
Software Models for Investigation of Turbo-Product-

codes Decoding

Yaroslav Krainyk1[0000-0002-7924-3878], Ievgen Sidenko1[0000-0001-6496-2469] and

Oleksandr Kylymovych1

1 Petro Mohyla Black Sea National University, 10. 68 Desantnykiv str., Mykolaiv, Ukraine

yaroslav.krainyk@chmnu.edu.ua, ievgen.sidenko@chmnu.edu.ua,

kilimovich.alexandr@gmail.com

Abstract. In the following paper we provide analysis on testing procedure and

development of software models, and application architecture for investigation

of error-correcting codes’ parameters and decoding algorithms. The proposed

models can be applied for the development of software for decoding Turbo-Prod-

uct Codes (TPC). They allow simplifying development process and retrieve uni-

versal solution for TPC investigation. The models are described in the Unified

Modeling Language (UML) and follow design pattern recommendations. They

can be used for software implementation in various programming languages that

support object-oriented model. Heatmap visualization tool is supposed to be the

main part for visual investigation of the decoding process. In this work, we pro-

pose metrics for heatmap organization and explained behavior of the cells to de-

liver comprehensible presentation of the message state during decoding process.

The combination of metric and heatmap component provides effective way to

observe impact of each decoding algorithm element on the process and gives

abundant information for comparative analysis about algorithm improvements.

Keywords: Turbo-Product code, software model, decoding, metric.

1 Introduction

Telecommunication systems are complex systems that includes various set of compo-

nents on the different levels. One of the substantial parts is coding systems where error-

correcting codes (ECC) are heavily utilized [1-4].

The problem of investigation of ECCs’ parameters is one of the most important is-

sues to achieve better performance of the system. Different codes reveal different char-

acteristics under changeable conditions. Even slight optimization might be critical for

the realization of the final system. It also should be mentioned that it requires much

time to meticulously check combination of parameters of the code, compare different

codes with each other, and select the most suitable code according to the expected prop-

erties.

The first testing stage is usually performed on software level as it takes minimum

time to verify proof-of-concept. Testing on hardware level implies actual implementa-

tion of the device that can be insufficient. However, available software solutions either

mailto:yaroslav.krainyk@chmnu.edu.ua
mailto:ievgen.sidenko@chmnu.edu.ua

provide only limited functionality without possibility to change coding parameters or

requires payment for the software usage. Consequently, there is a lack of software that

provide flexibility in configuration of the code and decoding algorithms.

Decoding algorithms are the cornerstone of the coding level in telecommunication

systems as throughput as well as complexity are directly connected with them. Their

implementation requires execution immense number of computational operations.

Testing of the ECC is concerned with processing tremendous amount of data. Input

message, intermediate results, decoding results, computations performed according to

the algorithm form the list of the most important information required to investigate

decoding performance. It is important to observe transitions inside the message and

conclude how each part of the algorithm makes impact on the decoding process and

whether it can be improved.

In this paper, we propose architecture and models for development of software that

assists in investigation of ECC and respective decoding methods. The proposed soft-

ware models are supposed to be extensible in terms of adding new codes or decoding

algorithms. The software is designed to work with block ECC but can be improved by

adding support of convolutional codes.

2 Analysis of Scientific Sources and Software Solutions

Software decoding of ECC is represented by several well-known software packages

and libraries [5-9]. In general, they contain several additional components besides de-

coding process itself. Typically, encoders, channel models, various modulation

schemes are the part of the libraries to represent all stages of data transmission over

channel.

Before considering ECC software itself, it is worth to mention that various ECCs are

employed in the modern electronic applications. Two most popular fields are data trans-

mission and data storage. However, some of the codes are preferable due to the charac-

teristics they demonstrate. The most important parameter of ECC is error-correcting

ability that strongly depends on the procedure of decoding and data representation. An-

other significant parameter is throughput. Once again, typically, it depends on the num-

ber of operations in the decoding algorithm, their complexity, and suitability for paral-

lelization. The following group of the ECCs stands out among the others according to

their involvement in different technologies and their main properties:

 Low-Density Parity Check (LDPC) codes (have high correction ability, suitable for

complex systems) [2];

 Polar codes (claimed to be the best ECC, require further investigation);

 Hamming codes (simple ECC that is a basis for Turbo-Product codes);

 Reed-Solomon codes;

 Turbo-Product codes (TPC; constructed from Hamming codes or other ECC to

achieve better performance) [3].

In this work, we are investigating software development for TPC-decoding system.

Therefore, it is worth mentioning that many decoding algorithms can be applied to pro-

cess TPC. Chase, Chase-Pyndiah [4], syndrome decoding, etc. The decision on the al-

gorithm choice is actually a trade-off between computational complexity and correction

ability. This is the reason why some of the algorithms are not feasible for concrete

systems as they are hard to implement.

Matlab [5] system includes Communication toolbox that implements full stack of

the technologies that work in the telecommunication field. It contains abundant amount

of models, classes, and functions that greatly simplifies research on almost every topic

connected with data transmission. However, Matlab is a product that distributes under

commercial license. Another important drawback of the Matlab is the trade-off of ease

of use and speed of the test execution, which can be significant factor in case of very

large arrays of data to process on the test stage.

A Fast Forward Error Correction Toolbox or AFF3CT [6] is software library and

command-line application for investigation properties of the most common codes and

respective decoding methods. The project is open-source and available on GitHub. This

toolset provide exhaustive information on the results of the decoding. It greatly simpli-

fies investigation of the code and evaluation of its performance. However, AFF3CT

have no options for analysis of the intermediate results during decoding.

Other software libraries for ECC investigation like [7-9] provide abundant set of

tools for modeling decoding process. Each of the libraries has specific strong points

and brings many advantages for the developer. However, decoding algorithm in this

libraries does not suppose to return intermediate decoding results. Another drawback is

complexity of bringing your own algorithm into work with the libraries.

Companies specialized in ECC-development provide their own software and hard-

ware implementation [10]. They also provide comprehensive analysis on the results

that can be achieved using proposed tools. However, this kind of support is limited

within defined range of tools flexibility. Customization and adoption to the specific and

changing demands falls short for these solutions. Therefore, software that provides

higher level of flexibility for investigation and searching for optimal solution is actual

from both scientific and industry point of view.

The codes can be applied in various industrial application [11] for improvement of

communication part of the system and remote control of the device in case of custom

communication protocol usage.

The vital point for decoding software is comprehensible visual presentation of data.

Heatmap is a special type of diagram that is very convenient for visual representation

of quantitative data in form of matrix. Because of that factor, we selected heatmap as

main component for data presentation.

In the paper we investigate modelling of the decoding process for implementation in

software, provide software models for the further software realization. We also provide

detail on data presentation in software in the form of heatmap. The established software

models are intended to be used in the software development process for investigation

of TPC-decoding and other ECCs. We apply experience and results attained in the work

[12-14] for the following investigation.

3 Main Part

Typically, the following stages are an obligatory to model signal transmission over net-

work:

1. Encoding.

2. Transmission over the noise channel.

3. Decoding received message.

Depending on the detalization level of a system, a few additional stages (scrambling,

interleaving, modulation, manipulation, etc.). However, those abovementioned three

stages are the basis for investigation.

At the encoding stage, the input message is processed with encoding algorithm (mul-

tiplication of each component on corresponding generation matrix in case of TPC).

Consequently, the message is altered with new information that assists in error correc-

tion at the decoding stage. The message for transmission at this stage is considered as

a set of binary data.

Data transmission stage is intended to model influence of noise to the signal. As a

result of this stage, errors appear in the transmitted signal. Moreover, due to perfor-

mance reasons, each bit in the data is presented as soft value with limited quantization

(for frugal memory consumption), e.g. it can be range [-3; 3] for case of 3-bit represen-

tation.

Decoding stage plays utmost important role in the system. It performs processing on

the message according to the decoding algorithm and outputs actual data for further

usage once again in the form of binary message without redundancy data. In the most

cases, decoding algorithm is applied several time to the message. Number of iteration

is restricted. The results of each iteration are featured by the message state and decoding

algorithm’s parameters. Additionally, knowledge of the initial message implies that we

can gain an advantage of directly comparing input and output of the system.

After the performed analysis, we can identify main entities for the software decoding

system:

 message;

 decoding results;

 decoding algorithm;

 decoding system.

First, we propose the following workflow for researcher who works with software. The

workflow is illustrated in Fig. 1 in form of Unified Modelling Language (UML) activity

diagram.

Fig. 1. Activity diagram for user actions

The user sets decoding parameters and launches decoding process. When the results of

the decoding are available, analysis stage begins. That actually means work with user

interface and finish of the decoding process itself. However, single run of the main

cycle gives results only for one code. Comparison of several algorithms is more effec-

tive procedure for investigation and selection of better approach. One of peculiarities

of TPC is that single decoding iteration is divided on two half-iterations. First, the mes-

sage is processed in one dimension (e.g. rows) and then takes place processing in other

dimension. Row decoding affects column decoding and column decoding affects row

decoding. Thus, it is necessary to grant user option to store results of both half-iterations

(one of them matches final iteration results).

Let us further introduce class infrastructure for the software that is illustrated in Fig.

2. The class with corresponding name represents decoding algorithm. It is an abstract

class that serves as a parent class for other classes that actually provide algorithm im-

plementation. Hence, presence of multiple algorithm is supposed by the system design.

It follows instruction for the Strategy design pattern which means that user can easily

switch from one decoding algorithm to another. Regarding benefits of class parametri-

zation, decoding algorithm classes may also be parameterized. In this case, only single

decode method should have type parameter. However, due to the extension reasons,

new method or even whole class may become parameterized.

Fig. 2. Main classes of the system under development

Another important peculiarity of the TPC-decoding is that hardware implementation is

performed for the algorithms that make use of limited precision in number representa-

tion. Typically, operations with integer operands are more preferable. Thus, it is im-

portant to observe results yielded by algorithm with different precision in number rep-

resentation. For that purpose, decoding classes may be parameterized with type for

number representation.

From this point of view, we can deduce that several instances of the same class can

be present with different type parameter. Creation of the corresponding class instances

is a task instance of class that implements Factory design pattern. As the user selects

new decoding algorithm to explore, the appropriate call is directed to factory objected.

However, it will not be efficient usage of resources if the requested instances has been

created previously. Therefore, the factory object should also manage internal algorithm

pool object where they are stored. If the requested object is available in the pool, it is

passed back to the caller. Otherwise, factory creates it and stores it into the pool imme-

diately. This part of the software model follows instructions of the Object pool design

pattern. The corresponding class diagram is demonstrated in Fig. 3.

Fig. 3. Classes related to the creation of algorithm objects

Several options are available to retrieve data for testing:

1. Actual channel data stored in the file. This is the simplest variant, as it only requires

reading data from the file. It is also a convenient way to check performance two

different decoders on the same data and compare their performance with each other.

2. Simulate transmission process over the noisy channel. This option is much closer to

the real world functioning of the system. It begins with reading data to encode from

file or generating random data for this purpose. The data are altered “on the fly”

according to noisy channel’s parameters. More computational operations are re-

quired for the simulation then simple reading from file.

Thus, we can identify more artifacts for the application. The first one is data loader that

executes load of data from the specified source. The loader is aware that there are two

cases for reading data (raw not encoded data, transmitted data). The second artifact is a

channel simulator. Main responsibility of the simulator is to apply noise or other chan-

nel impact to the encoded data. The relations between mentioned classes are depicted

in Fig. 4.

Fig. 4. Data loading infrastructure

One of the most significant features of decoding software is possibility to analyze de-

coding results and compare outputs of different algorithms. To collect information on

the decoding results we propose usage of an Observer pattern. Classes connected with

decoding should be able to issue notification about the end of each half-iteration and

expose necessary information to the interested observing instances. As notification is

sent, observer retrieves information and stores it into the list. Each data chunk can be

wrapped into instance of class for storing data to distinguish this information from the

original message. Additionally, it provides comprehensible way to control change his-

tory of the message under processing. This option is very helpful for user interface

implementation because demonstration of changes requires simple traversing over the

list with stored instances. The classes for implementation of result storage and review

functions are shown in Fig. 5.

Fig. 5. Classes concerned with decoding results storage

All the models proposed in this paper have been developed using Bouml modeling soft-

ware [15].

Visual data representation of the decoding results is an actual feature for the decod-

ing software. In opposite to well-known metrics for ECC system efficiency, it gives

more details on how decoding algorithm deals with message information. Such low-

level information also provides an opportunity to optimize algorithm by tuning param-

eters or specific decoding operations. As encoded message for TPC is a matrix of num-

bers, it is handful to represent it in form of heatmap. Each cell in the heatmap corre-

sponds to the actual value in the message. Because heatmap applies color to the values,

it is easier for the user to identify error patterns in the message, overview general mes-

sage state, etc. Heatmap is also an effective tool to observe changes happened on the

different iterations. As has been stated before, heatmap assigns specific color to each

value. Straightforward usage of the numeric values to form color map gives no addi-

tional information and is hard to analyze. This implies that additional metric is neces-

sary to form heatmap. Providing that initial message is known, we can infer message

state at the very start of transmission. We assume that this is the desired state for output

message. The numerical value jis , corresponding to each bit takes either maximum

value smax or minimum value smin in the interval [smax , smin] in the start mes-

sage. Value jid , in the decoded message takes value from the very same interval [

smax , smin] but it does not necessarily need to be equal to smax or smin . Being

aware of two values the for bit representation, we can devise metric that expresses dif-

ference between desired and actual values

 || ,,, jijiji dsm . (1)

The metric can have only non-negative values. The lower metric, the better value jid ,

matches to the desired value. In fact, when 0, jim it means that decoding converged

ji, bit to the correct value. The maximum value that can be assigned to the metric is

 |min||max|max ssm . (2)

If some bit position gets maxm metric value, that identifies decoding for bit finished

with absolutely wrong value. Let us assume that final binary decoded value is identified

according to the sign of the associated numerical value, e.g.

)(1

,
,1 jidsign

jih

 (3)

where sign – function that returns -1 or +1 depending on sign of input parameter. Small

bias from the target value does not end up with wrong decision about binary value in

this case. Thus, on a heatmap we should clearly distinguish erroneous positions from

correct ones. In most cases, we can identify error if the following condition is satisfied

2

max
,

m
b ji (4)

if maxm is even and

2

1max
,

m
b ji (5)

if maxm is odd.

It clearly states that the sign in the decoded value jid , has been changed due to large

bias value jib , . Sign transition in the heatmap should be marked by color for ease of

visual interpretation.

Besides metric for each bit in the message, it is also convenient to have an aggregate

metric that represents state of row or column of the message. Let us use riT to denote

aggregate metric for i row and cjT to denote metric for j column. Their values are

calculated as

j

jiri bT , , (6)

Obviously, minimum value for the metrics is zero. The maximum value reaches maxm

multiplied by the number of elements in the corresponding dimension. Therefore, range

of possible values for the metrics is much larger than for individual bit. The color scale

for aggregate metrics presentation should not contradict with general style of heatmap.

Regarding colors selection for heatmap, we may conclude with next statement. Two

colors have to be selected to denote absence of bias and maximum level of bias (e.g.

green and red are an essential choice). Errors in the decoded message should be easily

recognizable. That means that transition from acceptable bias value (no error) to erro-

neous one in context of color presentation should not be smooth but rather stiff.

In the Fig. 6 illustration of the proposed approach to visual organization of heatmap

is shown for TPC constructed of (7, 4) Hamming codes with jid , takes value within

range [-2, 1].

Fig. 6. Sample heatmap representation

Each cell contains its metric jim , in the center. The higher value of metric, the darker

background color. We can easily identify erroneous bits by the background. This ex-

ample uses short codes. In case of long codes, it is feasible to make optional metrics

display inside the cell.

The system has been implemented using JavaScript programming language and Re-

act library [16]. The developed application can run on desktop computers in browser as

well as on mobile device. The application uses heatmap component compatible with

React library. We selected sample message for the code with 16 rows and 16 columns

and with quantization in range [-7, 7] In the Fig. 7, results of decoding for first and last

iterations are presented.

1 0 0 0 2 0 0

0 0 0 0 0 0 0

0 1 0 0 0 1 1

0 1 1 1 0 0 1

2 1 2 0 1 0 1

3 1 3 1 1 1 1

3 1 3 1 1 1 1

Fig. 7. The state of the message after first and last decoding iteration

The presented samples demonstrates that after the first iteration message contained er-

rors (positions with metric values equal to 9). However, the result contains only zeros

in all positions which means that all errors have been corrected. The heatmap compo-

nent displays color information as shades of blue color. Hence, the more intense color,

the bigger distance to the correct value.

The authors are looking forward to cooperation with other researchers and develop-

ers who are interested in the topic. We encourage everyone to contact us so the access

to the code repository can be provided freely. Moreover, after investigation of the ap-

plicable software licenses for open-source projects and finalization of the application

code, the decision about moving to the public domain is going to be made to dissemi-

nate findings of the presented paper and to facilitate further developments.

4 Conclusions

In the current paper, we present developed software models for ECC software design,

specifically for software that deals with TPC. The software models leverage best prac-

tices of object-oriented programming to provide flexible solution for TPC investigation.

The main advantage of the proposed model is that they take into consideration peculi-

arities of TPC-decoding process and support different option for accessing data on

every stage of the decoding, comparing different algorithms, and different numerical

data representation. The models represent workflow of the user actions, main classes

that forms the whole decoding system, and supportive classes that are responsible for

data loading, presentation, communication between classes, etc. The models can be

used as a fundamental part for decoding software and have capability for further exten-

sion.

References

1. Tomlinson, M., Tjhai, C.J., Ambroze, M., Ahmed, M., Jibril, M.: rror-Correction Coding

and Decoding: Bounds, Codes, Decoders, Analysis and Applications. Springer, (2017).

2. Gallager, R.: Low Density Parity Check Codes. Cambridge, Mass (1963).

3. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and

decoding: Turbo-codes. 1. In Proceedings of ICC ’93 - IEEE International Conference on

Communications, pp. 1064–1070, vol. 2, IEEE, Geneva, Switzerland (1993).

4. Pyndiah, R.: Near-optimum decoding of product codes: block turbo codes. IEEE Transac-

tions on Communications, 46(8), pp. 1003–1010 (1998).

5. Matlab – MathWorks – Matlab & Simulink, https://www.mathworks.com/prod-

ucts/matlab.html, last accessed 2019/02/02.

6. AFF3CT – A Fast Forward Error Correction Toolbox, https://aff3ct.github.io/, last accessed

2019/02/04.

7. Forward Error Correction (fec), http://liquidsdr.org/doc/fec/, last accessed 2019/02/05.

8. Github, https://github.com/simonyipeter/Arduino-FEC, last accessed 2019/02/03.

9. Forward Error Correcting Codes, http://www.ka9q.net/code/fec/, last accessed 2019/02/06.

10. AHA Products Group, http://www.aha.com/, last accessed 2019/02/06.

11. Kondratenko, Y., Gerasin, O., Topalov, A.: A simulation model for robot's slip displacement

sensors. International Journal of Computing, Vol.15, Issue 4, pp. 224-236 (2016).

12. Krainyk, Y., Perov, V., Musiyenko, M., Davydenko, Y.: Hardware-oriented turbo-product

codes decoder architecture. In Proceedings of 2017 9th IEEE International Conference on

Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applica-

tions (IDAACS), pp. 151–154, vol. 1, Bucharest, Romania (2017). DOI:

10.1109/IDAACS.2017.8095067

13. Krainyk, Y., Perov, V., Musiyenko, M.: Low-complexity high-speed soft-hard decoding for

turbo-product codes. In Proceedings of 2017 IEEE 37th International Conference on Elec-

tronics and Nanotechnology (ELNANO), pp. 471–474, Kyiv, Ukraine (2017). DOI:

10.1109/ELNANO.2017.7939798

14. Musiyenko, M., Krainyk, Y., Denysov, O.: Reconfigurable decoder for irregular random

low density parity check matrix based on FPGA. In Proceedings of 2015 IEEE 35th Inter-

national Conference on Electronics and Nanotechnology (ELNANO), pp. 498–503, Kyiv,

Ukraine (2015). DOI: 10.1109/ELNANO.2015.7146937

15. BOUML – a free UML tool box, https://www.bouml.fr/, last accessed 2019/02/09.

16. React – A JavaScript library for building user interfaces, https://reactjs.org/, last accessed

2019/02/07.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://www.aha.com/
https://www.bouml.fr/
https://reactjs.org/

