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Abstract. The paper introduces how multi-class and single-class problems of searching and 
classifying target objects in remote sensing images of the Earth are solved. To improve the 
recognition efficiency, the preparation tools for training samples, optimal configuration and use 
of deep learning neural networks using high-performance computing technologies have been 
developed. Two types of CNN were used to process ERS images: a convolutional neural 
network from the nnForge library and a network of the Darknet type. A comparative analysis 
of the results is obtained. The research showed that the capabilities of convolutional neural 
networks allow solving simultaneously the problems of searching (localizing) and recognizing 
objects in ERS images with high accuracy and completeness. 

1. Introduction
Today, there is an upsurge of activity in the field of Earth remote sensing (ERS) data processing: new 
software systems are being created, high-resolution image processing methods are being modernized. 
The current situation is characterized by the improvement of the equipment of spacecraft (SC) and 
ground control stations, the expansion of the functionality and spectrum of the image processing tasks 
performed. The scope of application of these spacecraft includes monitoring of forest, agricultural and 
arctic zones, analysis of natural disasters, environmental protection, public safety, etc. The growing 
volumes of evolving ERS data have significantly increased the requirements for speed and quality of 
information processing. Recently, artificial neural networks (ANN) and high-performance computing 
technologies have been increasingly used.

The analysis of modern work on the application of ANN has shown that neural networks are 
mainly used for searching and recognizing targets that are related to the category of nonrigid [1,2]. 
The authors of this paper created a scientific and practical groundwork in solving various problems 
based on intelligent processing of ERS images (multispectral, panchromatic, color) search for rigid 
objects and zones of interest using the developed spectrographic approach and the generalized metric 
(fires, inundations, ice conditions assessment, etc.) [3-8]. The proposed paper presents the results of 
new in-depth studies related to the use of modern convolutional neural networks (CNN) for processing 
panoramic full-color ERS images obtained from unmanned aerial vehicles (UAVs); some methods and 
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tools to improve their efficiency and performance during the search and recognition of the objects of 
military equipment with the necessary completeness and accuracy, which still remains unresolved 
even with an abundance of software, are proposed. The modern formulation of the task of finding and 
recognizing an object by a neural network includes the steps of selecting the type, setting the 
parameters of the ANN and preparing the input data. The multi-class and single-class problems were 
considered as part of the study. The first task is thought of as the search and recognition of objects of 
several classes simultaneously.  The second task involves the search by a neural network of objects of 
a single class. 

2. Methods, software tools and results of image processing using ANN
Two types of CNN were used to process ERS images: a convolutional neural network from the
nnForge library [9] and a network of the Darknet type [10]. Both implementations are distinguished by
the support of various types of layers; therewith a flexible configuration is provided and it is possible
to change the structure to suit own needs. In addition, the network of the second type not only
classifies the target objects but also reports on their positions in the shot. A distinctive feature of the
considered CNN is the support of computational speedup using graphics processing units (GPU) both
during training and operation. Copies of trained ANN are distributed between the existing GPUs
where data are processed independently and asynchronously. A special software complex for
designing neural network application systems was used to implement the computational process [11,
12].

A special tool for the automated preparation of training samples has been implemented to improve 
the quality of the classification. A human expert prepares preliminarily some images with a 
transparency marker set, where background pixels are set invisible using alpha channel controls. 
Figure 1 shows the original fragment of the ERS image, on the right: the same fragment is shown after 
the alpha channel change. For convenience, images with objects of different classes are sorted to 
different directories. 

Figure 1. Images: original and with the alpha channel mask. 

Various settings of the ANN from the nnForge library (configurations and characteristics of the 
layers) can be customized with scaled copies of these images. The scaling factor is chosen so that each 
target object is placed in a separate scanning window, the size of which coincides with the size of the 
input ANN window. The experiments were conducted on military equipment images of 6000x4000 
pixels, made from a height of 300 meters at the Russia Arms Expo – 2015 (RAE-2015) international 
exhibition. 

The following CNN architecture from the nnForge library was experimentally chosen: 
− contrast extraction layer with a 9x9 pixel Gaussian window [13]; the original size of the data

window: 39x39; 
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− convolution layer with the 6x6 feature maps (total 136 maps), the hyperbolic tangent module is
used for normalization, the window size after processing is 34x34; 

− average subsampling layer with a 2x2 mask, the window size after processing is 17x17;
− convolution layer with the 6x6 feature maps (total 272 maps), the window size after processing

is 12x12; 
− average subsampling layer with a 2x2 mask, the window size after processing is 6x6;
− convolution layer with the 6x6 feature maps (total 544 maps), the window size after processing

is 1x1; 
− dropout layer with an adjustable probability of disabling connections between neurons

(experimentally set to 0.05); 
− convolution layer with the 1x1 feature maps, the number of feature maps corresponds to the

number of distinguished classes, the hyperbolic tangent type activation function is used. 
The scanning window during the recognition moves through the image in increments of one pixel 

and is processed by the neural network. The sequential processing of the entire image results in a 
colored map where the target objects are separated from the background. Figure 2 shows an example 
of the original image and the result of its processing. 

Figure 2. The original image and the result of its processing. 

3.626 million objects automatically extracted from 73 images were used for training. The following 
results have been achieved: Classification completeness: background – 0.9976, materiel – 0.9354. 
Classification accuracy: background – 0.9392, materiel – 0.9974. Training time: 24 hours on one 
Nvidia Geforce GTX 1060 and using a single CPU core Intel Core i7 6850K (of the existing 6 cores, 
3.6 @ 4.0 GHz). Processing time of ten panoramic images on one GPU: 3051 s; on two GPUs: 1640 s. 

As a result of numerous experiments, the developers of the Darknet network have selected a very 
successful architecture, such that it works on different training / test samples [14, 15]. The network, 
within certain limits, is resistant to the fact that images of different sizes and subjected to geometric 
distortions can be input. The main adjustable parameter is the size of the CNN input layer. 

The software tool developed as part of this study includes the programs YOLORotate, 
YOLOAnchors and YOLOGetObjects. 

The YOLORotate program is designed to convert images into a format suitable for training the 
YOLO v2 type ANNs. The data needed for the preparation of a series of our experiments include 
many panoramic images taken from the UAV. They have four classes of target objects: IFV (infantry 
fighting vehicles), Military vehicles, SPG (self-propelled gun mounts) and Tanks; information about 
the coordinates and sizes of each of the objects is pre-assembled and stored in text files. Each such 
image has a size of not less than 832x832 pixels, where all target objects occupy a relatively small part 
of the image. YOLORotate rotates images from a training sample with a given step, for example, 15 
degrees. At the same time, the maximum possible number of fragment images with target objects is 
cut out. A total of 4361 fragments for the training sample and 1173 fragments for the test sample were 
automatically created. It is guaranteed that on each such fragment there is at least one target object. In 



Image Processing and Earth Remote Sensing  
N S Abramov, А А Talalayev, V P Fralenko, O G Shishkin and V M Khachumov 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)      183 

order to ensure that the target objects are located in random positions of the received fragment images, 
a pseudorandom number generator is used. The analysis showed that with the selected size of the 
source data of 832x832 pixels, up to 20 targets fall into the frame. The YOLOAnchors program uses 
the k-means method [16] to detect the width and height of typical targets on the output window of a 
neural network. The program finds several such pairs of sizes, which are used later in the training of 
the ANN. 

The program YOLOGetObjects segments the images into fragments of 832x832 pixels while 
providing a partial intersection, and each next window captures a quarter of the previous one (both 
horizontally and vertically). In total, there are 70 fragments per panoramic picture. Further, all 
fragments are independently processed using a GPU and a general-purpose processor. The next step is 
to combine information about all the target objects found. Figure 3 shows an example of the result of 
using a trained ANN. 

Figure 3. The result of shot processing by a multi-class ANN. 

Table 1. ANN test results with an input window of 416x416 pixels. 
6 images per pack 14 images per pack 

Share of target 
objects found 

IFV 0.9346 0.9731 
Military cars 0.9880 0.9983 
SPG 1.0000 1.0000 
Tanks 0.9967 0.9934 

Average share of target objects found 0.9798 0.9912 
Completeness IFV 0.7500 0.6885 

Military cars 0.9811 0.9949 
SPG 0.9006 0.9655 
Tanks 0.9058 0.9107 

Normalized accuracy IFV 0.9118 0.8947 
Military cars 0.8627 0.9541 
SPG 0.9990 1.0000 
Tanks 0.8561 0.7672 

F1 -measure IFV 0.8230 0.7782 
Military cars 0.9181 0.9741 
SPG 0.9473 0.9825 
Tanks 0.8802 0.8328 

Average F1 -measure  0.8922 0.8919 
The ratio of the number of found targets to their 
total number 0.9869 0.9948 

Training time, hours 1.18 2.44 
6000x4000 pixels image processing time, 
seconds 2.13 
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Table 2. ANN test results with an input window of 832x832 pixels. 
6 images per pack 14 images per pack 

Share of target 
objects found 

IFV 0.9615 0.9538 
Military cars 0.9983 0.9974 
SPG 1.0000 1.0000 
Tanks 0.9967 0.9934 

Average share of target objects found 0.9891 0.9862 
Completeness IFV 0.5846 0.6077 

Military cars 0.9657 0.9657 
SPG 0.9290 0.9432 
Tanks 0.9421 0.9322 

Normalized accuracy IFV 0.8630 0.9004 
Military cars 0.9462 0.9160 
SPG 0.9927 0.9724 
Tanks 0.7123 0.7484 

F1 -measure IFV 0.6970 0.7256 
Military cars 0.9558 0.9402 
SPG 0.9598 0.9576 
Tanks 0.8113 0.8303 

Average F1 -measure  0.8560 0.8634 
The ratio of the number of found targets to their 
total number 0.9945 0.9925 

Training time, hours 4.78 11.11 
6000x4000 pixels image processing time, 
seconds 5.50 

Table 3. ANN test results with an input window of 416x416 pixels and increased number of 
feature maps. 

6 images per pack 14 images per pack 
Share of target 
objects found 

IFV 0.9615 0.9500 
Military cars 1.0000 0.9983 
SPG 1.0000 1.0000 
Tanks 0.9934 0.9983 

Average share of target objects found 0.9887 0.9867 
Completeness IFV 0.7846 0.7538 

Military cars 0.9923 0.9966 
SPG 0.9432 0.9473 
Tanks 0.9223 0.9438 

Normalized accuracy IFV 0.8970 0.9230 
Military cars 0.9421 0.9166 
SPG 1.0000 1.0000 
Tanks 0.8510 0.8616 

F1 -measure IFV 0.8371 0.8299 
Military cars 0.9665 0.9549 
SPG 0.9708 0.9729 
Tanks 0.8852 0.9008 

Average F1 -measure  0.9149 0.9146 
The ratio of the number of found targets to their 
total number 0.9945 0.9937 

Training time, hours 4.69 10.37 
6000x4000 pixels image processing time, 
seconds 3.98 
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The batch training where the next step of adjusting the weighting factors is based on information 
about the results of processing a limited group of images of the training sample was used in all 
experiments. Each group of images on the new training period is formed randomly; preference is given 
to the groups with representatives of all classes of target objects. Using batch training allows improve 
the quality of the neural network and abandon the resource-intensive dropout layer [17]. The best 
package size is chosen experimentally for each problem to be solved. 

Tables 1-3 show the refinement characteristics and the results of the experiments performed in 
solving a multi-class problem — simultaneous search and recognition of objects of four classes. 

Table 4 shows the comparative results of processing the test sample when solving single-class and 
multi-class problems. The training time of the selected network configuration on each of the four 
classes of military equipment was 6.84, 13.6 and 26.8 hours when working with groups of 28, 56 and 
112 images. In the single-class case, the ANN works with only one class; the user has the opportunity 
to choose the best option – the network trained using a group of images of the optimal size. In the last 
column of table 4, the best coefficients for mixed mode are collected, when a network trained for 
individual classes is used. For instance, a network trained on a package of 56 images is used for IFV, 
and for the Tanks class – a network trained on a package of 112 images. The average processing time 
of a 6000x4000 pixels image in one separate single-class neural network is the same as that of a multi-
class neural network, that is, four seconds. 

Table 4. Experimental data, multi-class and single-class problems. 

Class of objects 
Share of founded objects and the size of the group of images 

Multi -class problem Single-class problem 
6 14 28 56 112 / 

IFV 0.9615 0.9500 0.8577 0.9115 0.8538 0.9115 
Military cars 1.0000 0.9983 0.9057 0.8885 0.8954 0.9057 

SPG 1.0000 1.0000 0.8276 0.9635 0.9473 0.9635 
Tanks 0.9934 0.9983 0.9174 0.9455 0.9521 0.9521 

Average share of target 
objects found 0.9887 0.9867 0.8771 0.9273 0.9121 0.9332 

Training time of one 
separate neural network, 
hours 

4.69 10.37 6.84 13.6 26.8 – 

The results of the experiments confirmed the effectiveness of the use of single-class neural 
networks. However, training a complex of such networks requires more computing resources than 
those used for training of one multi-class network. An increase in the complexity of the task with the 
same number of feature maps leads to a decrease in the average share of the found target objects for a 
single-class ANN. 

3. Conclusion
The article presents the results of research related to the use of modern convolutional neural networks
for processing panoramic full-color aerial ERS images. Using the nnForge and Darknet CNN, multi-
class and single-class problems of searching and classifying targets are solved. Some methods for
preparing training samples, optimal configuration, and the use of high-performance computing have
been developed to improve the recognition efficiency. A comparative analysis showed that the one-
class approach has an advantage in recognition quality but loses in operation time. In general, it should
be noted that the capabilities of convolutional neural networks allow solving simultaneously the
problems of searching (localizing) and recognizing objects in ERS images with high accuracy and
completeness.
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