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Abstract. In this paper, a hybrid model of cellular neural network based on het-

erogeneous spiking neurons connected with a spatial model of terrain through 

hierarchically ordered context is proposed. Spatial cells are considered as ele-

ments of the neural network (neurons) and events are considered as spikes at the 

neuron output. A discrete automaton model with integrated likelihood model sup-

plements a hybrid spiking neuron model to determine the neuron state at specified 

time points based on probability or possibility of state transitions. The structure 

of neuron connections in the model resembles a cellular network model. The hi-

erarchical context containing a set of transmitters allows organizing additional 

channels of communication between neurons and provide remote sensing data to 

the neural network. Neurons have controlled sensitivity to transmitters with spe-

cial receptors connected to the network context. The method of modeling spatial 

distributed destructive processes using the proposed hybrid neural networks is 

presented. The proposed method and models are intended for modeling dynamic 

systems with different types of simultaneously arising interacting processes with 

respect to their spatiotemporal aspects. 

Keywords: Destructive Processes, Forest Fire Spreading, Cellular Neural Net-

work, Spiking Neuron, Discrete Automaton, Likelihood Model 

1 Introduction 

Natural systems include a multitude of spatially distributed interacting dynamic pro-

cesses. Most of such processes arise unexpectedly, proceed fleetingly, evolve in space 

and time transiently, non-linearly, and have a stochastic nature. Some of them are de-

structive and usually characterize natural disasters (fires, floods, waterlogging, mud-

flows, tsunamis, etc.). Therefore, they give rise to a variety of hazards, threats, and risks 

to various objects [1] and often can lead to emergencies.  

Decision support in situations of the development of spatially distributed dynamic 

destructive processes is one of the most important tasks since such processes can cause 

deaths, injuries, and huge damage to property and infrastructure. Since natural emer-

gencies are poorly modeled and unpredictable, and resources for eliminating them are 

usually limited and should be used with maximal efficiency, well-studied classical de-

cision support approaches cannot be used for such kind of processes [2]. 
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Thus, people face a problem of real-time decision making in conditions of natural 

destructive processes, which is primarily based on modeling and forecasting. Clearly, 

decision support systems (DSS) must be based on information obtained by observation 

of spatially distributed processes, which can determine the course of the process devel-

opment (temperature, humidity). The efficiency of decision support strongly depends 

on the availability of observations of destructive processes, their accuracy, and validity. 

It can be extremely difficult to obtain proper information about the process develop-

ment because appropriate sensors are not always available during the process, their 

measurements are not always accurate, or the measuring can be a very dangerous ac-

tivity. Fortunately, the images of the process itself or its result (i.e. visual observations) 

can be obtained by remote sensing using a wide range of vehicles from little unmanned 

aerial vehicles to large aircraft and ever space ships [3]. However, in real situations, 

such images are usually filled with large uncertainty and distortions caused by sensor 

noises, incomplete observations, and dynamic changes in the environment. Thus, DSS 

requires the ability to predict and estimate such uncertain factors using adequate models 

of destructive processes. We consider a class of GIS-based real-time DSS [4]. We can 

formulate the following requirements to the model:  

 the model should describe not only the process itself but also the dynamics of its 

development in respect to time and space (e.g., propagation); 

 each observed change in the environment must be assumed as an event; 

 each event must be referenced both to a certain time and spatial location; 

 events can be described with various kinds of uncertainty;  

 events can be associated with complex (e.g., hierarchical) structures, which describe 

the environment; 

 the model needs an acceptable computational complexity to be operable in real time. 

2 Related Work Analysis 

A number of models of destructive processes have been suggested to be used in decision 

support systems. The most common approach is to use graph-based models [5] and 

Bayesian network [6] are most often used among them. Bayesian network (also called 

belief network) is a probabilistic model that represents the dependency among random 

variables and gives a specification of joint probability distributions. This model is de-

fined as a directed acyclic graph (DAG), which has conditional probabilities in each 

node. It allows evaluating unknown random variables after building an appropriate 

graph structure and obtaining the conditional probabilities. There are two basic types 

of Bayesian network models for dynamic processes: state-based and event-based [7]. 

These models provide the ability to perform both predictive and classification func-

tions, as well as probabilistic reasoning, but the insufficiency of statistical data prevents 

its efficient use in the considered class of DSS.  

Other graph-based models include varieties of semantic networks [8] and cognitive 

models [9]. These models have a very high representative ability; however, they are 

passive structures that require special formal methods of processing. Besides that, 



graph-based models do not contain a clear understanding of the domain structure, es-

pecially in the presence of multiple relationships between its variables; therefore, the 

building, use, and modification of them are quite difficult. All of the above-mentioned 

disadvantages do not allow using them in real-time systems. 

Graph-dynamic models are based on nonlinear relations supported by a developed 

form of associative access, which is based not only on changes of the variables states 

but also on changes in the configuration of relations between them [10]. Thereby, they 

can properly represent the dynamics but their high computational complexity prevents 

efficient use in real-time systems. Since the observed information frequently can be 

explained as event streams represented by series of time-stamped events [11], many 

models, which describe multitudes of events occurring jointly and simultaneously, have 

been studied. However, most of the proposed approaches are based on semantic mean-

ing, causal relationships, and use the simplified notions of time and space [12]. 

The event trees allow modeling of a sequence of events, forming the structures of 

any level of complexity [13]. The event trees can be adapted to a different type of un-

certainties (probabilistic, fuzzy, rough, etc.). Their limitations in terms of the consid-

ered class of DSS lay in the facts that events are strictly referenced to time points rather 

than to spatial locations, and the event trees are more suitable for solving the problem 

of classifying new events than the problem of modeling the developing processes.  

We can emphasize static and dynamic models, as well as probabilistic and non-prob-

abilistic (e.g., based on fuzzy sets or possibility theory) models [14]. Most of them are 

typically built through a careful, tedious, and often expensive process of knowledge 

engineering, which is inappropriate in real-time conditions. Moreover, taking into ac-

count above-mentioned requirements to knowledge representation, none of these mod-

els can be used due to a lack of binding to spatial locations. The only model of plausible 

event-tree networks [4] allows taking into account the spatial location of events and has 

a high representative ability. However, it is not suitable for modeling the dynamics of 

the process development in space and time (e.g., propagation). 

Another approach based on the use of neural networks has been proposed in [15], its 

main advantage is the ability to provide well-developed neural network training using 

the results of the processes observation (optical, infrared, radar, etc.) as a training sam-

ple. This technique can be easily extended to a wide range of destructive processes.  

A number of architectures of such networks were studied from binary and fre-

quency/speed to spiking neural networks [16]. Much attention was paid to the spatially 

dependent configurations of such networks, including neural networks of radial distri-

bution [15] and cellular networks [17]. The first of them have an obvious drawback, 

which is associated with the propagation of a signal from a certain center using the 

polar coordinate system. Clearly, the network configuration will depend on the choice 

of the starting point (epicenter), and every time the next process occurs, the network 

will need to be rebuilt. Besides that, such a network cannot describe the presence of a 

number of processes simultaneously interacting on the terrain. 

A cellular neural network (CNN) is an array of cells, each of which can be repre-

sented as a dynamic system [17]. It is a kind of coupled networks with local connections 

only. The cells can be organized in certain two-dimensional or three-dimensional 

configurations, the most frequently used one is the two-dimensional network arranged 



in an eight-neighbor rectangular (corner) grid [18]. Each cell has an input, a state, and 

an output, and it interacts directly only with the neighbor cells within a certain radius. 

A common assumption is that the neighborhood includes the cell itself and its eight 

nearest neighboring cells. The state of each cell and its output depends only on the input 

and the output of its neighbor cells as well as on the certain initial state of the network.  

Thus, CNN is the most suitable model for use with GIS, since each cell of a map can 

be naturally represented as a cell of the neural network. Due to its advantages such as 

a possibility of massively parallel computation, this type of neural networks became 

widespread in solving several problems, for example, image processing, statistical 

physics, simulations in fluid dynamics, and many other fields where events can be rep-

resented as patterns in space and/or time [17].  

The above-mentioned review enables to conclude that existing graph-based and 

event-based models correspond very weakly to the processes of the considered class. 

CNN may be of interest for our research, but to solve the considered problem, it will 

require a combination (hybridization) with other models of neural networks. Their use 

for developing the models of spatially distributed dynamic processes have not been 

currently worked enough, but have a great interest and need more developments. Thus, 

the development of the model of spatially distributed destructive processes based on 

CNN is a topic of our interest.  

3 The Methodology of Modeling Spatial Distributed Destructive 

Processes Using Neural Networks 

A starting point for using a neural network to model destructive processes is that the 

vast majority of them can be described in terms of wave-front propagation based on the 

use of the Huygens principle (Fig.1). In accordance with it, each point of the front (the 

surface reached by the wave) is a secondary (i.e., new) source of spherical waves.  

 

Fig. 1. The propagation of the destructive process 

Let us create a cellular neural network by placing neurons at each cell of the terrain. 

The signals propagating from each excited neuron to the receiving neurons through 

their synaptic connections play here a role of the waves.  

In simplified form, it can be described as follows. The synaptic connections between 



neurons should model the channels of energy or other substance transfer in real destruc-

tive processes. The necessary synaptic coefficients can be determined by environmental 

parameters. The neuron evaluates signals from the excited neighbor neurons and enters 

an excitation state itself if the activation threshold is exceeded. The neuron can be in 

the active state for a finite time only, after which it is permanently inactive.  

The area near the process development front consists of neurons, which are exciting 

or already excited. During the process development, the exciting neurons are replaced 

by the excited ones, and thus we obtain the corresponding recurrent neural network. 

The crucial point of all dynamic processes is the transfer, so the destructive processes 

spread the "energy" of the cell to all other cells by a certain law characterizing the 

amount of energy transferred. Such spreading depends on non-stationary and nonlinear 

physical and chemical processes arising within the terrain, which can be described an-

alytically with high dimensional equations, so we must solve these complex equations 

with the exact numerical values of parameters to determine the development of the pro-

cess at each moment. Since wave-front propagation of the process has a certain geo-

metrical shape (usually elliptical or spherical), the spreading process can be character-

ized by its speed. The spreading speed is generally non-stationary and its value varies 

for different spatial directions (Fig.1). Given the fact that we cannot provide necessary 

completeness and accuracy of the information for solving the complex equations, we 

should use their approximation within the discretized spatial model as proposed in [19], 

and CNN can be a proper non-linear approximator. The process of energy transfer from 

cell to cell can be considered as the process of transmitting a signal from one neuron to 

another. Thus, we obtain a spatially distributed neural network, where neurons are con-

nected with each other by synaptic connections, in which signals are multiplied by syn-

aptic coefficients. Such a network is very loaded with synaptic connections. However, 

only neurons that are in the front of the process, in other words, directly involved in 

transmitting and receiving a signal at a given time, can take part in the process changing 

their states. At each moment, only one neuron layer (located at the front of the process) 

can transmit excitation while the second can only take (Fig.2).  

 

Fig. 2. The front of the process 

If a neuron turns into some damaged state, it cannot be involved in the transfer process, 

so it stops receiving or transmitting a signal, and should be automatically excluded from 



consideration. Instead of this, the new neuron will be involved in the process due to its 

propagation. Since each neuron corresponds to a certain cell of the terrain and environ-

ment, its synaptic coefficients can be generally calculated based on the observed pa-

rameters of the cell. Note that the main problem is the inaccuracy of observed data 

about the process, including the parameters of each individual cell, however, they vary 

slightly between neighboring cells. At each step, after obtaining the observations and 

calculating the state of the neurons, synaptic coefficients will be corrected for neurons 

involved in the process of the front propagation. We can compare the calculated posi-

tion of the fire front with the actual development of the process obtained by observation. 

Deviations between these fronts can be minimized by correcting the state vector, 

which is determined by the set of environmental parameters and should be eliminated 

by training the neural network. The easiest way to train the network is the gradient 

descent method. It allows us to adjust the model in order to improve its accuracy. How-

ever, the main problem of training the neural network is the speed of training. 

We will consider a typical example of forest fires. Most other types of destructive 

processes are similar in terms of their distribution and propagation but are described by 

other parameters and have other channels of energy or matter transfer. In the case of 

forest fires, there are heat transfer channels. Thus, the most important state parameter 

of a certain cell is its accumulated energy. This energy is necessary for ignition in the 

sense that if there is not enough energy, the cell stays in a pre-ignition state, but if the 

threshold value is exceeded and the accumulated energy is enough for ignition, the cell 

turns into a burning state. Fire propagation contour usually can be described using an 

ellipse, so the description of the energy transfer requires only parameters of two radi-

uses of the ellipse and the angle of its rotation. The main direction of spreading can be 

determined based on the parameters of the environment. 

Obviously, we must first distribute the considered spatial area into cells, each of 

which can be in one of several states at a certain discrete point in time. The state of each 

cell can be defined by a certain set of parameters, including environmental parameters. 

Further, we need to define the appropriate type of neuron and neural network architec-

ture. This paper is organized as follows. In section 3, the spatial model is considered, 

corresponding states of cells and events are described. In section 4, the model of im-

pulse neuron used for energy transfer modeling combined with the discrete automaton 

model are proposed. In section 5, the cellular neural network architecture based on pro-

posed impulse automaton neurons is described. In section 6, the implementation of the 

proposed model is described, and finally, in section 7, the experimental results of the 

research are considered and discussed. 

4 The Spatial Model, States, and Events 

4.1 Spatial Model 

Assume that the destructive processes spread over a certain area of interest (AOI). Con-

sider a two-dimensional Euclidean space C , which contains the AOI as an openly con-

nected subspace X C . Suppose a non-empty finite set of parameters  1,... mA a a  



and observation function f  such that :f X A V   for each x X . Our spatial 

model is discretized at three levels: the lower level contains cells of equal size, the 

middle level consists of spatial regions of different sizes, and the upper level represents 

large spatial areas. 

At the lower level, we impose a metrical grid of coordinate lines with size   on C  

using a linear map   such that coordinate lines form a set D  of the cells with the size 

being   , : D C  . Thus, space C  is discretized by a grid  xyD d  of isometric 

cells 
xyd . A cell d D  is a spatial object of a minimal size associated with a set of 

parameters values, which is called the cell state, via an observation function  ,f d A . 

The proposed discretization assigns the equal values of the parameters to each point 

belonging to a certain cell d , therefore each cell d D  represents a homogeneous area 

of the AOI in the sense of such values, and all points of this cell are A -indiscernible:

      1 2 1 2, , ,d d D a A f d a f d a        .  

At the middle level, the subspace X  can also be divided into a finite set of disjoint 

objects having geometric shapes, which represent the certain homogeneous areas of the 

AOI. Consider a non-empty subset of parameters iA A . iA -indiscernibility relation 

given on the set of cells D  means that all pairs of different points ,zy  that belong to 

the different cells ,m nd d  have the same values of parameters ,...j m ia a A . Thus, we de-

fine a middle-level structural element of the spatial model as the homogeneous spatial 

area that is uniform in the sense of parameters’ values and can be represented by the 

approximating set of cells. Such element is called a region, has the features of continuity 

and connectivity, and denoted by h . All the cells belonging to h  are iA -indiscernible.  

Spatial areas can consist of a plurality of separate regions spatially distributed over 

X , and represent certain zones homogenous in the sense of some indicators (e.g. dan-

ger, threat, and risk), which depend on the values of parameters 
jA A . Thus, we de-

fine a distributed spatial area H  as an upper-level structural element of the spatial 

model represented by the approximating set of regions. Obviously, they do not have the 

property of the continuity, but all regions belonging to H  are iA -indiscernible in the 

sense of the same values of parameters ,...l p ja a A .  

4.2 Events and States 

Suppose the set of process-dependent parameters A  can be divided into subsets: not 

changing over time (static) attributes SA , time-varying (dynamic) attributes DA , 

slowly changing (environmental) attributes EA , S D EA A A A   .  

Suppose  0 ,... ,...i FW w w w  is an ordered set of the cell states, where 0w  is the initial 

state, Fw  is the final state, and iw  is the transitional state. Suppose   is a category 

function such that : D A W   . Each state w W  has two subcategories: the cell con-

dition  C S Ew A A  , and the cell stage  D Dw A , so that ,C Dw w w . Each ran-



dom change of values of the value of some parameter k DA A  can change the cell con-

dition Cw  in such a way that the cell stage Dw  must also change. This change is not 

necessary, but possible. Thus, if the cell condition Cw  changes, the cell possibly goes 

into another state iw . We consider each significant change of the cell parameter’s value, 

which forces the cell to change its state, as an event, and denote it by y , so that 

: i jw wy . It is clear that the model of the destructive process can be represented as a 

model of dynamic change of states of a certain subset of cells covered by the process 

within the grid D . Their states can be evaluated during continuous observations (re-

mote sensing) [3] that allow obtaining time-ordered sequences of events. If we associate 

each cell d D  with a specific neuron g G  in a neural network G  spatially distrib-

uted over the grid D  and connect each neuron g G  with the continuously observed 

parameters, we can develop the model of the destructive process propagation repre-

sented by the neural network G . 

5 Developing a Hybrid Neuron Model 

Generally, a formal neuron is a threshold element with a single output and its activation 

function, which depends on a linear combination of all input signals.  

Since its beginning, the neuron model has been intensively studied. However, re-

searchers are interested in biological brain analogies only at the start of the project and 

soon lost interest in them. As a result, artificial neural networks turned towards solving 

certain tasks such as functions approximation, pattern recognition, classification prob-

lems, etc. The first generation of neurons operate only with binary signals, in the second 

generation the flow is in both directions and we deal with continues output values, and 

the third generation is the spiking neural networks (SNN), which use biologically-real-

istic models of neurons to carry out the computation. Thus, SNNs operate using spikes, 

which are discrete events that take place at points in time, rather than continuous values. 

The occurrence of a spike is determined using differential equations [16]. Neurons in 

the SNN do not fire at each propagation cycle as it happens with typical multi-layer 

perceptron, but rather fire only when a threshold (i.e., membrane potential) is achieved. 

Consider the methodology proposed in section 2 it is clear that spiking neurons are 

the most convenient solution for modeling dynamic destructive processes, because: 

 they work in discrete time based on events; 

 their firing principle is most consistent with the simulated process of energy (matter) 

accumulation and transfer; 

 their firing principle allows restricting the calculations to only those neurons that 

conform the front of the propagation process at some time point. 

However, there are at least three moments, which do not allow spiking neurons to be 

used “as is”: 

 according to section 3.2, each neuron bounded to the specified spatial location (cell) 

should have more than two (i.e., several) states; 



 according to sections 2, the cells simulated by neurons should change their states due 

to changes in accumulated energy (matter) that exceeds its given threshold value; 

 the state transition dynamics requires information not only about the cell state pa-

rameters but also about the environmental parameters (i.e., context), which can be 

organized into complex hierarchical structures in accordance with section 3.1.  

Thus, it requires a neuron has a finite set of states and some automaton can describe 

transitions between them. In other words, we need to embed the discrete automaton 

inside the spiking neuron model. Some environmental parameters cannot be determined 

directly by the observations, so in the process of monitoring. The neuron should receive 

the values of such parameters from the GIS. Obviously, these values can not only be 

distributed by cells but also within regions or other spatial areas of the AOI, that is, at 

higher levels of the spatial hierarchy, so the neuron must be determined in some hier-

archically ordered context. Thus, we need to combine the spiking neuron with a discrete 

automaton neuron [20] and ensure its operating in a hierarchically organized spatial 

context. It is a difficult task but available to solve. Our task is to enrich this model with 

some properties inherent in natural neurons, and allowing it to realize new functions. 

5.1 The Simplified Information Model of the Natural Neuron  

Over the past decades, fundamentally new neuron network models have emerged, but 

artificial neural networks are still based on the idea of “wire connections”, in which the 

brain is represented by an electrical network with a rigidly defined topology, which is 

formed by axons (“wires”) connecting neurons. However, natural neurons work com-

pletely differently. Modern research suggests that neurons are transmitter-specific [21]. 

In addition to electrical connections, they receive chemical signals, and their sensitivity 

to such signals depends on the availability of appropriate receptors. The more receptors 

has a neuron to a particular transmitter and the higher is their sensitivity, the stronger 

is the effect of these signals. Moreover, reorganization of the network topology changes 

in the neuron activity can occur under the influence of neurotransmitters. More about 

these and other aspects can be found in [22]. We consider only information interaction 

between the neurons concerning the problem we are solving. 

The main properties of natural neurons that we will simulate are the processes that 

occur in the interaction of neurons with each other and with the environment. A neuron 

usually has a channel to the transmission of electrical impulses from its output to the 

inputs of other neurons through the synaptic connection. Consider this channel main. 

Neurotransmitters are considered as additional (chemical) channels to information 

transmission. The range of neurotransmitters to which a certain neuron is sensitive is 

quite wide and depends on the availability of receptors. One neuron can have many 

types of receptors, which have the ability to capture corresponding transmitters. Usu-

ally, neurons have receptors for the transmitters, which they generate themselves. Thus, 

they can manage their activity through positive or negative feedbacks. 

During a spike, one or more transmitters generated by the neuron can be ejected into 

the extracellular space. Moreover, the transmitters can be organized in certain mixes. 



Conductivity and sensitivity of such channels can vary over time, and neurons them-

selves can influence them by injecting certain types of transmitters. Receptors to a cer-

tain transmitter are not always of the same type, they can be excitatory, inhibitory, and 

metabotropic. Moreover, in the advanced concepts, anti-transmitters are also consid-

ered, which allow blocking the specific receptors.  

The connections between neurons, the sequence, and rate of their activation, the am-

plitude and frequency of spikes depend not only on electric impulses but also on the 

availability of neurotransmitters and sensitivity of receptors. Brain achieve a wide va-

riety of activity patterns due to the sophisticated combination of neurotransmitters and 

neurons having different types of receptors to the same neurotransmitter. Thus, from an 

information point of view, the neuron can be described by the value of its membrane 

potential, the presence of receptors and their sensitivity, while the extracellular space 

containing a multitude of neurotransmitters constitute a media for transmitting addi-

tional information. Now, we can describe a model of a hybrid neuron that has not only 

electric but also transmitter-based inputs and outputs, and a model of its context. 

5.2 The Formal Model of a Hybrid Neuron 

Let Ctx  be a certain context, E  be energy and  1 2, ,... k     - a set of transmitter 

types. Suppose the neuron g  has a sensitivity to a certain subset of transmitters 

 1 2, ,... q     where each transmitter i  has a type 
j  . 

Suppose the neuron g  has a set of receptors  1 2, ,... k    , where each receptor 

l  is sensitive to the certain transmitter i  of type 
j   (Fig.3). Thus, each neuron 

has some receptors, each of which is sensitive only to transmitters of the given type. 

The neuron connects to its context through these receptors. Besides that, the neuron g  

can have a set of effectors  1 2, ,... k    , where each effector l  can eject the certain 

transmitter i  of type 
j   (Fig.3).  

 

Fig. 3. Structure of the neuron g  



Consider a finite set of accumulators  0 1 2, , ,... n     , where 0  accumulates a cer-

tain amount of energy E  while each  1 2, ,...i n     accumulates transmitters i  of 

type 
j   if the receptor for this type of transmitters is available. Suppose the neuron 

g  has a set of inputs  1 2, ,... lX x x x , through which energy E  is transmitted to accu-

mulator 0  with corresponding multiplication factors (weights) 1,... l  , and the output 

y . Transmitters i  can be received through receptors from the network context Ctx  

and accumulated in the corresponding accumulator i . 

Consider a discrete time T . At each step t T  amount of energy (or transmitters) 

in each accumulator i  can be evaluated via potential functions  iU t . If a certain 

threshold value i  is exceeded, the spike is generated, and a certain amount of energy 

(transmitters) is released from the accumulator and ejected to the communication chan-

nels (synaptic connection for energy and corresponding transmitter channel for the 

transmitter). The amplitude and duration of such spikes depend on the degree of ex-

ceeding the threshold value in such a way that the integrate estimation of the impulse 

area is proportional to the value of the excess with a certain factor i . 

The proposed model of the hybrid neuron is quite flexible, since the weights 
j , 

threshold values i , and factors i  can dynamically change in time. Their changes de-

pend on the state of the network context as well as on the state of the automaton A  that 

is contained within the structure of the neuron and determines its output state s W . 

Finding the optimal values of these parameters is the task of training the neural network. 

5.3 The Network Context Model 

While the proposed formalization of the spiking neuron is a hybrid model of a natural 

neuron, the extracellular space is modeled using the network context. Since each event 

has a spatial location, the context of each neuron must be dependent on its location 

within the spatial model. 

The basic element for developing the network context is the hierarchy. Suppose each 

hierarchy i  is a triple: , ,i i i iI   , where iI  is a set of some elements, each of 

which corresponds to a certain relation i  among them, i  is the order relation over 

iI , and i  is the least element of i . We can build a spatial hierarchy SI  within the 

proposed spatial model with a set of elements like {cells, regions, areas} and the partial 

order relation S  over it, as well as a time hierarchy TI  with the set of elements like 

{seconds, minutes, hours, days...} and a full-order relation T  over it. The spatial and 

temporal hierarchies are the basis for building the adequate space-and-time-referenced 

model of observed events. The network context signature   is defined as a tuple 

 
1

,
m

i i
A


   , where A  is a set of observed parameters and  

1

m

i i
  is a set of hierar-

chies i  induced by the corresponding relations i .  



Consider the model of the network context , ,Ctx   z , where   is a set of vari-

ables that represent the observed parameters,   is a set of available transmitters,   is 

a set of domain-dependent restrictions, and   is the signature of the context. Thus, the 

network context contains a set of communication channels between neurons using 

transmitters (Fig.4). Through these channels, neurons can exchange context-sensitive 

information between themselves and influence each other. Variables of the context can 

represent available remote sensing data. Neurons can obtain necessary information 

from the cell context, and in case of its absence from the regional context, area context, 

or ever from the system context.  

 

Fig. 4. Structure of the context Ctx  

Various relations   can be defined between the transmitters, as well as between the 

neurons (e.g. spatial, temporal, substitutability, splitting, bonding, extrusion, and so 

on). Moreover, special operations can be defined for the network context that allows 

blocking, braking or amplifying transmitters of some type or even utilizing them. 

5.4 The Model of Discrete Automaton 

The state s W  of the hybrid neuron g  is determined by the state of automaton A  

contained in the neuron structure (Fig.3).  

A discrete finite automaton is a 5-tuple 0, , , , FA W w W   [23], consisting of:  

 a finite set of states W ; 

 a finite set of inputs  ; 

 a transition function :W W  ; 

 an initial state 0w W ; 

 a set of accept states FW W . 

Obviously, the set of states W , including initial 0w  and final Fw  states, are usually 

defined by domain. The laws of energy or matter transfer during the destructive process 

define the transition function  . The proposed model can use the values of transmitters, 

context variables, and accumulated amounts of energy (transmitters) as inputs   .  

https://en.wikipedia.org/wiki/N-tuple
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Finite_state_machine#Accept_.28or_final.29_states


The model described above is deterministic. However, we can also implement a non-

deterministic model using the likelihood model  proposed in [4] to estimate the like-

lihood for the transition functions   inside the automaton. 

6 Implementation of the Hybrid Cellular Neural Networks  

Consider oriented connected graph ,G v e , which doesn’t contain cycles, where v  is 

a set of spatially ordered neurons, and e  is a set of bidirectional synaptic connections. 

Each neuron 
ijg v  corresponds exactly to the certain cell 

ijd D  of the spatial model. 

Thus, neurons are organized in certain two-dimensional configuration arranged in an 

eight-neighbor rectangular (corner) grid (Fig.5). 

 

Fig. 5. Fragment of the cellular hybrid neuron network 

Since various neurons of such network can have a different set of receptors and react 

to different sets of transmitters, as well as the discreet automata contained in them can 

differ in their structure, the network of such neurons will be called a heterogeneous 

neural network. At the same time, each hybrid neuron have not only synaptic connec-

tions but also transmitter connections reflected their heterogeneous nature. 

7 Experiment Result 

To examine the validity and efficiency of the proposed model, we have conducted an 

experiment based on the collected retrospective information on series of large-scale 

forest fires, which had been taken place in Tsyurupinsk and Golopristan forestries, 

Ukraine, on July 20-31, 2007. To determine the fire front during the process of fire 

propagation, we evaluate the state of each cell within the terrain model based on remote 

sensing. We consider the set of cells’ state  0 1 2 3 4 5, , , , ,W w w w w w w  and the neuron au-

tomata as it is shown in Fig.6. The likelihood l  of state transitions was estimated 

based on flame and smoke observations in the corresponding cells. 

The blurring representation of the discretized terrain containing a fire front is shown 

in Fig.7. The fire front is represented by the sets of ignited, burned, and fading cells 

highlighted on the terrain with the sets of burnt and free of fire cells on a background.  



We have modeled the ongoing processes of the forest fire propagation based on the 

plausible event network [4] and the proposed hybrid cellular neural network. The mod-

els were developed on Pentium i5-7400 computer with 3-3,5 GHz processor and 16 GB 

RAM. The corresponding software was developed using Visual C++. 

 

Fig. 6. The forest fire automaton 

 

Fig. 7. The fire front representation 

The experimental results show that the method can achieve an accuracy of fire front 

recognition up to 96% (Fig. 8), which shows the rate of correctly detected images (true 

positive) from the test set. Obviously, the results depend on the cell size and the number 

of simultaneous points of ignition (n). It is clear that the proposed model provides 

higher accuracy of the fire front recognition while winning in time. Even in the most 

difficult conditions, it provides the transition simulation time less than 100 ms in the 

entire range of possible cell sizes above 7 m. Thus, the proposed model provides ac-

ceptable performance and is acceptable for solving the practical forest fire fighting 

problems in near-real time GIS-based DSS. 

 



 

Fig. 8.  Influence of the cell’s size on the modeling time and accuracy 

8 Conclusion 

In this paper, a hybrid model of cellular neural network based on heterogeneous spiking 

neurons connected with a spatial model of terrain through hierarchically ordered con-

text is proposed. A feature of the proposed model is the ability to exchange with not 

only spikes through synaptic connections but also performing other interactions 

through the proposed mechanism of transmitters/receptors. 

The hierarchical context containing a set of transmitters allows organizing additional 

channels of communication between neurons and provide remote sensing data to the 

neural network. Neurons have controlled sensitivity to transmitters with special recep-

tors connected to the network context. Spatial cells are considered as neurons and 

events are considered as spikes at the neuron output. A discrete automaton model with 

integrated likelihood model supplements a hybrid spiking neuron model to determine 

the neuron state at specified time points based on probability or possibility of state tran-

sitions. The method of modeling spatial distributed destructive processes using the pro-

posed hybrid neural networks is presented. The main feature of this method is the pos-

sibility of assimilating data obtained by remote sensing during the development of the 

destructive process. The proposed models can be used in conjunction with the model if 

we consider the event sequences localized in space as sequences of neuron states, and 

the signature of the event model as the context of a neural network. The proposed mod-

els and method are intended for modeling dynamic systems with different types of sim-

ultaneously arising interacting processes with respect to their spatiotemporal aspects, 

and was tested on forest fires. The advantage of the proposed method is its possible 

conjunction with any mathematical models describing the destructive process, and 

serves to refine them by observing data, which increases the accuracy of the models.  
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