
Optimizing Automated Term Extraction
for Terminological Saturation Measurement

Victoria Kosa1 [0000-0002-7300-8818], David Chaves-Fraga2 [0000-0003-3236-2789],
Hennadii Dobrovolskyi1 [0000-0001-5742-104X], Egor Fedorenko 1, 3 [0000-0001-6157-8111],

and Vadim Ermolayev 1 [0000-0002-5159-254X]

1 Department of Computer Science, Zaporizhzhia National University,
Zaporizhzhia, Ukraine

victoriya1402.kosa@gmail.com, gen.dobr@gmail.com,
vadim@ermolayev.com

2 Ontology Engineering Group, Universidad Politécnica de Madrid, Madrid, Spain
dchaves@fi.upm.es
3 BaDM, Dnipro, Ukraine

egorfedorencko@gmail.com

Abstract. Assessing the completeness of a document collection, within a domain
of interest, is a complicated task that requires substantial effort. Even if an auto-
mated technique is used, for example, terminology saturation measurement based
on automated term extraction, run times grow quite quickly with the size of the
input text. In this paper, we address this issue and propose an optimized approach
based on partitioning the collection of documents in disjoint constituents and
computing the required term candidate ranks (using the c-value method) inde-
pendently with subsequent merge of the partial bags of extracted terms. It is
proven in the paper that such an approach is formally correct – the total c-values
can be represented as the sums of the partial c-values. The approach is also vali-
dated experimentally and yields encouraging results in terms of the decrease
of the necessary run time and straightforward parallelization without any loss
in quality.

Keywords: Automated term extraction, terminological saturation, partial
c-value, merged-partial c-value, optimization

1 Introduction

Ontology learning from texts is a developing research field that aims to extract domain
description theories from text corpora. It is increasingly acknowledged as a plausible
alternative to ontology development based on the interviews of domain knowledge
stakeholders. One shortcoming of learning an ontology from texts is that the input cor-
pus has to be quite big for being representative for the subject domain. Another short-
coming is that learning ontologies from text is expensive, in terms of taken time, as it
involves the use of several algorithms, in a pipeline [1], that are computationally hard.

https://orcid.org/0000-0001-6157-8111
https://orcid.org/0000-0002-5159-254X
mailto:gen.dobr@gmail.com
mailto:vadim@ermolayev.com
mailto:dchaves@fi.upm.es
mailto:egorfedorencko@gmail.com

Automated term extraction (ATE) is an essential step at the beginning of the pipeline
for ontology learning [1, 2], that is known to be bulky in terms of the increase of the
run time with the growth of the input text corpus. Therefore, finding a way to reduce:
(i) either the size of the processed text; or (ii) the time spent for term extraction; or (iii)
both is of importance.

In our prior work [2, 3, 4, 5], we developed the ATE-based approach (OntoElect)
that helps circumscribe the minimal possible representative part of a documents collec-
tion, which forms the corpus for further ontology learning. This technique is based on
measuring terminological saturation in the collection of documents, which is computa-
tionally quite expensive in the terms of the run time.

In this paper, we present the approach, based on the partitioning of a document col-
lection, which allows substantially reducing ATE run time in the OntoElect processing
pipeline.

The remainder of the paper is structured as follows. In Sect. 2, we outline our Onto-
Elect approach to detect terminological saturation in document collections describing a
subject domain. In Sect. 3, we review the related work in ATE and argue for the choice
of the c-value method as the best appropriate for measuring terminological saturation.
In Sect. 4, we explain our motives to optimize the c-value method based on partitioning
a document collection and present a formal framework for that. Section 5 reports on the
setup and results of our experimental evaluation of the proposed optimization approach.
Finally, we draw the conclusions and outline our plans for the future work in Sect. 6.

2 Background and Research Problem

OntoElect is the methodology for learning a domain ontology from a statistically rep-
resentative sub-collection (𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠) of the complete collection of documents (𝐷𝐷𝐷𝐷 =
{𝑑𝑑𝑖𝑖})1 describing this subject domain. The representativeness of a sub-collection is de-
cided using a successive approximation method, based on measuring terminological
saturation. In this method, sub-collections are incrementally extended by adding several
(𝑖𝑖𝑖𝑖𝑖𝑖) documents to the previous sub-collection in the sequence.

Let 𝐷𝐷𝐷𝐷𝐷𝐷1,𝐷𝐷𝐷𝐷𝐷𝐷2, … ,𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 , … be the sequence of incrementally extended document
sub-collections, such that 𝐷𝐷𝐷𝐷𝐷𝐷0 = ∅ and 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 = 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖−1 ∪ {𝑑𝑑𝑗𝑗}𝑖𝑖, where
𝑑𝑑𝑗𝑗 , 𝑗𝑗 = 1, … , 𝑖𝑖𝑖𝑖𝑖𝑖, are chosen from the remainder of the 𝐷𝐷𝐷𝐷 using one of the possible
ordering criteria [6]: chronological, reversed-chronological, bi-directional, random, or
descending citation frequency. Let also 𝑇𝑇1,𝑇𝑇2, … ,𝑇𝑇𝑖𝑖 , … be the bags of retained signifi-
cant terms extracted from 𝐷𝐷𝐷𝐷𝐷𝐷1,𝐷𝐷𝐷𝐷𝐷𝐷2, … ,𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 , …. In OntoElect, the measure of termi-
nological difference (𝑡𝑡ℎ𝑑𝑑) is used for comparing the bags of terms 𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑖𝑖+1 retained from
the successive 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ,𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖+1. It returns the difference as a real positive value. If, at some
𝑖𝑖: (i) 𝑡𝑡ℎ𝑑𝑑 goes below the threshold of the statistical error 𝜀𝜀; and (ii) there is a convincing

1 In OntoElect, we do not require the availability of this complete collection. Instead, we require

that a substantial part of it is available, which presumably contains all the significant terms
describing the subject domain. If so, it is further revealed that 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 ⊂ 𝐷𝐷𝐷𝐷.

evidence that it will never go above this threshold; then the difference (distance) be-
tween 𝑇𝑇𝑖𝑖 and hypothetical 𝑇𝑇𝐷𝐷𝐷𝐷 is not higher than 𝜀𝜀. Such a 𝑇𝑇𝑖𝑖 could be used as
an 𝜀𝜀 -approximation of the representative set of significant terms describing the domain.
This representative set of terms is denoted as the terminological basis (𝑇𝑇𝑇𝑇) of the sub-
ject domain. This 𝑇𝑇𝑖𝑖 , labelled further as 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠, is denoted as the saturated term set, and
the corresponding 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 , labelled further as 𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 , is the saturated 𝐷𝐷𝐷𝐷𝐷𝐷. The differ-
ence (𝑡𝑡ℎ𝑑𝑑) between 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 and any successive 𝑇𝑇𝑖𝑖 , including 𝑇𝑇𝐷𝐷𝐷𝐷 , is within the statistical
error: 𝑡𝑡ℎ𝑑𝑑(𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶) < 𝜀𝜀.

In our prior work, it has been demonstrated that 𝑡𝑡ℎ𝑑𝑑 is the measure, which can be
effectively used for comparing terminological sets as vector representations of the se-
mantic similarity/distance between document collections. However, one substantial
shortcoming of this approach is that it is computationally expensive. Indeed, given an
approximately fixed length of an increment {𝑑𝑑𝑗𝑗}𝑖𝑖 and the increasing size of 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 , the
method processes more and more the same part of the collection with the growth of 𝑖𝑖.

Therefore, the computational cost (run time) for measuring 𝑡𝑡ℎ𝑑𝑑 would have been
substantially lowered if there was a way to process only the increments of the succes-
sive sub-collections. This processing is, essentially the ATE pipeline. Hence, the re-
search problem is to prove that modifying the ATE processing pipeline for measuring
terminological saturation to process:

• Only the disjoint parts {𝑑𝑑𝑗𝑗}𝑖𝑖 of a document collection
• Instead of sub-collections 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

yields the same result and takes substantially less execution time.

3 Related Work in ATE

In the majority of approaches to ATE [7, 8] processing is done in two consecutive
phases: linguistic and statistical. Linguistic processors, like POS taggers or phrase
chunkers, filter out stop words and restrict candidate terms to n-gram sequences: nouns
or noun phrases, adjective-noun and noun-preposition-noun combinations. Statistical
processing is then applied to measure the ranks of the candidate terms. These measures
are [9]: either the measures of unithood, which focus on the collocation strength of units
that comprise a single term; or the measures of termhood, which point to the association
strength of a term to domain concepts.

For unithood, the measures are used such as mutual information [10], log likelihood
[10], t-test [7, 8], modifiability and its variants [11, 8]. The measures for termhood are
either term frequency-based (unsupervised approaches) or reference corpora-based
(semi-supervised approaches). The most used frequency-based metrics are TF/IDF [12,
13], weirdness [14], and domain pertinence [15]. More recently, hybrid approaches
were proposed, that combine unithood and termhood measurements in a single value.
A representative measure is c/nc-value [16]. C/Nc-value-based approaches to ATE
have received their further evolution in many works: [7, 15, 17] to mention a few.

Linguistic processing is organized and implemented in a very similar fashion in all
ATE methods, except some of them that also include filtering out stop words. Stop

words could be filtered out also at a cut-off step after statistical processing. Statistical
processing is sometimes further split in two consecutive sub-phases of term candidate
scoring, and ranking. For term candidates scoring, reflecting its likelihood of being a
term, known methods could be distinguished by being based on (c.f. [12]) measuring
occurrences frequencies (including word association), assessing occurrences contexts,
using reference corpora, e.g. Wikipedia [18], topic modelling [19, 20].

The cut-off procedure, takes the top candidates, based on scores, and thus distin-
guishes significant terms from insignificant (or non-) terms. Many cut-off methods rely
upon the scores, coming from one scoring algorithm, and establish a threshold in one
or another way. Some others that collect the scores from several scoring algorithms use
(weighted) linear combinations [21], voting [9, 3], or (semi-)supervised learning [22].
In our set-up [3], we do cut-offs after term extraction based on retaining a simple ma-
jority vote. Therefore, the ATE solutions, which perform cut-offs together with scoring,
are not relevant for our approach.

Based on the evaluations in [9, 12, 23], the most widely used ATE algorithms, for
which their performance assessments are published, are listed in Table 1. The table also
provides the assessments based on the aspects we use for selection.

Table 1. Comparison of the most widely used ATE measures and algorithms (revision
of the corresponding table in [24])

Method
[Source]

Domain-
indepen-

dence
(+/-)

Super-
vizion
(U/SS)

Measure(s) Term
Signi-
ficance

Cut-
off

(+/-)

Precision
(GENIA;
average)

Run Time
(related to

c-value
method)

Tool

TTF
[25]

+ U Term (Total) Frequency + - ATR4S
0.70; 0.35 0.34 JATE

ATF
[23]

+ U Average Term Frequency + - 0.71; 0.33 0.37 ATR4S
0.75; 0.32 0.35 JATE

TTF-IDF
[26]

+ U TTF+Inverse Document
Frequency

+ - ATR4S
0.82; 0.51 0.35 JATE

RIDF
[27]

+ U Residual IDF - 0.71; 0.32 0.53 ATR4S
0.80; 0.49 0.37 JATE

C-value
[16]

+ U C-value, NC-value + - 0.73; 0.53 1.00 ATR4S
0.77; 0.56 1.00 JATE

Weirdness
[14]

+/- SS Weirdness - 0.77; 0.47 0.41 ATR4S
0.82; 0.48 1.67 JATE

GlossEx
[21]

+ SS Lexical (Term) Cohesion,
Domain Specificity

- ATR4S
0.70; 0.41 0.42 JATE

TermEx
[15]

+ SS Domain Pertinence, Do-
main Consensus, Lexical
Cohesion, Structural Rele-
vance

- + ATR4S
0.87; 0.46 0.52 JATE

PU-ATR [18] - SS Nc-value, Domain Speci-
ficity

- + 0.78; 0.57 809.21 ATR4S
 JATE

Comments to Table 1:
Domain Independence: “+” stands for a domain-independent method; “-“ marks that the method
is either claimed to be domain-specific by its authors, or is evaluated only on one particular do-
main. We look for a domain-independent method.
Supervision: “U” – unsupervised; “SS” – semi-supervised. We look for an unsupervised method.
Term Significance: “+” – the method returns a value for each retained term, which could further
be used as a measure of its significance compared to the other terms; “-“ marks that such a meas-
ure is not returned or the method does the cut-off itself. We look for doing cut-offs later.
Cut-off: “+” – the method does cut-offs itself and returns only significant terms; “-” – the method
does not do cut-offs. We look for “-”.

Precision and Run Time: The values are based on the comparison of the two cross-evaluation
experiments reported in [12] and [23]. Empty cells in the table mean that there was no data for
this method in this experiment using this tool. Survey [12] used ATR4S [12] – an open-source
software tool for automated term recognition (ATR) written in Scala (4S). It evaluated 13 differ-
ent methods, implemented in ATR4S, on five different datasets, including the GENIA dataset
[28]. Survey [23] used JATE 2.0 [23], free software for automated term extraction (ATE) written
in Java (J). It evaluated nine different methods, implemented in JATE, on two different datasets,
including GENIA. Hence, the results on GENIA are the baseline for comparing the precision.
Two values are given for each reference experiment: precision on GENIA; average precision.
Both [12] and [23] experimented with c-value method, which was the slowest on average for
[23]. So, the execution times for c-value were used as a baseline to normalize the rest in the Run
Time column.
Tool: The last column in the table names the tools used in the corresponding experiments.

The information in Table 1 supports the conclusion of [23] stating that c-value is the

most reliable method. The c-value method obtains consistently good results, in terms
of precision, on the two different mixes of datasets [23, 12]. It could also be noted that
c-value is one of the slowest in the group of unsupervised and domain-independent
methods, though its performance is comparable with the fastest ones. Still, c-value out-
performs the domain-specific methods, sometimes significantly – as it is in the case of
PU-ATR. Therefore, we have chosen c-value as the method for our experimental frame-
work.

4 Motivation and Formal Framework

ATE is known to be computationally expensive in the terms of run time versus the
volume of input text. The c-value method that we have chosen for our terminological
saturation measurement pipeline (Table 1) is more expensive than the other unsuper-
vised and domain neutral methods. Furthermore, ATE implementations are often con-
strained2 in the volume of input text. Hence, reducing the volume of text to be processed
by the method, and partitioning it in relatively small chunks, may substantially lower
this expense and contribute to the better scalability of the solution.

4.1 Motivation

The c-value method [16], as mentioned in Sect. 3, is hybrid and combines linguistic
and statistical steps applied to the entire document collection (text corpus). The method
starts with the linguistic pipeline, which outputs the list of term candidate strings.
It then continues with the statistical part, which computes significance scores for these
term candidates as c-values. The diagram of the measured run time versus the volume

2 For example, the UPM Term Extractor software [29], which is based on the c-value method

and used in our experiments, does not take in texts of more than 15 Mb in volume.

of input text, provided in Sect. 5 (Fig. 3), in the case of the conventional pipeline illus-
trates, by run time values, the computational complexity of the c-value method.

Let us now consider a document collection 𝐷𝐷 as a composition of its disjoint parts.
Definition 1 (A partial collection and a partition of a document collection).

𝐷𝐷𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 are the partial document collections of 𝐷𝐷 and {𝐷𝐷𝑖𝑖} = {𝐷𝐷𝑖𝑖}𝑖𝑖=1𝑛𝑛 is the par-
tition of 𝐷𝐷 if the following conditions hold:

 Condition 1: 𝐷𝐷 = ⋃ 𝐷𝐷𝑖𝑖𝑛𝑛
𝑖𝑖=1 ,

Condition 2: ⋂ 𝐷𝐷𝑖𝑖 =𝑛𝑛
𝑖𝑖=1 ∅.

(1)

The linguistic part processes separate sentences. Therefore: (i) its computational
complexity is the function of the number of sentences in a document collection; and (ii)
the partial collections 𝐷𝐷𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 (Definition 1) could be processed independently
and the outputs further merged. Hence, applying the linguistic step to the partition of 𝐷𝐷
could at least be parallelized, which results in the runtime gain of 𝑛𝑛 times.

In the case of OntoElect pipeline, the linguistic step is iteratively applied to the in-
crementally enlarged datasets (see Sect. 2). Therefore, the same chunks of text are pro-
cessed many times. Let us suppose that 𝐷𝐷 contains 𝑘𝑘 documents and 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑘𝑘/𝑛𝑛 is the
increment to enlarge datasets. Then, the number of documents to be processed is:

• In the case of the incrementally enlarged datasets:
 𝑖𝑖𝑖𝑖𝑖𝑖 + 2 ∙ 𝑖𝑖𝑖𝑖𝑖𝑖 + ⋯+ 𝑛𝑛 ∙ 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑘𝑘 ∙ 1+2+⋯+𝑛𝑛

𝑛𝑛
≈ (𝑛𝑛 + 1)/2 ∙ 𝑘𝑘, which is substantially

more than 𝑘𝑘 if 𝑛𝑛 > 1
• In the case of partial collections: 𝑘𝑘

Hence, processing partial collections instead of incrementally enlarged datasets
gives a substantial additional gain in runtime, which is (𝑛𝑛+1

2
− 1) ∙ 𝑘𝑘 times.

Similarly, it might be reasonable to apply the statistical step of the pipeline not to
the incrementally enlarged datasets, but to partial collections. However, it is not
straightforward that:

• Computing c-values for the terms extracted from the partial collections; and
• Merging further these bags of terms with their significance scores

will give the same result as applying the statistical step to incrementally enlarged da-
tasets. In the remainder of this section, we prove that partitioning c-value computation
with later results merging gives correct results.

C-value [16], further labelled as 𝑐𝑐𝑐𝑐 in formulae and equations, is built using several
statistical characteristics of the corresponding term candidate string. These characteris-
tics are:

• The total frequency (number) of occurrence(s) of the candidate string in the docu-
ment corpus

• The frequency (number) of occurrence(s) of the candidate string as a part of other
longer candidate terms

• The number of these longer candidate terms
• The length of the candidate string (in the number of words)

Let: 𝑠𝑠 be a term candidate string; |𝑠𝑠| – the length of 𝑠𝑠 in words; 𝑙𝑙𝑙𝑙 – a longer term
candidate string in which 𝑠𝑠 is nested as a sub-string; 𝑓𝑓(.) – the frequency (number) of
occurrence(s) of a term candidate string in a collection of textual documents 𝐷𝐷; 𝑇𝑇𝑠𝑠 –
the set of extracted term candidate strings 𝑙𝑙𝑙𝑙 that nest 𝑠𝑠; and 𝑃𝑃(𝑇𝑇𝑠𝑠) – the number of
these 𝑙𝑙𝑙𝑙. Then a (complete) 𝑐𝑐𝑐𝑐 of 𝑠𝑠 is denoted [16] as follows:

𝑐𝑐𝑐𝑐(𝑠𝑠) = �
𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ 𝑓𝑓(𝑠𝑠) 𝑖𝑖𝑖𝑖 𝑠𝑠 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐷𝐷

𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓(𝑠𝑠) − 1
𝑃𝑃(𝑇𝑇𝑠𝑠)

∑ 𝑓𝑓(𝑙𝑙𝑙𝑙)𝑙𝑙𝑙𝑙∈𝑇𝑇𝑠𝑠 � 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 . (2)

4.2 Merged Partial C-values

Definition 2 (Partial c-value). The partial c-value of the term candidate string 𝑠𝑠
extracted from the partial document collection 𝐷𝐷𝑖𝑖 is computed as:

𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖(𝑠𝑠) = �
𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ 𝑓𝑓𝑖𝑖(𝑠𝑠) 𝑖𝑖𝑖𝑖 𝑠𝑠 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐷𝐷𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓𝑖𝑖(𝑠𝑠) − 1
𝑃𝑃�𝑇𝑇𝑖𝑖

𝑠𝑠�
∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑙𝑙)𝑙𝑙𝑙𝑙∈𝑇𝑇𝑖𝑖

𝑠𝑠 � 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , (3)

where: 𝑇𝑇𝑖𝑖𝑠𝑠 is the set of term candidate strings 𝑙𝑙𝑙𝑙, that nest 𝑠𝑠, extracted from 𝐷𝐷𝑖𝑖; 𝑓𝑓𝑖𝑖(.) is
the number of occurrences of 𝑠𝑠 or 𝑙𝑙𝑙𝑙 in 𝐷𝐷𝑖𝑖 .

Lemma 1 (The total frequency of nested occurrences). The total value of the fre-
quency of nested occurrences, in 𝐷𝐷, of a term candidate string 𝑠𝑠 in longer term candi-
date strings 𝑙𝑙𝑙𝑙 is the sum of the total frequency values of nested occurrences in all
partial collections 𝐷𝐷𝑖𝑖 of 𝐷𝐷:

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠) = ∑ 𝑓𝑓(𝑙𝑙𝑙𝑙)𝑙𝑙𝑙𝑙∈𝑇𝑇𝑠𝑠 = ∑ �∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑙𝑙)𝑙𝑙𝑙𝑙∈𝑇𝑇𝑖𝑖
𝑠𝑠 �𝑛𝑛

𝑖𝑖=1 = ∑ (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖(𝑠𝑠))𝑛𝑛
𝑖𝑖=1 . (4)

Proof. It implies from Definition 2 (of partial c-value), that 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖(𝑠𝑠) is the total
number of occurrences of the term candidate string 𝑠𝑠 in all longer term candidate strings
𝑙𝑙𝑙𝑙 extracted from the partial collection 𝐷𝐷𝑖𝑖 . The number of these longer term candidate
strings equals to 𝑃𝑃(𝑇𝑇𝑖𝑖𝑠𝑠). Due to the disjointness of the partial collections 𝐷𝐷𝑖𝑖 (Condition
2 of Definition 1), 𝑓𝑓(𝑙𝑙𝑙𝑙) = ∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑙𝑙)𝑛𝑛

𝑖𝑖=1 . Therefore, and due to the Condition 1 of Defi-
nition 1, the total number of occurrences of 𝑠𝑠 in all 𝑙𝑙𝑙𝑙 extracted from 𝐷𝐷 is:

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠) = ∑ 𝑓𝑓(𝑙𝑙𝑙𝑙)𝑙𝑙𝑙𝑙∈𝑇𝑇𝑠𝑠 =

= ∑ ∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑙𝑙)𝑛𝑛
𝑖𝑖=1𝑙𝑙𝑙𝑙∈𝑇𝑇𝑠𝑠 = ∑ (∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑙𝑙)𝑛𝑛

𝑖𝑖=1) =𝑙𝑙𝑙𝑙∈⋃ �𝑇𝑇𝑖𝑖
𝑠𝑠�𝑛𝑛

𝑖𝑖=1

= ∑ �∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑙𝑙)𝑙𝑙𝑙𝑙∈𝑇𝑇𝑖𝑖
𝑠𝑠 � = ∑ (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖(𝑠𝑠))𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 .

 □
Definition 3 (Merged partial c-value). The merged partial c-value of the term can-

didate string 𝑠𝑠 is computed as:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠) = ∑ 𝑝𝑝𝑐𝑐𝑐𝑐𝑖𝑖(𝑠𝑠)𝑛𝑛
𝑖𝑖=1 . (5)

The following Theorem 1 allows computing 𝑐𝑐𝑐𝑐(𝑠𝑠) for the whole collection 𝐷𝐷 based
on the merging of the known partial c-values 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖(𝑠𝑠), 𝑖𝑖 = 1, … ,𝑛𝑛 for the partial collec-
tions 𝐷𝐷𝑖𝑖 , 𝑖𝑖 = 1. … ,𝑛𝑛 of 𝐷𝐷.

Theorem 1 (Equality of 𝒄𝒄𝒄𝒄 and 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎). If a document collection 𝐷𝐷 is partitioned
as {𝐷𝐷𝑖𝑖} = {𝐷𝐷𝑖𝑖}𝑖𝑖=1𝑛𝑛 , which means that Conditions 1 and 2 (1) hold, then

𝑐𝑐𝑐𝑐(𝑠𝑠) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠) (6)

Proof. The proof is structured in three cases: (1) 𝑠𝑠 is never nested in 𝑙𝑙𝑙𝑙; (2) ∀𝐷𝐷𝑖𝑖, 𝑠𝑠 is
nested at least once and at least in one 𝑙𝑙𝑙𝑙; and (3) 𝑠𝑠 is nested in 𝑙𝑙𝑙𝑙 for some 𝐷𝐷𝑖𝑖 .

Case 1: not nested. If, ∀𝑖𝑖 = 1, … ,𝑛𝑛, 𝑠𝑠 extracted from 𝐷𝐷𝑖𝑖 is not nested in any 𝑙𝑙𝑙𝑙 ex-
tracted from 𝐷𝐷𝑖𝑖 , then 𝑠𝑠 is not nested in any 𝑙𝑙𝑙𝑙 extracted from 𝐷𝐷. Therefore, for such
an 𝑠𝑠:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠) = ∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖(𝑠𝑠)𝑛𝑛
𝑖𝑖=1 = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ 𝑓𝑓𝑖𝑖(𝑠𝑠) =𝑛𝑛

𝑖𝑖=1

= 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ ∑ 𝑓𝑓𝑖𝑖(𝑠𝑠) =𝑛𝑛
𝑖𝑖=1 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ 𝑓𝑓(𝑠𝑠) = 𝑐𝑐𝑐𝑐(𝑠𝑠),

(7)

due to Conditions 1 and 2 (2) and the definition of 𝑓𝑓(.).
Case 2: all nested. If, ∀𝑖𝑖 = 1, … ,𝑛𝑛, 𝑠𝑠 extracted from 𝐷𝐷𝑗𝑗 is nested in an 𝑙𝑙𝑙𝑙 extracted

from 𝐷𝐷𝑗𝑗 , then: (i) this 𝑠𝑠 (extracted from 𝐷𝐷) is nested in this 𝑙𝑙𝑙𝑙 (extracted from 𝐷𝐷); and
(ii) 𝑙𝑙𝑙𝑙 ∈ 𝑇𝑇𝑗𝑗𝑠𝑠 ⊂ 𝑇𝑇𝑠𝑠 – because 𝐷𝐷𝑖𝑖 ⊂ 𝐷𝐷 due to condition 1. Therefore:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠) = ∑ 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖(𝑠𝑠)𝑛𝑛
𝑖𝑖=1 =

= ∑ �𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓𝑖𝑖(𝑠𝑠) − 1
𝑃𝑃�𝑇𝑇𝑖𝑖

𝑠𝑠�
∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑙𝑙)𝑙𝑙𝑙𝑙∈𝑇𝑇𝑖𝑖

𝑠𝑠 ��𝑛𝑛
𝑖𝑖=1 =

= 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ ∑ �𝑓𝑓𝑖𝑖(𝑠𝑠) − 1
𝑃𝑃�𝑇𝑇𝑖𝑖

𝑠𝑠�
∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑙𝑙)𝑙𝑙𝑙𝑙∈𝑇𝑇𝑖𝑖

𝑠𝑠 �𝑛𝑛
𝑖𝑖=1 =

= 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �∑ 𝑓𝑓𝑖𝑖(𝑠𝑠) −∑ � 1
𝑃𝑃�𝑇𝑇𝑖𝑖

𝑠𝑠�
∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑙𝑙)𝑙𝑙𝑙𝑙∈𝑇𝑇𝑖𝑖

𝑠𝑠 �𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1 � =

= 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓(𝑠𝑠) −∑ � 1
𝑃𝑃�𝑇𝑇𝑖𝑖

𝑠𝑠�
∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑙𝑙)𝑙𝑙𝑙𝑙∈𝑇𝑇𝑖𝑖

𝑠𝑠 �𝑛𝑛
𝑖𝑖=1 � ≈|ℎ1

≈|ℎ1 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓(𝑠𝑠) − 1
𝑃𝑃(𝑇𝑇𝑠𝑠)

∑ �∑ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑙𝑙)𝑙𝑙𝑙𝑙∈𝑇𝑇𝑖𝑖
𝑠𝑠 �𝑛𝑛

𝑖𝑖=1 � =

= 𝑙𝑙𝑙𝑙𝑙𝑙2(|𝑠𝑠|) ∙ �𝑓𝑓(𝑠𝑠) − 1
𝑃𝑃(𝑇𝑇𝑠𝑠)

∑ �𝑓𝑓(𝑙𝑙𝑙𝑙)�𝑙𝑙𝑙𝑙∈𝑇𝑇𝑠𝑠 � = 𝑐𝑐𝑐𝑐(𝑠𝑠)

(8)

Here “≈|ℎ1” stands for hypothetically approximately equal. The hypothesis ℎ1 about

the approximate equality in ∑ � 1
𝑃𝑃(𝑇𝑇𝑖𝑖

𝑠𝑠)
�𝑛𝑛

𝑖𝑖=1 ≈ 1
𝑃𝑃(𝑇𝑇𝑠𝑠)

. Formally, ∑ � 1
𝑃𝑃(𝑇𝑇𝑖𝑖

𝑠𝑠)
�𝑛𝑛

𝑖𝑖=1 > 1
𝑃𝑃(𝑇𝑇𝑠𝑠)

. How-

ever, asymptotically, 𝑃𝑃(𝑇𝑇𝑖𝑖𝑠𝑠) = 𝑜𝑜(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖(𝑠𝑠)) and 𝑃𝑃(𝑇𝑇𝑠𝑠) = 𝑜𝑜�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑠𝑠)� due to:
(i) the overlaps in 𝑇𝑇𝑖𝑖𝑠𝑠; and (ii) possible nestings in several instances of 𝑙𝑙𝑙𝑙. Therefore,
the influence of those denominators in (8) becomes lower with the growth of the volume
of 𝐷𝐷 and its partial collections 𝐷𝐷𝑖𝑖 . This is a promise that ℎ1 might be true.

Case 3: 𝑠𝑠 is sometimes nested in 𝑙𝑙𝑙𝑙. There exist several partial collections 𝐷𝐷𝑗𝑗 , for
which Case 2 is applied. For the rest of partial collections 𝐷𝐷𝑘𝑘 Case 1 is applied. In this
situation two partial sums – 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1(𝑠𝑠) and 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝2(𝑠𝑠) – are computed for these disjoint
subsets of the partition of 𝐷𝐷. Similarly to Case 2, 𝑐𝑐𝑐𝑐(𝑠𝑠) ≈|ℎ1 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1(𝑠𝑠) + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2(𝑠𝑠).

Hence, if the hypotheses ℎ1 holds true, Cases 1-3 prove Theorem 1.
 □

For checking ℎ1, complete (𝑐𝑐𝑐𝑐) and merged partial (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) c-values are experimen-
tally computed and compared, as presented in Sect. 5.

A straightforward corollary from Theorem 1 is that c-values do not depend
on the partitioning of a document collection.

Corollary 1 (Size of a partial collection). Let {𝐷𝐷𝑖𝑖}𝑖𝑖=1𝑛𝑛 ; �𝐷𝐷𝑗𝑗�𝑗𝑗=1
𝑚𝑚 ; 𝑛𝑛 ≠ 𝑚𝑚 be two dif-

ferent partitions of a document collection 𝐷𝐷. Then:

∀𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)|�𝐷𝐷𝑖𝑖� = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)|�𝐷𝐷𝑗𝑗� ≈|ℎ1 𝑐𝑐𝑐𝑐(𝑠𝑠), (9)

where: 𝑠𝑠 is a term candidate string extracted from the document collection 𝐷𝐷;
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)|{𝐷𝐷𝑖𝑖} is the merged partial c-value of the term candidate string 𝑠𝑠 computed for
the partition {𝐷𝐷𝑖𝑖} of 𝐷𝐷; 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)|�𝐷𝐷𝑗𝑗� is the merged partial c-value of the term candidate
string 𝑠𝑠 computed for the partition {𝐷𝐷𝑗𝑗} of 𝐷𝐷.

Based on Corollary 1, the size of a partial collection 𝐷𝐷𝑖𝑖 ∈ {𝐷𝐷𝑖𝑖} may be reasonably
chosen based on the specifics of the problem and available hardware resources – RAM
in particular. One possible scenario and problem might be extracting terms from a
stream of textual documents, like blog posts or tweets. In this setting, the size of a
partial collection has to be smaller than the size of the stream window.

Algorithm MPCV. Merge partial c-values from two Bags of Terms
Input:
 Ti, Ti+1 – the bags of retained significant terms.
 Each term Ti.term is accompanied with its Ti.pcv.
 Ti, Ti+1 are sorted in the descending order of Ti.pcv, Ti+1.pcv.
Output: the bag of terms Ti+1 with merged Ti.pcv into Ti+1.pcv for every term
1. resort := .FALSE.
2. for k := 1 to |Ti|
3. match := .FALSE.
4. for m := 1 to |Ti+1|
5. if (Ti.term[k] = Ti+1.term[m])
6. then begin Ti+1.pcv[m] += Ti.pcv[k]; match := .TRUE.; end
7. if (.NOT. match)
8. then begin append(Ti.term[k]+Ti.pcv[k], Ti+1); resort := .TRUE.; end
9. end for
10. end for
11. if (resort) then sort(Ti+1, Ti+1.pcv, desc)
Fig. 1: The MPCV algorithm for merging partial c-values in two bags of retained significant terms

The MPCV algorithm (Fig. 1) is used for merging partial c-values in the bags of sig-
nificant terms retained from the textual datasets representing the partial document col-
lections of the complete document collection.

5 Experimental Evaluation

The idea of experimental evaluation is to compare the conventional and optimized pro-
cessing pipelines based on checking:

• The correctness. Are the merged partial c-values computed using the optimized
pipeline practically the same as the c-values computed by the conventional pipeline?

• Execution time. What is the difference in the duration of the extraction of the same
bags of retained significant terms between the conventional and optimized pipelines?

Checking correctness validates the hypothesis ℎ1 (Sect. 4) to fully prove Theorem 1.
If ℎ1 holds true, the optimized processing pipeline could be used for extracting terms
in the process of measuring terminological saturation in document collections. Com-
paring the execution times of the conventional and optimized processing pipelines al-
lows assessing the efficiency of the optimized pipeline.

5.1 Experimental Data

The document collection used in our experiments is the DMKD-300 collection, which
contains the subset of (300) full text articles from the Springer journal on Data Mining
and Knowledge Discovery3 published between 1997 and 2010. These papers have been
automatically pre-processed to plain texts [24] and have not been cleaned. Therefore,
the resulting datasets, representing partial collections, were moderately noisy. We have
chosen the increment (𝑖𝑖𝑖𝑖𝑖𝑖) for generating the datasets to be 20 papers. Hence, based
on the available texts, we have generated, using our Dataset Generator software
(Sect. 5.3):

• 15 incrementally extended datasets 𝐷𝐷1 = {𝑑𝑑𝑗𝑗}𝑗𝑗=120 (20 papers),
𝐷𝐷2 = 𝐷𝐷1 ∪ {𝑑𝑑𝑗𝑗}𝑗𝑗=120 (40 papers), …, 𝐷𝐷15 = 𝐷𝐷14 ∪ {𝑑𝑑𝑗𝑗}𝑗𝑗=120 (300 papers)4 for the con-
ventional pipeline

• 15 datasets of 𝑖𝑖𝑖𝑖𝑖𝑖 size forming the partition �𝐷𝐷𝑖𝑖 = {𝑑𝑑𝑗𝑗}𝑗𝑗=120 �
𝑖𝑖=1

15
4F

5 of the DMKD-300
collection for the optimized pipeline

The descending citation frequency (DCF) order [6] of adding documents to partial
collections has been used in both cases.

5.2 Instrumental Software and Computational Environment

Our experimental workflow is appropriately supported by the developed and used in-
strumental software. The toolset is concisely presented in Table 2.

3 https://link.springer.com/journal/10618
4 DMKD-300 collection in plain texts: http://dx.doi.org/10.17632/knb8fgyr8n.1#folder-

637dc34c-fa29-4587-9f63-df0e602d6e86; incrementally enlarged datasets generated of
these texts: http://dx.doi.org/10.17632/knb8fgyr8n.1#folder-b307088c-9479-43fb-8197-
a12a66ff685b

5 The partition of the DMKD-300 collection: https://github.com/OntoElect/Data/blob/
master/DMKD-300-DCF-Part.zip

https://link.springer.com/journal/10618

Table 2: The modules of the instrumental software toolset used in experiments

Phase /
Task

Tool Input Output Implementa-
tion

Constraints

Pre-Processing Phase
Generate
Datasets

Dataset
Generator

the folder with plain
text documents; the
XLS file with citation
frequencies and docu-
ment file names

the folder with Plain
Text datasets; the table
with run time per da-
taset

C#,
https://github.co
m/OntoE-
lect/Code/tree/m
aster/DataSet-
Gen-cs

Terms Extraction Phase
Extract
Terms

UPM Term
Extractor
[29]

the folder with plain
text datasets

the folder with the
bags of terms; the table
with run-time per bag
of terms

Java,
https://github.co
m/ontologylearn
ing-oeg/epnoi-
legacy

English texts
only, c-value
method [16],
input data of
at most 15 Mb

Merge par-
tial
c-values

MPCV the folder with the
bags of terms; the list
of files to be processed

the folder with the
bags of terms with
merged c-values; the
table with run-time per
bag of terms

Python,
https://github.co
m/OntoElect/Co
de/tree/master/
MPCV

Post-processing Phase
Compute
Termino-
logical Dif-
feren-ces

Baseline
THD

the folder with the
bags of terms; the list
of files to be processed

The table containing
eps, thd, values for the
consecutive pairs of
the bags of terms

Python,
https://github.co
m/OntoE-
lect/Code/tree/m
aster/THD

uses the base-
line THD al-
gorithm [4]

5.3 Experimental Flow

The set-up of our experiments includes the configuration of the execution flow in two
parallel processing pipelines – conventional and optimized, as pictured in Fig. 2.

The conventional pipeline implements the processing of incrementally extended
document sub-collections, as explained in Sect. 2. It takes in the files of the document
collection in the specified (DCF) order and generates the incrementally extended da-
tasets (Sect. 5.1) using the dataset generator (Table 2). At the next step, the datasets are
fed into the term extractor software (Table 2) which outputs the bags of extracted terms
𝑇𝑇𝑖𝑖 and measures run times 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖.

The optimized pipeline implements the processing of the partitioned document sub-
collections as explained in Sect. 4. It takes the files of the document collection in the
same order (DCF) and generates partition datasets (Sect. 5.1) using the dataset genera-
tor (Table 2). At the next step, the datasets are fed into the term extractor software
(Table 2) which outputs the bags of extracted terms 𝑇𝑇𝑖𝑖 and measures run times. At the
subsequent step, the extracted sets o terms are fed into the merger module (Table 2)
which applies the MPCV algorithm (Sect. 4.2) consequently to the pairs {𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑖𝑖+1} as
pictured in Fig. 2. As a result, the merged bags of terms 𝑇𝑇𝑖𝑖𝑚𝑚 = ⋃ 𝑇𝑇𝑖𝑖𝑖𝑖

𝑘𝑘=1 are generated.
The run times of the merge operation are also measured. The required total run times
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑚𝑚) are computed as the sums of the respective term extraction and merge run
times.

https://github.com/OntoElect/Code/tree/master/DataSetGen-cs
https://github.com/OntoElect/Code/tree/master/DataSetGen-cs
https://github.com/OntoElect/Code/tree/master/DataSetGen-cs
https://github.com/OntoElect/Code/tree/master/DataSetGen-cs
https://github.com/OntoElect/Code/tree/master/DataSetGen-cs
https://github.com/ontologylearning-oeg/epnoi-legacy
https://github.com/ontologylearning-oeg/epnoi-legacy
https://github.com/ontologylearning-oeg/epnoi-legacy
https://github.com/ontologylearning-oeg/epnoi-legacy
https://github.com/OntoElect/Code/tree/master/MPCV
https://github.com/OntoElect/Code/tree/master/MPCV
https://github.com/OntoElect/Code/tree/master/MPCV
https://github.com/OntoElect/Code/tree/master/MPCV
https://github.com/OntoElect/Code/tree/master/THD
https://github.com/OntoElect/Code/tree/master/THD
https://github.com/OntoElect/Code/tree/master/THD
https://github.com/OntoElect/Code/tree/master/THD

Fig. 2: The execution flow of evaluation experiments

After executing these two parallel branches, if ℎ1 (Sect.4) holds true, 𝑇𝑇𝑖𝑖 coming
from the conventional pipeline and 𝑇𝑇𝑖𝑖𝑚𝑚 coming from the optimized pipeline have to
contain very similar sets of terms with approximately the same c-values. This is
checked by applying the THD algorithm [4] implemented in the Baseline THD module
(Table 2). THD is applied: (i) to the pairs {𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑖𝑖+1} and {𝑇𝑇𝑖𝑖𝑚𝑚,𝑇𝑇𝑖𝑖+1𝑚𝑚 } for comparing satu-
ration curves for conventional and optimized cases; and (ii) to the pairs {𝑇𝑇𝑖𝑖 ,𝑇𝑇𝑖𝑖𝑚𝑚} for
computing terminological difference between hypothetically the same sets of terms.

All the computations, except term extraction, have been run on a Windows 7 64-bit
HP ZBook 17 G3 PC with: Intel® Core™ i7-6700HQ CPU, E7400 @ 2.60 GHz; 8.0
Gb on-board memory; NVIDIA Qadro M3000M GPU. Term extraction has been run
on an Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz, 64 cores, 256GB server.

…

D1 D2 D3
inc D1

+
inc

D2

+
inc

Di
Di-1

+
inc

Dn
Dn-1

+
inc

… …
D1 D2 D3

inc
Di Dn

… …

T1 T2 T3 Ti Tn
… …

Extract & Retain
Significant Terms

T1 T2 T3 Ti Tn
… …

Extract & Retain
Significant Terms

Merge pcv in the Bags
of Terms

𝑇𝑇1𝑚𝑚 𝑇𝑇2𝑚𝑚

𝑇𝑇3𝑚𝑚

𝑇𝑇𝑖𝑖𝑚𝑚

𝑇𝑇𝑛𝑛𝑚𝑚

 … …

Pairwise Compare
Bags of Terms

𝑡𝑡ℎ𝑑𝑑(…), i =1, …, n

measure
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖

measure
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑚𝑚

Generate Datasets Generate Datasets

Conventional Pipeline Optimized Pipeline

Document Collection (Plain Texts)

5.4 The Results of Experiments and Discussion

The results of our experiment are presented in a tabular form in Table 3 and graphically
pictured in Fig. 3 and Fig. 4.

Table 3: thd measurements and run times for the conventional and optimized pipelines

Bag of Terms
No (i)

eps

thd Run Times (sec)
𝑻𝑻𝒊𝒊−𝟏𝟏,𝑻𝑻𝒊𝒊 𝑻𝑻𝒊𝒊−𝟏𝟏𝒎𝒎 ,𝑻𝑻𝒊𝒊𝒎𝒎 𝑻𝑻𝒊𝒊,𝑻𝑻𝒊𝒊𝒎𝒎 𝑻𝑻𝒊𝒊 𝑻𝑻𝒊𝒊𝒎𝒎

1 12.00 62.89 62.89 0.00 30.41 31.94
2 15.50 31.51 32.22 3.64 60.47 32.79
3 18.00 23.38 22.17 2.85 85.34 31.64
4 19.65 18.04 17.63 3.08 111.72 31.85
5 23.22 15.80 15.57 3.31 147.30 37.11
6 24.00 10.07 9.50 3.86 153.78 32.25
7 24.00 10.67 10.14 3.40 195.27 41.49
8 26.00 9.14 9.19 5.28 217.62 43.28
9 28.00 8.68 8.54 6.95 268.59 47.16

10 28.53 7.56 7.42 5.21 296.49 41.32
11 28.53 7.30 6.44 6.13 324.39 41.58
12 28.53 6.53 6.56 5.88 363.05 45.20
13 30.00 6.43 5.42 10.07 401.94 40.55
14 38.00 15.47 3.13 9.09 401.19 39.81
15 38.00 3.53 15.37 6.14 459.75 50.12

Fig. 3(a) clearly shows that the results of saturation measurements using the bags of

terms resulting from the optimized pipeline (𝑻𝑻𝒊𝒊−𝟏𝟏𝒎𝒎 ,𝑻𝑻𝒊𝒊𝒎𝒎 column in Table 3 and Merged
Partial curve in Fig. 3(a)) and conventional pipeline (𝑻𝑻𝒊𝒊−𝟏𝟏,𝑻𝑻𝒊𝒊 column in Table 3 and
Incremental curve in Fig. 3(a)) are practically the same, except the last two measure-
ments. The deviation at the tail could be explained that regular noise is accumulated
differently in these two cases. A nice side result in this context is that the optimized
pipeline using merged partial c-values accumulates less regular noise. Fig. 3(b) clearly
pictures the fact that the difference between the bags of terms
𝑇𝑇𝑖𝑖 and 𝑇𝑇𝑖𝑖𝑚𝑚 does not exceed approximately 1/3 of the individual term significance thresh-
old 𝑒𝑒𝑒𝑒𝑒𝑒 that is used to cut-off insignificant terms. In the combination, these two obser-
vations reliably prove6 our hypothesis ℎ1 (Sect. 4).

The comparison of the run times presented in Table 3 and Fig. 4 clearly demonstrates
that the optimized pipeline, with near to constant values, outperforms the conventional
pipeline significantly.

6 One may argue that the reported experiment is just an experiment with one document collec-

tion. Hence for a different document collection the results might be different regarding the
validity of ℎ1. Our counter-argument is that the computation of c-values is collection and
domain-independent. Furthermore, the terms with the same c-value are randomly distributed
in the documents of the collection.

 (a) Saturation measurements (b) Terminological differences

Fig. 3: Merged partial c-values computed using the optimized pipeline are practically the same
as the c-values computed using the conventional pipeline

Fig. 4: Run times of the conventional (Incremental) and optimized (Merged Partial) pipelines

6 Conclusions and Future Work

The contribution of this paper is the proposal of computing significance scores (c-val-
ues) for term candidates extracted from a document collection using not the incremen-
tally extended datasets, representing sub-collections, but the partitions of the collection.
It has been proven formally, up to the validity of the ℎ1 hypothesis, that this optimized
approach is correct – i.e. gives practically the same results. The hypothesis has been
validated experimentally, by comparing the outputs coming from the conventional and
optimized processing pipelines.

The experiment also clearly showed that the proposed way of text processing very
substantially outperforms the conventional approach. The run times measured while
processing partitions of the document collection remained almost constant in consecu-
tive steps. A tiny increase was observed due to the very small overhead for merging the
bags of terms extracted from the partition datasets. Yet one more advantage of the pro-
posed approach is that partition datasets could be processed independently as these do
not overlap in data. Hence, the optimized pipeline is straightforwardly parallelizable.
This fact opens the way to process real world document collections at industrial scales

for finding terminological cores within these collections. Choosing a proper partition
size also removes the limitation of many software term extractors on the volume of
input data.

Our plan for the future work is to apply the optimized processing pipeline to detect
terminological saturation in the industrial size paper collection in the domain of
Knowledge Management.

References

1. Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: a look back and into the
future. ACM Comput. Surv., 44(4), Article 20, 36 pages (2012).
http://doi.acm.org/10.1145/2333112.2333115

2. Ermolayev, V.: OntoElecting requirements for domain ontologies. The case of time domain.
EMISA Int J of Conceptual Modeling 13(Sp. Issue), 86--109 (2018)

3. Tatarintseva, O., Ermolayev, V., Keller, B., Matzke, W.-E.: Quantifying ontology fitness in
OntoElect using saturation- and vote-based metrics. In: Ermolayev, V., et al. (eds.) Revised
Selected Papers of ICTERI 2013, CCIS, vol. 412, pp. 136--162 (2013)

4. Chugunenko, A., Kosa, V., Popov, R., Chaves-Fraga, D., Ermolayev, V.: Refining termino-
logical saturation using string similarity measures. In: Ermolayev, V, et al. (eds.): Proc.
ICTERI 2018. Volume I: Main Conference, Kyiv, Ukraine, May 14-17, 2018, CEUR-WS
vol. 2105, pp. 3--18 (2018, online) http://ceur-ws.org/Vol-2105/10000003.pdf

5. Ermolayev, V., Batsakis, S., Keberle, N., Tatarintseva, O., Antoniou, G.: Ontologies of time:
review and trends. International Journal of Computer Science and Applications 11(3), 57--
115 (2014)

6. Kosa, V., Chaves-Fraga, D., Naumenko, D., Yuschenko, E., Moiseenko, S., Dobrovolskyi,
H., Vasileyko, A., Badenes-Olmedo, C., Ermolayev, V., Corcho, O., and Birukou, A.: The
influence of the order of adding documents to datasets on terminological saturation. Tech-
nical Report TS-RTDC-TR-2018-2-v2, 21.11.2018, Dept. of Computer Science, Za-
porizhzhia National University, Ukraine, 72 p. (2018)

7. Fahmi, I., Bouma, G., van der Plas, L.: Improving statistical method using known terms for
automatic term extraction. In: Computational Linguistics in the Netherlands, CLIN 17
(2007)

8. Wermter, J., Hahn, U.: Finding new terminology in very large corpora. In: Clark, P.,
Schreiber, G. (eds.) Proc.3rd Int Conf on Knowledge Capture, K-CAP 2005, pp. 137--144,
Banff, Alberta, Canada, ACM (2005) http://doi.org/10.1145/1088622.1088648

9. Zhang, Z., Iria, J., Brewster, C., Ciravegna, F.: A comparative evaluation of term recognition
algorithms. In: Proc. 6th Int Conf on Language Resources and Evaluation, LREC 2008,
Marrakech, Morocco (2008)

10. Daille, B.: Study and implementation of combined techniques for automatic extraction of
terminology. In: Klavans, J., Resnik, P. (eds.) The balancing act: combining symbolic and
statistical approaches to language, pp. 49--66. The MIT Press. Cambridge, Massachusetts
(1996)

11. Caraballo, S. A., Charniak, E.: Determining the specificity of nouns from text. In: Proc. 1999
Joint SIGDAT Conf on Empirical Methods in Natural Language Processing and Very Large
Corpora, pp. 63--70 (1999)

12. Astrakhantsev, N.: ATR4S: toolkit with state-of-the-art automatic terms recognition meth-
ods in scala. arXiv preprint arXiv:1611.07804 (2016)

http://ceur-ws.org/Vol-1851/paper-1.pdf

13. Medelyan, O., Witten, I. H.: Thesaurus based automatic keyphrase indexing. In: Mar-
chionini, G., Nelson, M. L., Marshall, C. C. (eds.) Proc. ACM/IEEE Joint Conf on Digital
Libraries, JCDL 2006, pp. 296--297, Chapel Hill, NC, USA, ACM (2006).
http://doi.org/10.1145/1141753.1141819

14. Ahmad, K., Gillam, L., Tostevin, L.: University of surrey participation in trec8: Weirdness
indexing for logical document extrapolation and retrieval (wilder). In: Proc. 8th Text RE-
trieval Conf, TREC-8 (1999)

15. Sclano, F., Velardi, P.: TermExtractor: A Web application to learn the common terminology
of interest groups and research communities. In: Proc. 9th Conf on Terminology and Artifi-
cial Intelligence, TIA 2007, Sophia Antipolis, France (2007)

16. Frantzi, K. T., Ananiadou, S.: The c/nc value domain independent method for multi-word
term extraction. J. Nat. Lang. Proc. 6(3), 145--180 (1999).
http://doi.org/10.5715/jnlp.6.3_145

17. Kozakov, L., Park, Y., Fin, T., Drissi, Y., Doganata, Y., Cofino, T.: Glossary extraction and
utilization in the information search and delivery system for IBM Technical Support. IBM
System Journal 43(3), 546--563 (2004). http://doi.org/10.1147/sj.433.0546

18. Astrakhantsev, N.: Methods and software for terminology extraction from domain-specific
text collection. PhD thesis, Institute for System Programming of Russian Academy of Sci-
ences (2015)

19. Bordea, G., Buitelaar, P., Polajnar, T.: Domain-independent term extraction through domain
modelling. In: Proc. 10th Int Conf on Terminology and Artificial Intelligence, TIA 2013,
Paris, France (2013)

20. Badenes-Olmedo, C., Redondo-García, J. L., Corcho, O.: Efficient clustering from distribu-
tions over topics. In: Proc. K-CAP 2017, ACM, New York, NY, USA, Article 17, 8 p. (2017)

21. Park, Y., Byrd, R. J., Boguraev, B.: Automatic glossary extraction: beyond terminology
identification. In: Proc. 19th Int Conf on Computational linguistics, pp. 1--7. Taipei, Taiwan
(2002). http://doi.org/10.3115/1072228.1072370

22. Nokel, M., Loukachevitch, N.: An experimental study of term extraction for real infor-
mation-retrieval thesauri. In: Proc 10th Int Conf on Terminology and Artificial Intelligence,
pp. 69--76 (2013)

23. Zhang, Z., Gao, J., Ciravegna, F.: Jate 2.0: Java automatic term extraction with Apache Solr.
In: Proc.LREC 2016, pp. 2262--2269, Slovenia (2016)

24. Kosa, V., Chaves-Fraga, D., Naumenko, D., Yuschenko, E., Badenes-Olmedo, C., Ermola-
yev, V., Birukou, A.: Cross-evaluation of automated term extraction tools by measuring ter-
minological saturation. In: Bassiliades, N., et al. (eds.) ICTERI 2017. Revised Selected Pa-
pers. CCIS, vol. 826, pp. 135--163 (2018)

25. Justeson, J., Katz, S. M.: Technical terminology: some linguistic properties and an algorithm
for identification in text. Natural Language Engineering 1(1), 9--27 (1995).
http://doi.org/10.1017/S1351324900000048

26. Evans, D. A., Lefferts, R. G.: Clarit-trec experiments. Information processing & manage-
ment 31(3), 385--395 (1995). http://doi.org/10.1016/0306-4573(94)00054-7

27. Church, K. W., Gale, W. A.: Inverse document frequency (idf): a measure of deviations from
Poisson. In: Proc. ACL 3rd Workshop on Very Large Corpora, pp. 121--130, Association
for Computational Linguistics, Stroudsburg, PA, USA (1995). http://doi.org/10.1007/978-
94-017-2390-9_18

28. Kim, J.-D., Ohta, T., Teteisi, Yu, Tsujii, J.: GENIA corpus - a semantically annotated corpus
for bio-textmining. Bioinformatics. 19(suppl. 1), i180--i182 (2003)

29. Corcho, O., Gonzalez, R., Badenes, C., Dong, F.: Repository of indexed ROs. Deliverable
No. 5.4. Dr Inventor project (2015)

https://doi.org/10.3115/1072228.1072370
http://www.gabormelli.com/RKB/Jin-Dong_Kim
http://www.gabormelli.com/RKB/Jun%27ichi_Tsujii
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/suppl_1/i180
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/19/suppl_1/i180
http://www.gabormelli.com/RKB/2003

	1 Introduction
	2 Background and Research Problem
	3 Related Work in ATE
	4 Motivation and Formal Framework
	4.1 Motivation
	4.2 Merged Partial C-values

	5 Experimental Evaluation
	5.1 Experimental Data
	5.2 Instrumental Software and Computational Environment
	5.3 Experimental Flow
	5.4 The Results of Experiments and Discussion

	6 Conclusions and Future Work
	References

