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Abstract. Several approaches to the numerical description of image inter-frame geometric 
deformations parameters estimates behavior at iterations of non-identification relay stochastic 
gradient estimation are considered. The probability density of the Euclidean mismatch distance 
of estimates vector is chosen as an argument of the characteristics forming the numerical 
values. It made it possible to ensure invariance of research to the set of parameters of the used 
inter-frame geometric deformations model. The mathematical expectation, the probability of 
exceeding a given threshold value of the convergence rate and the confidence interval of the 
Euclidean mismatch distance were investigated as characteristics. Probabilistic mathematical 
modeling is applied to calculate the probability density of the Euclidean mismatch distance. 

1. Introduction
The systems of information extraction with spatial apertures of signal sensors are widely spread. These
systems form dynamic arrays of spatially correlated data represented by image sequence. This
representation has the clarity, compactness, and information capacity. In this case, one of the
important tasks is to estimate the geometric deformations parameters of the image sequence [1-5]. To
solve this problem, non-identification stochastic estimation proved to be good [6], wherein the
formation of vector estimate α  of deformation parameters of reference { })1(

jz  and deformed { })2(
jz

images (where ( ){ }T
yx jj ,=j  - pixel coordinates of )1(

jz  and )2(
jz ), can be described by the procedure 

[7, 8]: 
( )11 ˆ,ˆˆ −− −= tttttt Z αβΛαα , (1) 

where ( )⋅β  – stochastic gradient of an objective function, which characterizes the quality of evaluation 
(the mean square of the difference between the brightness of the reference and deformed images was 
used as the objective function to calculate examples); tΛ  – gain matrix, determining a value of the 
estimates change at the t -th iteration; tZ  – two-dimensional local sample of the reference and 
deformed images used to determine the stochastic gradient at the t -th iteration [9, 10]. 

The local sample size (LSS) largely determines the nature of estimates deformation convergence 
and the computational cost. The research direction is due to the fact that the problems of LSS 
optimization are not investigated enough. The paper discusses the possibilities of numerical 
description of vector estimates of geometric deformations parameters estimates behavior at iterations 
of non-identification relay stochastic gradient estimation.  
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As initial information for the numerical description of vector estimates behavior, the probability 
distributions of the estimates deformation parameters are chosen. The paper investigated the 
mathematical expectation, the probability of exceeding a given threshold value of convergence rate 
and the confidence interval as characteristics that form numerical values. When estimating one 
deformation parameter, these characteristics are directly applicable to its evaluation. If the set of 
parameters is estimated, then at the same iteration for each parameter different values of the optimal 
LSS can be obtained. Since one local sample is formed at each iteration, its value will be chosen 
corresponding to the maximum of the optimal volumes, which will lead to unreasonable computational 
costs. Therefore, in the paper, the probability distribution of the Euclidean mismatch distance (EMD) 
for the vector of deformation parameter estimates is chosen as the argument of the studied 
characteristics. This made possible to ensure the invariance of the study to the set of parameters of the 
deformation model used.  

2. Choice of argument characteristics
For definiteness, we assume that geometric deformations of the images are estimated and described by
the model of similarity, which include parameters of parallel shift ( )Tyx hh ,=h , rotation angle ϕ , 
scale factor κ . In this case, we note that limitation of the parameter vector does not limit the 
following consideration. 

Let, after the ( )1−t -th iteration the vector of deformation parameters estimates has values 

( ) ( )( )Ttttytxt hh 11111 ˆ,ˆ,ˆ,ˆ
−−−−− = κϕα . In addition, each estimate ( )1

ˆ
−txh , ( )1

ˆ
−tyh , 1ˆ

−tϕ  and 1ˆ
−tκ  has its own 

probability distribution: ( ),ˆ
1 xt hw −  ( )yt hw ˆ

1− , ( )ϕ̂1−tw  and ( )κ̂1−tw . Then, on the t -th iteration in the 
local sample the sample from resampled reference image with coordinates ),( ba yx  will be taken for a 
couple with sample from deformed image with coordinates ( )ba, : 

( ) ( )( ) ( )

( ) ( )( ) ( ),ˆˆcosˆsinˆ

,ˆˆsinˆcosˆ

1101010

1101010

−−−−

−−−−

+−+−+=

+−−−+=

tytttb

txttta

hybxayy

hybxaxx

ϕϕκ

ϕϕκ
(2) 

where ),( 00 yx  – the coordinates of the rotation center. 
The method for calculating the probability distribution of estimates of the image geometric 

deformations parameters was proposed in [11] and involves the sampling of the domain of parameter 
definition. Using the method it is possible to obtain discrete probability distributions (DPD) of the 
parameters for the selected deformation model: 

( ) ( ){ } xxlxlx LlhhPphw
xx

,1,ˆ ==== , ( ) ( ){ } yylyly LlhhPphw
yy

,1,ˆ ==== , 

( ) ( ){ } ϕϕϕϕ
ϕϕϕ LlPpw ll ,1,ˆ ==== , ( ) ( ) κκκκ

κκκ LlPpw ll ,1,ˆ ==== , 

where ( )zP  - the probability of z ; xL , yL , ϕL  и κL  – the number of intervals for splitting the 
parameter space xh , yh , ϕ  and κ . Then the coordinates (2) with the probability 

κϕκϕ llllllll ppppP
yxyx

=  take the values: 

( ) ( )( )
( ) ( )( ) .cossin

,sincos
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000

ylyx

xyx

llllllll

llllllll

hxbyayy

hxbyaxx

+−+−+=

+−−−+=

ϕϕκκϕ

ϕϕκκϕ

ϕϕκ

ϕϕκ

Thus, it is possible to calculate a probability distribution of distances between a point with 
coordinates ( )ba,  on the deformed image and possible positions of the conjugate point on the 
reference image for current estimates of the deformation parameters, i.e. get DPD of the euclidean 
mismatch distance (EMD) ( )rwt  at the t -th iteration. 

Let consider a few examples of the results for the calculation DPD of EMD. Let the images have a 
Gaussian autocorrelation function and a signal-to-noise ratio (ratio of the variances of image and 
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noise) equal to 14. For parameters estimation the stochastic procedure (1) of relay type with diagonal 
gain matrix 

κ

ϕ

λ
λ

λ
λ

000
000
000
000

hy

hx

=Λ

and constant elements: 05,0== hyhx λλ , 4,0=ϕλ  and 005,0=κλ  is used. The value of the gain matrix 
coefficients is selected based on the autocorrelation function of the image (the value of the correlation 
radius of this function). The same experimental conditions are used for the examples given below. 

Figure 1a and 1b show an example of the calculated DPD of estimates ϕ̂  and κ̂  with µ =1 and 
the parameter mismatch 4== yx hh , o15=ϕ and 2,1=κ , after 60 iterations. Note that the probability 
distribution of estimates of all parameters are close to the Gaussian. Figure 1c shows DPD ( )rw60  of 
absolute value EMD after 60 iterations: 

22 )()(
κϕκϕκϕ llllllllllll

lyxlyxlyx
ybxar −+−=

In this case, the expectation value of the EMD is 1.9, and the variance is 4.0. 

a)                                                   b)                                                 c) 
Figure 1. Examples of DPD of deformation parameter estimates and EMD. 

Figure 2a shows an example calculation for sample size 3=µ . 
In the general case, different points of the local sample plan correspond to different distribution of 

EMD. Totality of all local sample points corresponds to the total distribution. Examples of such 
distributions are shown in Figure 2. The local sample plan was formed as follows. At the t -th iteration 
of estimating the coordinate ( )11, yx jj  of the first count on the deformed image were chosen randomly
within a certain domain, and the other two according to the rule: 

( ) [ ] [ ]( )iiiiyixi RRjj φφ sinint,sinint, = , 
where 3,2=i ; [ ]zint  - integer part of z ; ( ) ( )( ) o

xy xjyjarctg 12001012 −−−=φ ,

( ) ( )( ) o
xy xjyjarctg 12001013 +−−=φ ; ( )00, yx  - image center coordinates; iR  - random number. 

Another example of DPD of EMD after 65 iteration that estimates mismatch parameters 4=xh , 
4=yh , 015=ϕ and 1=κ  with the volume of the local sample 2=µ  is shown in the figure 2b. 

a)                                              b) 
Figure 2. Examples DPD of EMD with 1>µ . 
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The result shows that with increasing LSS the distribution of EMD is not normalized. This is due to 
that EDM has non-linear dependence on deformation parameters, with the result that different points 
of the local sample plan give statistically significantly different mathematical expectations and 
variances of EDM. 

3. Characteristics of changes in the vector estimations
Using the probability distribution of EMD we find the expression for the numerical description of
image geometric deformations parameters estimates behavior at iterations of non-identification relay
stochastic gradient estimation. As the characteristics that form the numerical values, we consider
mathematical expectation, the probability of exceeding a given threshold value of the convergence rate
and the confidence interval EMD.

3.1 Mathematical expectation of change EMD 
The mathematical expectation of EMD determines the average rate of convergence of the estimated 
parameters at the t -th iteration. At LSS m=µ , this characteristic can be found through a change in 
the distribution of EMD on adjacent iterations: 

[ ] ( ) ( )( )drrwrwrr ttm ∫
∞

−=
−=∆

 

0
1M

µ
. (3) 

A positive value (3) corresponds to the improvement of the parameter estimates vector α̂ , a 
negative value corresponds to the deterioration.  

When using DPD the value [ ]r∆M  is determined by the ratio: 

[ ] ( )∑
=

−= −=∆
rL

i
titiim pprr

1
,1,M µ , 

where rL  is the number of intervals splitting the domain of definition EMD. Clearly, that the 
expectation value ( )[ ]kr +∆M  of improving the vector of parameter estimates with increasing LSS by 
k  can be found as: 

( )[ ] ( )∑
=

+==
−=+∆

rL

i
kmtimtii pprkr

1
,,M

µµ
. 

For example, Figure 3a shows the dependence ( ) ( )rwrw 6160 − on EMD, which calculated at 1=µ
for 61 iterations. This dependence describes parameter estimation vector changing for one iteration. In 
the given example for 61 iteration. Obviously, that with small EMD the probability differences are 
negative, for large ones they are positive. At the same time, the average value describes the integral 
change of the vector of estimates is positive (which indicates an improvement in the estimates) and 
equal to 0.017. The dependence numerically describe the improvement of the convergence estimates 
with increasing sample size is shown in Figure 3b. It shows the change of DPD of EMD after 60 
iterations of the estimate when 2=µ compared to the case 1=µ . As in Figure 3a, for small EMD, the 
probability differences are negative, for large ones, they are positive.  

a)                  b) 

Figure 3. Examples of differences in the DPD of EMD on adjacent iterations (a) and different LSS 
(b). 
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However, the average value was 0.02, which indicates a significantly higher rate of convergence of 
estimates. 

3.2. Probability of exceeding a given threshold value of EMD convergence rate  
Let us consider the possibility of using the probability of exceeding the given threshold value by the 
rate of convergence of the EMD to zero as a numerical characteristic of the convergence rate. 
It is necessary to determine the distribution ( )νtw  of the convergence rate ν  at the iterations of 
estimation and then determine the probability. The probability that EMD convergence rate at the t –th 
iteration will exceed a given threshold tvν  is: 

( ) νν dwP tt ∫
∞−

−=
tvv 

1 . (4) 

In this case, the distribution ( )νtw  can be found as the difference DPD of EDM on adjacent 
iterations: 

( ) ( ) ( )( )rwrwrw ttt −= −1ν , 
conditionally accepting for a unit of time a dimensionless time between iterations. 

In this case, the convergence rate can be estimated as at each iteration, as after a certain number of 
k  iterations: 

( ) ( ) ( )( )rwrwrw ttt −= −1ν  
Figure 4a shows an example of the DPD convergence rate of the EDM at 60 iterations at 1=µ . At 

the same time, threshold value tvν  is equal to 0.21 and the probability (4) of exceeding (shaded 
domain) is equal to 0.68. Figure 4b shows the dependence of probability exceeding the convergence 
rate of the EMD of the selected threshold value on LSS. Clearly, if you increase volume, then the 
probability increases, and reaches at 5=µ  value 0.99. 

a)                                                  b) 
Figure 4. DPD convergence rate and probability of exceeding the threshold value. 

3.3. Confidence interval of the EMD 
The change in the boundaries of the confidence interval at adjacent iterations is used as the numerical 
value of the deformation estimates of the confidence interval of EMD for a given confidence 
probability: 

=∆ cir )1(rr)1(ll ++ −+− tttt rrrr , (5) 
where the indices “l” and “r” mean left and right limits of the confidence intervals, respectively. Ratio 
(6) explains figure 5, where tl  and 1+tl  are confidence intervals, respectively, in the t -th and ( )1+t -th
iterations.

Figure 5. Changing the boundaries of the confidence interval. 
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Similarly, through the boundaries of the confidence intervals, one can describe the change in the 
vector of estimates with increasing LSS from m=µ  to km +=µ : 

( ) =+∆ krci kmtmtkmtmt rrrr +==+== −+− µµµµ rrll . (6) 
Note that expressions (5) and (6) are written down with taking into account that the value of EMD 

cannot be non-negative. It is also necessary to take into account the mismatch signs of the current 
estimate tα̂  and the exact parameter values α , when analyzing the measurement of boundaries of the 
confidence intervals of individual deformation parameters (such as the angle of rotation, parallel shift, 
etc.), which can be equal to positive and negative values: 

=∆ cir ( ) ( )αα −−+− ++ ttttt signrrrr ˆ)1(rr)1(ll , 
( ) =+∆ krci ( ) ( )ttkmtmtkmtmt signrrrr ααµµµµ −−+− +==+==

ˆrrll . 

4. Conclusion
The paper presented numerical description of image geometric deformations parameters estimates
behavior at iterations of non-identification relay stochastic gradient estimation. As initial information
for solving the problem, we consider the probability distribution of parameter estimates. As an
argument of numerical characteristics that describe the convergence rate of estimates of geometric
deformation parameters of images, the distribution of EMD probabilities is used. They form numerical
values, which made it possible to ensure invariance to the set of parameters of the used inter-frame
geometric deformations model.

The mathematical expectation of EMD change, probability of exceeding the convergence rate of a 
given threshold value and confidence interval of EMD at a given confidence level are investigated as 
numerical characteristics. The investigated characteristics can be used to optimize the volume and plan 
of the local sample according to various criteria. In particular, when using the probability of exceeding 
a given threshold value of the convergence rate to optimize the LSS, and after calculating the DPD of 
EMD, the task is reduced to finding the LSS which ensures that probability (4) exceeds a given 
probability threshold. 

Results showed that the confidence interval is a less informative parameter in comparison with 
mathematical expectation of change and with probability of exceeding a given threshold value of the 
convergence rate EMD. This is due to the fact that the probability distribution of EMD significantly 
changes from iteration to iteration. Therefore, on adjacent iterations, the change in the limits of the 
confidence interval does not always characterize the improvement of the estimates vector. 
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