and Chinese, but such knowledge does not provide a
well-defined structure to be used by machines for reasoning tasks
[7]. Furthermore, because language is an expression of societal
conduct, it is imprecise and fluctuating, which leads to challenges
in formalization, as noted in a panel of the 1985 International Joint
Conferences on Artificial Intelligence, that include: (a) legal do-
main knowledge is not strictly orderly, but remains very much an
experience-based example driven field; (b) legal reasoning and argu-
mentation requires expertise beyond rote memorization of a large
number of cases and case synthesis; (c) legal domain knowledge
contains a large body of formal rules that purport to define and reg-
ulate activity, but are often deliberately ambiguous, contradictory,
and incomplete; (d) legal reasoning combines many different types
of reasoning processes such as rule-based, case-based, analogical,
and hypothetical; (e) the legal domain field is in a constant state of
change, so expert legal reasoning systems must be easy to modify
and update; (f) such expert legal reasoning systems are unusual
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due to the expectation that experts will disagree; and (g) legal rea-
soning, natural language, and common sense understanding are
intertwined and difficult to categorize and formalize [13]. Other
challenges include the (h) representation of context in legal domain
knowledge; (i) formalizing degrees of similarity and analogy; (j)
formalizing probabilistic, default, or non-monotonic reasoning, in-
cluding problems of priors, the weight of evidence and reference
classes; and (k) formalizing discrete versus continuous issues [6].

To address these challenges, expert system developers have
turned to legal ontology engineering, which converts natural lan-
guage texts into machine extractable and minable data through
categorization [1]. An ontology is defined as a conceptualization
of a domain into a human understandable, machine-readable for-
mat consisting of entities, attributes, relationships, and axioms [9].
Ontologies may be regarded as advanced taxonomical structures,
where concepts formalized as classes (e.g. “mammal”) are defined
with axioms, enriched with description of attributes or constraints
(e.g. “cardinality”), and linked to other classes through properties
(e.g., “eats” or “is_eaten_by”) [2]. The bounds of the domain are
set by expert system developers with formal terms to represent
knowledge and determine what “exists” for the system [8]. This
practice has been successfully applied to fields such as biology and
family history to format machine unreadable data into readable
data and is practiced in legal ontology engineering [4, 11, 14].

NLP can be employed to assist in legal ontology engineering; NLP
is an area of research and application that explores how computers
can be used to understand and manipulate natural language text or
speech to do useful things [3]. After years of research in linguistics
and NLP, many NLP libraries have been produced and are ready
for real-life applications. Examples are NLTK, TextBlob, Stanford
CoreNLP, spaCy, and Gensim. These libraries can parse and add
useful information about the input text, which makes machine
understanding of legal texts possible. In addition, machine learning
has gained tremendous attention in recent years because of its
ability to learn from examples. With the additional information
added by the NLP libraries, machine learning can be applied to
legal ontological engineering because the concepts identified in the
ontology can be populated with real-life facts, rules, and reasoning
extracted from past legal cases of interest. Many mature machine
learning libraries have also been produced. To name a few, there
are TensorFlow, scikit-learn, PyTorch, and Apache Mahout.

3 ONTOLOGY
In terms of Computer Science, an ontology is a conceptual model for
a certain system, which defines its components, and the attributes
of, and the relationships among, those components. Following the
notation of [11, 14], the ontology created for this paper is shown in
Figure 1.

Each rectangle in the model denotes a set of objects. The rec-
tangle “Breach of Contract Court Decision” represents the set of
all the breach of contract court decisions in the state of Alabama.
A filled triangle denotes a whole-part relationship, which means
that an object of the rectangle connected to the apex of the trian-
gle is a whole while an object of the rectangle connected to the
base of the triangle is a part. Hence, a breach of contract court
decision is composed of many sentences. An open triangle denotes

a superset-subset relationship where the set of objects connected
to its apex is a superset of the set of objects connected to its base.
Thus, the set “Sentence” has six subsets: “Title”, “Law”, “Holding”,
“Fact”, “Issue”, and “Reasoning”. The plus sign + inside of the open
triangle means that in addition to the superset-subset relationship,
no two subsets can have any common element. This means that
no two of the six subsets intersect. A line in the model denotes
a relationship set between the rectangles (object sets) connected
by the line. A relationship set contains all of the relationships of
interest between the set of objects located at one end and the set of
objects located at the other end of the line. The connection point of
a relationship set and a rectangle is associated with a participation
constraint. A participation constraint 1:* means that the minimum
is 1 and the maximum is *, where * can mean any positive integer.
A participation constraint 1 is a shorthand symbol for 1:1. The pen-
tagon in the figure means a 5-way relationship set, rather than the
usual binary relationship sets.

   Court Decision

Plaintiff Defendant

Sentence

Fact

Reasoning

Issue

Law Holding

Title

1

1:* 1:*

1:*1:*

1:*

1
1:*

1:* 1:*

1:*

1:*

Breach of Contract

Figure 1: An ontology created for breach of contract court
decisions.

Title sentences are not as useful as the other five categories
because a title sentence is a part of a court decision’s title or format,
although it might contain useful information, like the names of the
plaintiffs and defendants.

To justify the other categories of sentences, note that legal data
is composed of written text that is broken down into sentences.
Sentences in legal texts can be further categorized into five sentence
types relevant to legal analysis: (1) fact sentences, (2) law sentences,
(3) issue sentences, (4) holding sentences, and (5) reasoning sen-
tences. In essence, legal texts arise from disputes between two or
more parties that are ultimately decided by a third party arbitrator,
which in most cases is a judge. In this study, machine learning will
be strictly applied to case law legal texts, which are written deci-
sions by a judge that detail a dispute between two or more parties
and the application of law to the dispute to reach a conclusion. In
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each case decision, there are facts that form the background of the
dispute. Fact sentences contain the relevant facts as determined by
the judge that underlie any written decision. This is discretionary
in nature and relies on the judge to correctly evaluate the facts
underlying the dispute and explicate them. Law sentences are state-
ments of law that the judge deems applicable to the dispute. Law
sentences are always followed by legal citations. Issue sentences
are statements made by either party in the dispute, or by the judge,
that can be (a) assertions made by either party of what are correct
applications of law or true determinations of facts, or (b) statements
by the judge of what he or she determines are the relevant issue(s)
underlying the dispute, and how he or she frames such issue(s).
Issue statements include the arguments that either party makes to
support their respective interests; such sentences are not considered
fact sentences or law sentences because only the judge is able to
make dispositive statements of fact and law as the final arbitrator of
the dispute. Holding sentences are determinations by the judge that
apply the law to the dispute and reach a conclusion, also known as
a case holding. Holding sentences are the judge’s determination of
how the law is applied to the facts of the dispute and the corollary
conclusion that sides with one party or the other. Holding sentences
are actually considered new statements of law as application of
law towards a new set of facts—as no dispute is identical—made by
a judge that sets precedent for future disputes; holding sentences
are arguably the most important sentences of a case decision as
such sentences are the only operative sentences that have bearing
on future disputes. Only direct application of law to a present set
of facts is considered a holding of the case and binding precedent.
Reasoning sentences are statements by the judges that explain how
he or she reached the conclusion that he or she did in the case.
Reasoning sentences will typically detail the steps the judge made
to reach his or her conclusion, interpretation of law and/or fact,
comparison and differentiation of prior case law, discussion of so-
cietal norms, and other analytical methods judges utilize to reach
conclusions. Holding sentences and reasoning sentences are similar,
but can be distinguished in the regard that holding sentences are
direct applications of law to the present facts of the present dispute,
whereas reasoning sentences do not provide any direct applications
of law to present facts of present disputes and only explain the
mental gymnastics the judge has performed to reach his or her
conclusion. At times it is even difficult for legal professionals to
distinguish holding sentences from reasoning sentences, but any
hypothetical application of law to fact is considered reasoning. As
such, the five types of sentences are related in a nontrivial way.
Hence, the five-way relationship set in Figure 1 denotes such a
complicated relationship among the five categories of sentences.

4 CLASSIFICATION OF SENTENCES
4.1 Test Cases
In this early stage of our research project, three sample breach of
contract court decisions are considered. As the research progresses,
more court decisions will be added.

(1) 439 So.2d 36, Supreme Court of Alabama, GULF COAST
FABRICATORS, INC. v. G.M. MOSLEY, etc., 81-1042, Sept.
23, 1983.

(2) 256 So.3d 119, Court of Civil Appeals of Alabama, Phillip
JONES and Elizabeth Jones v. THE VILLAGE AT LAKE MAR-
TIN, LLC, 2160650, January 12, 2018.

(3) 873 F.Supp. 1519, United States District Court, M.D. Alabama,
Northern Division, Kimberly KYSER-SMITH, Plaintiff, v. UP-
SCALE COMMUNICATIONS, INC., Bovanti Communication,
Inc., Sally Beauty Company, Inc., Defendants, Civ. A. No. 94-
D-58-N, Jan. 17, 1995.

The industrial-strength NLP library spaCy is chosen to extract
the sentences from the selected court decisions because of its ease
of use and cleanliness of design [10].

4.2 Logistic Regression Algorithm
We have not only implemented the logistic regression algorithm,
but have also compared our implementation with the one provided
by scikit-learn [5], which is highly optimized for performance pur-
poses. The chief finding is that our implementation consistently
has more correct predictions than the one provided by scikit-learn.

4.2.1 Recording the key words of the sentences. Classification of
the sentences in a court decision requires identifying the features
of the sentences. For this purpose, we generate a list of key words.
spaCy generates a total of 529 sentences and 1861 key words from
the three sample court decisions. We thus use a 529×1861 two-
dimensional Numpy array X to store the number of appearances of
each keyword in each sentence. In X, X[i,j] records the number of
times keyword j appears in sentence i.

4.2.2 Our implementation of the logistic regression algorithm. Al-
though our implementation began with the Adaptive Linear Neuron
algorithm in [12], we have made numerous modifications. The fol-
lowing code segment demonstrates the most salient parts of our
implementation.
def __init__(self, eta=0.01, n_iter=50, slopeA=0.01):

self.eta = eta
self.n_iter = n_iter
self.slopeErrorAllowance = slopeA

def activationProb(self, X, w):
z = np.dot(X, w[1:]) + w[0]
phiOfz = 1/(1+np.exp(-z))
return phiOfz

def fit_helper(self, X, y, w):
stopVal = self.slopeErrorAllowance * X.shape[1]
for i in range(self.n_iter):

phiOfz = self.activationProb(X, w)
output = np.where(phiOfz >= 0.5, 1, 0)

errors = (y - output)
slopes = X.T.dot(errors)
w[1:] += self.eta * slopes
w[0] += self.eta * errors.sum()
slopeSum = abs(slopes).sum()
if slopeSum <= stopVal:

break
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def fit(self, X, aL):
self.ansList = np.unique(aL)
self.ws = np.zeros((len(self.ansList), 1+X.shape[1]))
for k in range(len(self.ansList)):

y = np.copy(aL)
y = np.where(y == self.ansList[k], 1, 0)
self.fit_helper(X, y, self.ws[k])

def predict(self, X):
numSamples = X.shape[0]
self.probs = np.zeros((len(self.ansList), numSamples))
for k in range(len(self.ansList)):

self.probs[k] = self.activationProb(X, self.ws[k])
self.results = [""] * numSamples
for i in range(numSamples):

maxk = 0
for k in range(len(self.ansList)):

if self.probs[k][i] >= self.probs[maxk][i]:
maxk = k

self.results[i] = self.ansList[maxk]
return np.array(self.results)

Regarding the three sample court decisions, the parameter w of
the function activationProb is a one-dimensional Numpy array of
1862 integers. w[1:], of size 1861, stores the current weights for the
1861 key words and w[0] is the constant term of the net input z. The
function activationProb first calculates the net input z by computing
the dot product of the rows of X and w. In the next step the function
calculates the probabilities ϕ(z) for the sample sentences (rows) of
X based on the net input z. (Technically, the function calculates
the conditional probability that an input sentence has a certain
sentence type given the sample sentences in X. However, they are
simply called probabilities in this paper to avoid being verbose.) It
then returns the one-dimensional Numpy array phiOfz, which has
the activation probability for each sample sentence in X.

The function fit_helper receives three parameters: the same two-
dimensional Numpy array X, the one-dimensional Numpy array y
that stores the correct outputs for the sample sentences of X, and
the one-dimensional Numpy array w that has the weights and the
constant term calculated for the 1861 key words. The function first
calls activationProb to calculate the probabilities for the sample sen-
tences of X. It then calculates the output for each sample sentence:
1 if the probability ≥ 0.5; 0 otherwise. The errors for the sample
sentences are then calculated accordingly. The most important part
of the function is the calculation of the slopes (partial derivatives)
of the current weights, which will be updated in the next line. The
constant term w[0] is updated after that.

Since there are 1861 weights, there are 1861 slopes. The ideal
scenario is that each slope will become zero in the calculation,
which is practically impossible.We thus allow an allowance for such
a small discrepancy, which is stored in self.slopeErrorAllowance.
Thus, the total allowance for 1861 slopes is self.slopeErrorAllowance
* 1861 (= X.shape[1]), which is then stored in stopVal. If the sum of
the absolute values of the 1861 slopes is less than stopVal, it will
exit the for loop and no more updates are necessary. Otherwise, the
for loop will continue for self.n_iter times, a number that is set to
500. Note that the learning rate self.eta is set to 0.0001.

Table 1: Comparison of our implementations and scikit-
learn’s implementation of the logistic regression algorithm

Methods Tests Correct Guesses Total Guesses
Ours 100 8707 15900

scikit-learn’s 100 8454 15900

The function fit accepts two parameters: X the two-dimensional
Numpy array, and aL the one-dimensional array that stores the
correct sentence types of the sample sentences of X. It first finds
the unique sentence types in aL. Then, it applies the one versus
the rest approach for each unique sentence type to calculate the
weights and the constant term for the 1861 key words. To do so,
each appearance of the sentence type in y, which is a copy of
aL, is replaced with a 1 and 0 elsewhere. The function fit then
calls self.fit_helper to calculate the 1861 weights and the constant
term for that particular sentence type, which will be used to make
predictions.

The calculated weights and constant term for each sentence type
are stored in self.ws, which is a 6×1862 Numpy array. To make a
prediction for a sentence, we use the predict function, which calcu-
lates the probability of each sentence type on the input sentence
and assigns the sentence type that has the greatest probability to
the sentence.

4.2.3 scikit-learn’s implementation of the logistic regression algo-
rithm. scikit-learn’s implementation of the logistic regression algo-
rithm can be straightforwardly applied. We first randomly shuffle
the 529 sentences and their corresponding sentence types. We then
apply the function train_test_split to split the 529 sentences and
their sentence types into two sets: 370 training sentences and 159
testing sentences. Afterwards, a logistic regression object is created
and fitted with the training data.

4.2.4 Discussions. To compare our implementation and that of
scikit-learn for the logistic regression algorithm, we randomly se-
lect 370 training sentences and 159 testing sentences from the 529
sentences of the three sample court decisions and feed them to our
implementation. The results are shown in Table 1, which indicates
that our implementation has more correct predictions than the
highly optimized implementation of scikit-learn. However, since
we are familiar with our code, our implementation can serve as a
platform for future improvements.

Our result is remarkable if we compare our implementation with
randomly guessing the sentence types for the 159 sentences with six
possibilities for each sentence. Note that the probability of randomly
making a correct guess is p = 1/6 = 0.166667. Assuming each guess
is an independent trial, making exactly 87 correct predictions and
making 87 or more correct predictions should follow the binomial
distribution. Thus, applying Microsoft Excel’s binomial distribution
statistical functions BINOM.DIST and BINOM.DIST.RANGE to the
problems, we obtain the probabilities in Table 2.

The probabilities for both events are close to zero. Hence, our
keyword approach to capturing the characteristics of the sentences
of breach of contract court decisions is on the right track, although
much improvement remains to be made.



Classification of Breach of Contract Court Decision Sentences ASAIL 2019, June 21, 2019, Montreal, QC, Canada

Table 2: Probabilities of randomly guessing with exactly 87
or 87 or more correct predictions for the 159 testing sen-
tences

Event Formula Probability
87 exactly BINOM.DIST(87,159,p,FALSE) 9.08471E−28
87 or more BINOM.DIST.RANGE(159,p,87,159) 1.08519E−27

5 FUTURE RESEARCH DIRECTIONS
In our experiments, we discover that if the sum of the absolute
values of the slopes does not reduce to zero, it usually will go
through cycles with respect to the number of iterations determined
by the number self.n_iter, which is current set to 500. Our next goal
is to find the right number for self.n_iter so that the sum of the
absolute values of the slopes is as small as possible.

The ontology in Figure 1 requires more details. More details will
result in more accurate characterization of the five types of sen-
tences, which will lead to more accurate classification algorithms.

The word-vector approach of calculating the similarity of two
sentences might yield good results. Thus, we will utilize Word2vec,
which is one such algorithm for learning a word embedding from a
text corpus [16].

6 CONCLUSIONS
In this early stage of the research, we focus on breach of contract
court decisions. Five critical contract sentence types have been
identified: contract fact sentences, contract law sentences, contract
holding sentences, contract issue sentences, and contract reasoning
sentences. spaCy, an NLP Python library, is used to parse the court
decisions

Three sample breach of contract court decisions are chosen to
test our own implementation and the highly optimized scikit-learn
implementation of the logistic regression algorithm. Our imple-
mentation consistently has more correct predictions than the one
provided by scikit-learn and it can serve as a platform for future
improvements. Our keyword approach is a good starting-point
because the number of correct predictions is far greater than the
number produced by randomly guessing the sentence types for the
159 testing sentences. Lastly, many possible future improvements
have also been identified.
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