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Abstract. In this paper, we describe the experimental results of aircraft recognition on optical 

remote sensing imagery using the theory of contour analysis. We propose the a method to 

calculate optimal values of the contour’s items quantity and the classification threshold through 

measuring within- and between-class distances for all possible training set instances 

combinations with followed by detection and minimization of the type I and II errors. We 

discuss the construction of contours’ similarity measures combining the principles of finding 

the most appropriate reference instance and calculating the average value for the whole class. It 

is shown that the proposed parameters' tuning method and the similarity function make contour 

analysis capable to train on compact non-uniform datasets and to recognize aircraft on the 

noisy and less detailed images. 

1. Introduction

The mathematical apparatus of contour analysis is an effective approach to solve the problem of 
objects recognition using their shapes as the distinctive features [1,2].

To reach affine transformation invariance researchers in the field of aircraft recognition use a 

combination of few features and methods such as contours, Zernike moments and wavelet coefficients 

in [3], Radon transform, PCA and kNN classification in [4], HOG, graph theory and an object 

reconstruction in [5]. 

In contrast, contour analysis uses the single similarity measure of two vector-contours, the module 

of the normalized dot product (NDP) that is invariant (insensitive) to transfer, rotation, and 

proportional scaling of the recognized object towards the reference one. The similar recognition 

methods produce a unique value per each classes pair [6-8] and require an additional clustering 

procedure to match an object to a certain class. In contrast, the NDP module provides a uniform 

similarity measure of two contours within the range [0..1] where 1 – denotes the identical instances. 

Moreover, the NDP itself is a complex-valued number describing contour’s scale and rotation angle 

relatively the reference instance. 

Despite the listed above advantages, the NDP has its own limitations, which include the need to 

select the values of the vector-contour’s items quantity and the classification threshold used to decide 

whether the corresponding object belongs to a certain class. 

The first limitation is a consequence of the fact that in order to calculate the NDP value, the 

compared contours should have the same items' quantity (however, the length of the vector-contours - 

the sum of its vectors lengths - does not have to be equal). The problem of optimal vector-contour’s 
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items quantity selection is to find a balance between the lower values, smoothing together little-

informative details and distinctive features of the recognized object, and higher values, providing more 

distinctive features but making the instances the single class more unlike [6].  

The second limitation arises from the of the classification rule used to decide whether a given 

vector-contour belongs to one of the classes and consists in the need to select a threshold value 

corresponding to the minimal similarity value between the reference objects. This value for each class 

is determined by the differences between the instances in the training dataset. 

Comparing to the state-of-the-art convolutional neural networks (CNN) [9, 10], requiring hundreds 

of images to train, contour analysis’s based recognition methods are capable of dealing with compact 

and nonuniform datasets containing less than 10 instances per class. Moreover, CNNs require transfer 

learning techniques [11] to operate on images with spectral parameters different from the training ones 

(for example, created by the sensor of another type). To the contour analysis list of disadvantages, we 

should write a much shorter range of applications, as the recognition process is driven by the only 

feature – the object’s shape, together with the strong addiction to the segmentation method’s quality 

used to extract the object from an underlying surface [12-15]. 

This article considers the application of the mathematical apparatus of contour analysis to 

recognize the aircraft’s class on remote sensing imagery. The shape of the aircraft on view from above 

is the primary distinctive feature determining its class. However, aircraft instances of the same class 

can have differences in shape due to the following reasons: the presence or absence of the external 

wing-mounted armament or equipment, the disassembly of aerodynamic surfaces (slats, flaps, 

rudders), engines and rotary blades, wings with variable geometry, folded wings for naval aircraft. 

Shape variations can also be caused by the segmentation algorithms that incorrectly react to the 

boundaries of its illuminated and shaded areas, as well as closely located airfield equipment. 

The article has the following structure. Section 2 contains a formal statement of the recognition 

problem used to determine the list of optimized parameters. Section 3 is devoted to the description of 

the features of the training and test datasets: the first one serves as a data source to calculate optimal 

values of the parameters, the second one – to verify results. Section 4 shows the process and the results 

of the experiment to obtain the value of the classification threshold for each class in training dataset. 

Section 5 is devoted to the results of the experiment to determine the values of the vector-contour’s 

items quantity required to calculate the NDP value for each class. Section 6 describes the selection of 

similarity value calculation criterion and the experimental results of the tuned contour analysis 

method. Section 7 contains a discussion and suggestions for future work. 

2. Formalization of the recognition problem

We introduce the following notation:

1{ } CN

iCC – is a set of aircraft classes, where iC – is an aircraft class with index i , CN – is the 

number of aircraft classes. 

 1}Ni

i ik k Γ – is a set of reference vector-contours (hereinafter referred to as “references”) of i-th

class, k – is an reference instance index, iN – is the number of instances in the i-th class, ik –

instance contour of i-th aircraft class with index k. 

Each instance described by a vector-contour ik , consisting of l complex-valued elements called

elementary vectors  ik  , designated as: 

( (1), (2),..., ( ))ik ik ik ik l    .

The mathematical apparatus of contour analysis is applicable only to contours with the equal items 

quantity. In practice, images contain objects that have contours with an arbitrary number of elements. 

The process to transform the vector-contour to have strictly l elements is called “equalizing” [2]: 

1( ), ( ) { ( )}ef l

ik ik ik ikГ Г l Г l n 
.

(1) 

The NDP     is calculated by the formula:
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 ( ), ( )
( , , )

| ( ) | | ( ) |

ik jm

ik jm

ik jm

l l
l

l l


 
  

  
,  

1

( ), ( ) ( ( ), ( ))
l

ik jm ik jm

n

l l n n 


   , (2) 

where ( )ik l  and ( )jm l  – are equalized vector-contours,  ( ), ( )ik jml l  – is a vector-contours dot

product, | ( ) |ik l and | ( ) |jm l - the norms (lengths) of the corresponding vector-contours.

The operations (2) and (3) with vector-contours are both performed on vectors of complex-valued 

numbers, which allows achieving the following features [1,3]: 

1. The sum of the elementary vectors of a closed contour is zero.

2. Invariance to the transfer (Figure 1): the vector contour does not depend on the parallel transfer

within the original image. 

3. Invariance to the rotation (Figure 1): rotating an image by a certain angle is equivalent to rotating

each elementary vector by multiplying it by a complex factor. 

4. Invariance to scaling (Figure 1): changing the image size is equivalent to multiplying each

elementary vector by the real scale factor. 

5. Changing the starting point leads to a cyclic shift of the vector contour. The NDP is not invariant

to the change of the initial point. 

The later feature requires to transform the NDP to the cross-correlation function (CCF) of vector-

contours, which in addition to the invariance properties of (2) is insensitive to the initial point’s shift: 

 ( )( ), ( )
( , , , , ) max

| ( ) || ( ) |

s

ik jm

s
ik jm

l l
i j k m l

l l


 


 
, (3) 

where 0,..., 1s l   is a shift from to the initial point, ( ) ( )s

jm l   – is a contour obtained from ( )jm l by

the cycle shift of its elementary vectors to s-elements. 

Figure 1. NDP invariance to the transfer, rotation, proportional scaling. 

The classification rule to determine the affiliation of a certain contour Г to 
iC class is: 

: arg max( ( , ) ) ,
( )

: max ( , ) ,

i i i
ii

i i
i

C i f T
C

i f T

        
   


Γ

Γ
, (4) 

where iT – is the classification threshold value for the aircraft of the i-th class, ( , ) [0,1]if     – is the

function for calculation the similarity value of the given vector-contour   to the set iΓ of reference

objects. 

The function for similarity value calculation can apply one of the two following criteria: 

1. Maximum CCF for a vector-contour Г and one of the reference instances ik :
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 ( )

1
,

( ), ( )
( , ) max

| ( ) || ( ) |

s

i ik i

i
k s

i ik i

l l
f

l l

 
 

 
Γ , (5) 

where 
il - is the optimal value of the vector-contour's items quantity for i-th aircraft class.

2. The mean CCF value for a i-th whole class:

 ( )

2

1

( ), ( )1
( , ) max

| ( ) || ( ) |

i
sN

i ik i

i
s

ki i ik i

l l
f

N l l

 
 

 
Γ . (6) 

The aim of the article is to create a contour analysis tuning method by the solution of the following 

problems: 

1. Determine the optimal values of the vector-contour's items’ quantity
1{ } CN

i il L and the 

classification threshold 
1{ } CN

i iT T in terms of the minimum total number of I and II type errors. 

2. Select a criterion to calculate the similarity value of the vector-contour to a set of reference

instances 
iΓ . 

3. Dataset details

The dataset we used within the experiment is divided into the training part, used to tune the

recognition method’s parameters and the test part for the verification.

The training dataset contains aerial images of optical range with a resolution of 0.15 m / pixel 

displaying the parking of decommissioned and reserved aircraft at the Davis-Monthan airfield [16]. 

The training dataset is compact and includes 430 images of the aircraft of eight classes: B-1, B-52, C-

5, C-37, C-130, C-135, P-3, and S-3. 

Figure 2 shows the examples of all 8 aircraft classes of the training dataset. Table 1 lists the 

characteristics of the classes and the instances’ contours. 

B-1 B-52 C-5 C-37 

C-130 C-135 S-3 P-3 

Figure 2. Image examples of aircraft in the training dataset. 

The classes of the training dataset differ significantly from each other both in the number of 

instances and in the degree of within-class similarity of their contours. An example of a significant 

difference in the instances is shown in Figure 3 for B-1 class: the nose cone (Figure 3a), the engines 

(Figure 3b), the slats, flaps, landing shields, rudders, stabilizers (Figure 3c, d) were removed. The 

other classes (for instance, B-52) have minimal differences in instances. 

The described differences in the training dataset require to calculate the optimal values of vector-

contours' items quantity and the classification threshold individually for each class. 

The test dataset is equivalent to the training one and contains 421 aerial images of three resolution 

levels: 0.15 (10 images), 0.3 (10 images) and 0.5 meters per pixel (402 images), shot in the Davis-
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Monthan and a few operating airfields. Figure 4 shows the examples of the aircraft included in the test 

dataset (the details of the test dataset are given in Table 2). 

Table 1. Characteristics of contours in the training dataset. 

Aircraft class B-1 B-52 C-5 C-37 C-130 C-135 P-3 S-3 

Instances count 17 10 20 11 135 81 92 64 

Mean items’ 

quantity 
1132 1945 2404 1227 1570 1420 1458 1132 

Items’ quantity 

histogram 

a)  b)  c)  d) 
Figure 3. Instances of B-1 aircraft having various dismantled elements. 

B-1       B-52 C-5      C-37 

C-130          C-135     S-3 P-3 

Figure 4. Images examples of the aircraft in the test dataset. 

Test images of 0.3 and 0.5 meters per pixel (for instance, B-1 and C-130 on Figure 4) have 

significant visual differences from the training set in contrast and brightness as well as in 

lighting/shading scheme so the major remaining recognition feature is the shape. Test images of 0.15 

meters per pixel were shot on the other season, have greater camera-to-surface angle, differences in 

color rendition and contain much more noise that seems to be caused by the lossy compression. All the 

described features of the test dataset strongly affect aircraft contours challenging the robustness of the 

proposed contour analysis’s parameters tuning method. 
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Table 2. Characteristics of contours in the test dataset. 

Aircraft class B-1 B-52 C-5 C-37 C-130 C-135 P-3 S-3 

Instances count 7 6 48 11 57 102 142 49 

Mean items’ 

quantity 
1263 1884 2441 1177 1483 1315 1345 1084 

Items’ quantity 

histogram 

4. Optimal classification thresholds calculation

To calculate the optimal classification thresholds 1{ } CN

i iT T , the measurements of within-class and 

between-class distances were made for all possible combinations of training dataset instances. 

The measurement of the within-class distance is a calculation of the CCF (3) for a particular non-

coincident pair of vector-contours of the same class. The measurement of a between-class distance is a 

calculation of CCF for a particular pair of vector-contours of different classes. 

An error of a within-class distance measuring (type II error or a false negative measure) [17] is the 

value of within-class distance that is less than the specified value of the classification threshold T: 

1, ( , , , , )
( , , , )

0, ( , , , , )
i

i i k m l T
e k m l T

i i k m l T






 


. (7) 

The error in between-class distance measuring (type I error or a false positive measure) [17] is the 

value of the between-class distance which is greater than the specified value T: 

1, ( , , , , )
( , , , )

0, ( , , , , )
ij

i j k m l T
e k m l T

i j k m l T






 


. (8) 

It is clear from formulas (7) and (8) that an increase in the threshold value T reduces in the number 

of type I errors but concurrently increases in the number of type II errors and vice versa. 

The optimal value for each aircraft class corresponds to the minimum number of type I and II 

errors for the given range of the vector-contour elements quantity l. 

The relative type II measurement error (the ratio of the within-class distance measurement errors to 

their total number) for the i-th class with the given l and T is defined as: 

( , , )
( , , )

( 1)

IC
IC

i i

N i l T
E i l T

N N


 
, (9) 

1 1,

( , , ) ( , , , )
i iN N

IC i

k m m k

i l T e k m l T
  

   , (10) 

where  IC  – is the number of type II measurement errors. 

The relative type I measurement error (the ratio of the between-class distance measurement errors 

to their total number) is calculated with the formula: 

1,

( , , )
( , , )

C

BC
BC N

i j

j j i

N i l T
E i l T

N N
 



 
, (11) 

1, 1 1

( , , ) ( , , , )
jC i

NN N

BC ij

j j i k m

N i l T e k m l T
   

   , (12) 

where  BCN  – is the number of type I measurement errors.



Image Processing and Earth Remote Sensing  

E N Dremov, S Yu Miroshnichenko and V S Titov 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)    228 

At each classification threshold value, the total relative measurement error 
min ( )E   is calculated as a 

minimal sum of relative type I and II measurement errors and represents an objective function [18] to 

compute an optimal threshold value T for 
iС  class: 

 min ( , ) min ( , , ) ( , , )IC BC
l

E i T E i l T E i l T  . (13) 

The vector-contour elements quantity l varies within the interval  100,...1000l  with a step of 10.

The interval boundaries are explained by the fact that the distinguishing features of the most aircraft in 

the training dataset are lost at 100l  , and 1000l   reaches the minimum quantity of items for some 

reference instances. 

The classification threshold changes within the interval  60,...,80T   with a step of 1. The

interval is chosen according to the following arguments: at 60%T   many instances of different 

classes are similar to each other, whereas at 80%T   a within-class similarity becomes insufficient 

due to the variety of contour shapes within a single class. 

The experimental data was used to create graphs of the total relative measurement error (13) 

dependence from the classification threshold for each aircraft class. The graphs shown in Figure 5 

provide the characteristic features of the most interesting classes of the training dataset. The B-1 class 

is described by significant differences between its instances, which is confirmed by high values of (13) 

in the range of 6-12% for the entire graph in Figure 5a with a slight predominance of type II 

measurement error. The B-52 class graph, on the contrary, demonstrates a rapid decline in type I error 

at a threshold of 60-70% with the following near-zero type II error on the right side of the graph. 

As for the C-130 and P-3 classes of propeller aircraft (Figure 5b), the outwardly similar contours 

are characterized by close graphs of (13) with the predominance of type I error for C-130 and type II 

error for P-3.  

a) b) 

Figure 5. Total relative measurement error (13) dependence from the classification threshold for 

classes B-1 / B-52 (a) and C-130 / P-3 (b). 

Formula (13) was used to calculate the optimal classification thresholds 1{ } CN

i iT T  for each class in 

the training dataset (the results of the calculation are given in Table 3): 

minarg min( ( , ))i
T

T E i T 
 

. (14) 

Table 3. Optimal classification thresholds. 
Class index 1 2 3 4 5 6 7 8 

Class name B-1 B-52 C-5 C-37 C-130 C-135 P-3 S-3 

Optimal value iT , % 63 71 66 69 69 69 66 74 

5. Optimal vector-contour’s items quantity calculation

The optimal values of vector-contour’s items 1{ } CN

i il L for each aircraft class are calculated on the 

basis of the total relative measurement error using the previously determined threshold 1{ } CN

i iT T . 

The sum of the relative measurement errors of type I (9) and II (11) errors represents an objective 

function to compute an optimal value of the items’ quantity il for iС class: 

( , ) ( , , ) ( , , )IC i BC iE i l E i l T E i l T  . (15) 

Graphs (Figures 6-7) show the vector-contour’s items optimal quantity corresponding to the 

minimum of (15) marked with a vertical line. The optimal items quantity for B-1 class (Figure 6a) lies 

near the intersection of the types I and II error graphs. The errors for a given class vary widely due to 
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the significant differences in its instances. The B-52 class items optimal quantity (Figure 6b) is 

determined only by the minimum of type I errors. 

a) b) 

Figure 6. Total relative measurement error (15) dependence from the B-1 (a) and B-52 (b) vector-

contour's items quantity. 

The optimal value of C-130 (Figure 7a) and P-3 (Figure 7b) classes biased towards type II error 

and is to the right of the intersection of both error graphs. Class C-130 is characterized by a higher 

total error value compared to P-3 due to more significant differences between the references instances 

of this class. 

a) b)

Figure 7. Total relative measurement error (15) dependence from the C-130 (a) and P-3 (b) vector-

contour's items quantity. 

Formula (15) was used to determine the optimal values of vector-contour's items quantity 

1{ } CN

i il L for each class in the training dataset (the results are presented in Table 4): 

arg min( ( , ))i
l

l E i l 
 

. (16) 

Table 4. Optimal values of the vector-contour’s items quantity. 
Class index 1 2 3 4 5 6 7 8 

Class name B-1 B-52 C-5 C-37 C-130 C-135 P-3 S-3 

Optimal value il 640 910 900 910 810 680 650 580 

The proposed optimal items’ quantity calculation method was experimentally compared to the most 

widely used heuristic methods including the use of: 

(a) the minimal items’ quantity of the certain class’s instances to minimize the type II error;

(b) the maximal items’ quantity of the certain class’s instances to minimize the type I error;

(c) the recognized object’s items quantity to retain its actual level of details.

The table 5 represents the total relative measurement error (15) per each aircraft class along with

the mean value for all the heuristic methods and the proposed one. 

Table 5. The total relative error for the proposed method and for heuristics. 

Row name Total relative error (15), % 

Class index 1 2 3 4 5 6 7 8 Mean error 

through all 

classes 
Class name B-1 B-52 C-5 C-37 C-130 C-135 P-3 S-3 

Heuristic (a) 12.18 20.00 38.66 0.09 13.68 7.59 11.97 8.38 14.07 

Heuristic (b) 12.18 13.33 26.29 0.09 21.23 3.70 10.00 3.97 11.35 

Heuristic (c) 11.49 8.89 19.29 0.15 11.42 2.53 7.32 2.58 7.96 

Proposed 

method 
9.42 0.00 2.13 0.00 6.51 0.23 4.18 0.76 2.90 
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The differences in results of heuristic methods (a-c) for certain classes emphasize the training 

dataset’s irregularity. The best heuristic solution is to use items' quantity of the recognized object, 

however, the proposed tuning method provides around 3 times less total measurement error. 

6. Criterion for similarity value calculation

To estimate the developed parameters tuning method and to select a criterion for the similarity value

calculation of a recognized vector-contour Г to a set of reference instances 
iΓ , we used the test dataset 

described in section 2. The test images of 0.3/0.5 meters per pixel resolution are upscaled to 0.15 

hence the instances of a certain class have close items’ quantities through the whole dataset. 

The recognition results for the test datasets obtained by the classification rule (4) in combination 

with the functions for similarity value calculation 
1f (5) and

2f (6) are presented in Table 6. 

Table 6. The results of test datasets recognition with the classification rule (4) in combination with 

functions 
1f and

2f . 

Class index 1 2 3 4 5 6 7 8 
Total 

Class name B-1 B-52 C-5 C-37 C-130 C-135 P-3 S-3 

1f

Type I errors 0 0 3 0 3 0 1 0 7 (1.66%) 

Type II errors 1 0 0 0 0 0 0 0 1 (0.24%) 

Total errors 1 0 3 0 3 0 1 0 8 (1.9%) 

2f

Type I errors 1 0 2 0 0 29 0 0 32 (7.6%) 

Type II errors 5 5 6 11 45 39 31 1 143 (33.9%) 

Total errors 6 5 8 11 45 68 31 1 175 (41.5%) 

Function (5) performs much better than (6) that is explained by the fact our parameters tuning 

method uses a similar to (5) pair-wise within-class and between-class distance calculation rule to 

define type I and II measurement errors.  

To reduce errors number we modified the classification rule (4) to combine the functions (5) and 

(6), integrate their merits and mutually compensate shortcomings. The modified classification rule 

becomes the following: 

2

1 2

1

: arg max( ( , ) ) ,

( ) : arg max( ( , ) ) , max ( , )

: max ( , ) ,

i i i
ii

i i i i i
i ii

i i
i

C i f T

C C i f T i f T

i f T

    
 

           

   


Γ

Γ Γ

Γ

, (17) 

The results of the test datasets recognition with the modified classification rule (17) are presented 

in Table 7. 

Table 7. Test dataset recognition results with modified classification rule (17). 

Class index 1 2 3 4 5 6 7 8 
Total 

Class name B-1 B-52 C-5 C-37 C-130 C-135 P-3 S-3 

1f +
2f

Type I errors 0 0 1 0 0 0 0 0 1 (0.24%) 

Type II errors 1 0 0 0 0 0 0 0 1 (0.24%) 

Total errors 1 0 1 0 0 0 0 0 2 (0.48%) 

The remaining type II error for the contour analysis method belongs to class B-1 and indicates the 

need to expand its training dataset with instances of the operating (non-disassembled) aircraft. The 

type I error for C-5 is explained by the segmentation algorithm fault. 
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7. Conclusion and discussion

In this paper, we presented the results of the experiment aimed to tune the contour analysis method to

recognize aircraft on aerial imagery. We calculated optimal values of the vector-contour’s items

quantity and the classification threshold through measuring within- and between-class distances for all

possible training set instances combinations with the following detecting and minimization of type I

and II errors. It is shown that each class has its own optimal values of these parameters due to the

features of the reference instances of the training dataset. We proposed a classification rule that

combines the merits of functions based on the best instance match and the mean CCF for class

respectively.

The vectors of further research are the development of new segmentation methods that allow 

solving the aircraft edges detection problem upon the conditions of camouflage, poor contrast with the 

underlying surface, illuminated and shaded areas, as well as close-lying airfield equipment. 
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