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Abstract. The forest and shrub communities are important components of the environment and 

provide a wide spectrum of ecological services. In the Samara region the forest and shrub 

cover is dispersed on the territory what makes its monitoring difficult. The forest areas are 

limited by natural and anthropogenic reasons since Samara region is a forest-steppe territory 

with a high level of human activity. The shrub communities are mostly the secondary 

ecosystems incorporated in natural grassy communities, agricultural fields or enclosing to 

forests. These specific ecosystems can be recognized on remote sensing data including satellite 

images supported by preliminary ground surveys. In this article, we present the study of the 

forest and shrub communities recognition using remote sensing images and ground surveys in 

the Samara region. We describe a process of the test site selection for remote sensing data 

verification and discuss the results of applying the author’s classification technology for 

multispectral remote sensing composites to classify forest communities in the Samara region. 

1.  Introduction 

Forest ecosystems are effectively involved in biosphere stabilization, planetary biodiversity 

conservation, environmental management provision being a valuable part of the natural wealth of the 

Russian Federation. In Russia, forest conservation is better organized than in other countries of the 

world. However, the forests of the Russian Federation European part show clear negative changes 

associated with deterioration of their qualitative composition, age and species structure as well as  the 

forest formation changes and the biodiversity reduction [1]. This fact provides the hopefulness of 

forest communities monitoring using remote sensing (RS) imagery aiming to obtain operational and 

independent observations of the current territory state. 

In Russian Federation forest monitoring results are used at different management levels. At the 

state level, forest monitoring tasks include “... operational monitoring of changes in the forest fund 

conditions caused by the forest use, natural and man-made impacts on forests, processing and analysis 

of these data, making forecasts for the forest protection and conservation, the forest resources rational 

use and the sustainable development of the forest sector of the Russian economy”. The legal basis for 

forest monitoring is the Establishment of the Council of Ministers of the Russian Federation dated 

November 24, 1994 N 1229 entitled “On the creation of a unified state system of environmental 
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monitoring” and the decision of the Interdepartmental Commission on Environmental Safety of the 

Security Council of the Russian Federation dated June 16, 1994 N 8, which recognized the need of 

forest monitoring system development and implementation a as part of a unified state system of 

environmental monitoring [2]. At the regional level, the functions of forest monitoring include the 

development and adaptation of methodology and software for organizing and conducting forest 

monitoring taking into account the specific features of the region [3]. In the Samara region, the forest 

monitoring tasks can be formulated as the regional verification of the RS data and the development of 

the forest communities classification technology according to the regional Forest Plan. 

This article describes an approach to solve these problems. The approach was developed by the 

experts in ecology and geoinformatics of Samara University. The approach takes into account the 

plant communities peculiarities of the Samara region. The article presents the results of the global 

statistics analysis made using the open information sources about the nature of forest and shrub 

communities changes in the region. The article describes the steps of the ground control polygons 

selection for the regional verification of remote sensing data. The article considers the authors’ 

technology of the supervised spatial classification based on seasonal composites of multispectral 

remote sensing data to define tree species for the test sites. The experimental results of classification 

technology testing for a territory with a known Forest Plan are also provided. Finally, the article 

includes some results on the analysis of the Forest Plan classification using verified remote sensing 

data in order to identify plant community changes. 

2.  Forest and shrub communities characteristics in Samara region 

The tree species dominance in mature forests is determined by geographic latitude changes. There are 

three main forest regions in Russia such as boreal, hemiboreal and nemoral. The north-eastern part of 

the Samara region belongs to nemoral forest region. For a nemoral region, the deciduous forests and 

the forest-steppe landscapes are the most typical [4,5]. 

According to the climatic conditions, the Samara region is a territory where the transition from 

forest-steppe to steppe takes place [6]. Since 1996 all the region forests were transferred to the first 

ecological group corresponding to the ecological situation [7]. In accordance with the forest vegetation 

zones approved by the order of the Ministry of Agriculture of Russia dated March 9, 2011 No. 61, the 

forests of the Samara region are assigned to the forest-steppe zone of the forest-steppe region of the 

European part of Russian Federation. All forests in the region belong to the protected areas in order to 

preserve the different types of natural resources. The forests play an important sanitary, hygienic, 

health and other useful roles [8] in the region. 

Due to the peculiarities of the regional natural conditions as well as the high anthropogenic 

transformation of the region, the areas covered with forest are highly fragmented. The whole forest 

coverage of the Samara region is about 12.8% of the total region area. The forest coverage for the 

different municipal subregions varies from 2% or less in the southern areas to 22-25% in the northern 

and northwestern areas [8,9]. 

From the beginning of the 19th century, the general forests change trends in the Samara region 

reflect a significant forest transformation. Forest area reduced in more than two times. A clear species 

composition changes including oak participation decreased and the aspen forests area increased as 

well as the tree age structure changes were detected. For example, the relict upland forest area and oak 

forest area continue to decrease in Zhiguli [10]. 

Figure 1 demonstrates the official statistical data characterizing the general indicators of the forests 

in the Samara region in recent years. The statistical data reflect a slight decrease and a subsequent 

return of the forest area indicators to the 2004 level. The more important point of the qualitative forest 

changes is the reduction in the young and middle-aged forests fraction as well as the increase in the 

fraction of ripe and over-mature forests. 

Figure 1 demonstrates that the species composition changes show the tendencies of the aspen and 

oak-occupied areas decrease and the simultaneous increase in the fraction of maple, ash, elm, poplar 

and shrubs-occupied areas. 
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Figure 1. Overall dynamics of forests indicators  in the Samara region in recent years (compiled 

according to the State reports from 2004 to 2017 [6,9-16]). 

 

Thus, the peculiarities of the forest plant communities in the Samara region are: 

1. The originality of the vegetation cover in terms of its ecosystem diversity, orographic 

localization, geology and soil characteristics; 

2. The presence of natural forests in the regional forest fund as well as the anthropogenic forests of 

various types and the secondary forest ecosystems developing during the revitalization of the disturbed 

areas and fallow lands; 

3. The significant heterogeneity of tree plantations in terms of area, localization, species and age 

composition, increasing due to succession changes; 

4. The considerable fragmentation and different affiliation of regional forest fund components. 

These peculiarities approve the necessity of a ground reference polygons network with a detailed 

description in order to classify the regional forest and shrub communities. The reference polygons 

network will be subsequently used for verification of the methods and algorithms applied to remote 

sensing data obtained for the territory of the Samara region. 

3.  Test site selection for remote sensing data verification 

To verify the results of manual decryption of remote sensing images and their automatic classification, 

the reference data must be available. For this reason, the regional network of the ground control 

polygons is needed to ensure the possibility of the remote sensing data verification and to set up the 

algorithms and technologies for the remote sensing data analysis taking into account the regional 
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specifics, i.e. the features of the territory composition and climatic features in the region. Since 2017, 

the specialists from Samara University have been working on the creation of the ground reference 

polygons network in the Samara Region. The target vegetation types include plant communities 

valuable for the regional biological diversity conservation. 

In 2018, a group of ecologists from this article authors’ team carried out a survey of the new 

ground control polygons belonging to the category of forest and shrub communities. The ground 

control polygons are located in the Krasnosamarsky and Novosemeikinsky forests of Samara region. A 

ground survey was carried out on the homogeneous species composition for these sites that can serve 

as a refugiums of protected species. For example, the oak and  birch forests are the areas where the 

rare species of orchids and ferns grow.  

Three ground control polygons were selected. They are shown in Figure 2. Polygon No. 1 is 

covered by birch, Polygons No. 2-3 correspond to the oak forests. Polygon No. 2 contains also 

insignificant birch impurities with the concentration less than 1%. Polygon No. 3 is characterized by 

the presence of birch and aspen impurities with the impurity concentration up to 10%. Due to the 

weather conditions in 2018 such as a long and cold spring with a rapid vegetation onset upon the hot 

weather beginning, the summer field surveys did not capture the phenological moment of the most 

distinguishable deciduous tree species and this fact was limited the number of surveys in this direction. 

   

Figure 2. Ground control polygons for birch and oak forests (initial ground survey). 

 

The survey of the shrub communities was carried out in the same period and allowed us to identify 

six polygons in the Bolshechernigovsky and Kinelsky districts of the Samara region. The centers of 

the selected polygons are shown in Figure 3. 

  
Figure 3. The centers of the ground reference polygons of shrub communities. 

 

In Figure3, Polygon No. 1 and No. 2 represent an unbroken shrub steppe with a projective cover of 

shrub crowns about 50%. The Polygon No. 1 is characterized by the predominance of Cytisus 

ruthenicus and Caragana frutex, for the Polygon No. 2 is dominated by Caragana frutex and 

Amygdalus nana. Polygon No. 3 is a closed shrub steppe with the projective cover of shrub crowns 

equal to 100% with a predominance of Caragana frutex. Polygon No.4 is the slope with feather grass 

steppe and does not contain shrubs. Polygon No. 5 is characterized by uneven overgrowing with 

shrubs with the average projective cover about  80-90%. Polygon No. 5 is characterized by shrubs of 

Caragana frutex as a monodominant and by an admixture of individual Ulmus foliaceae trees. Polygon 

No. 6 corresponds to a shrub steppe with the high crowns closeness and projective cover of shrubs 
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over 80%. The shrubs presented in Polygon No. 6 are 80% of Caragana frutex and 20% of Amygdalus 

nana. All selected shrub communities were presented by small areas of the size 100 × 100 m and less. 

Most of the shrub communities were located on the slopes with a noticeable height difference from 3 

to 20 m and arranged along the borders of more massive forest and steppe communities. 

A survey of shrub communities has shown that due to their secondary nature it is difficult to select 

fairly large homogeneous areas for them, Figure 4. 

 
 

 

  
Figure 4. General view of the shrub communities, June-July 2018 (upper photos - 

Bolshechernigovsky, lower photos - Kinelsky district of the Samara region). 

 

In addition, the field surveys have confirmed that shrub communities are poor by rare species of 

higher plants. However, shrub communities deserve further study because, due to agricultural 

landscapes environment around, they actually become the shelters for the fauna representatives 

including protected species of mammalian, birds and insects. 

It is obvious that the volume of allocated ground control polygons does not allow confident 

recognition of the forest and shrub communities due to the small size and the insufficient number of 

the test sites. However, the information about these polygons can be used to refine the classification 

results that were obtained by the training based on the geo-information data sources, for example, the 

maps of the protected natural territories and Forest plan. These data sources cannot be used without 

clarification due to the long period of update of geo-information data sources and paper cartographic 

materials. Thus, the clarification using ground control polygons will lead to an increase in the 

classification accuracy by means of the classification results verification. 

4.  Supervised local classification technology for detailed forest classification using multi-

temporal remote sensing data 

In this section, we describe a forest classification technology developed earlier by the part of the 

authors’ team and deliver the results of its application to the forest classification. We selected forest 

communities as the object of our experimental research because there are available regional Forest 

Plan data of the 2013-2014 years. The regional Forest Plan gives detailed information on tree species 

fraction for each forest parcel and can be used to train the classifier. As for the shrub communities, 

there were not enough amount of detailed ground truth data and the selected ground control polygons 

were too small to get the proper classification accuracy. Moreover, the small size of the shrub 

communities requires high-resolution images to be used for classification. But there were no available 
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high-resolution images at the moment of the research for the test site. Thus, we left the shrub 

classification for future research. 

The classification technology applied in this paper uses the multi-temporal remote sensing image 

composites as input. From the point of view of the plant-community analysis, the composites of multi-

temporal multispectral images obtained during the vegetation season provide a more comprehensive 

vegetation description because they reflect the differences in vegetation phenology. The classification 

is based on the spatial processing methods and the pixel-wise classification methods investigated in 

[17-18]. Originally, the technology was tested for the vegetation classification using hyperspectral 

data. This fact confirms its applicability to the multidimensional datasets. 

4.1.  Classification technology 

The classifier applies a composite of medium-resolution multispectral images, a training sample mask 

at the training stage and a test sample mask at the classification stage as input data. The image 

composite includes all spectral channels of all available cloudless images obtained during the 

vegetation season. The spectral bands necessarily include the channels related to the near-infrared 

(NIR) and red (R) spectral ranges characterizing the presence and density of green vegetation. The 

training sample mask represents an image of class labels defined for the image parts with the known 

classification. The test sample mask marks the pixels to be classified by the value “1” and “0”, 

otherwise. The classifier output is an image containing the class labels for each pixel. 

The overall classification technology involves the following stages: 

1. Feature extraction. 

2. Spatial preprocessing. 

3. Clustering. 

4. Segmentation. 

5. Supervised pixel-wise classification. 

6. Merging classification and segmentation results. 

7. Spatial post-processing. 

The feature extraction is performed by the dimension reduction using principal component analysis 

(PCA) method [19] and data normalization. The latter is used to place the features into the range [-1,1] 

that simplifies the further pixel-wise classification. 

Spatial preprocessing aims to reduce the level of noise in data keeping the edges in image as most 

as possible. We carry out spatial preprocessing using the median filter of the small size NN  . 

Clustering is used to find the groups of pixels with a similar feature description regardless of their 

spatial arrangement. In this paper, we applied the generalized expectation-maximization (GEM) 

clustering algorithm to implement this step [20]. GEM algorithm estimates the cluster count and 

cluster parameters according to the Gaussian mixture model of the data distribution. The algorithm 

assigns cluster labels according to the maximum conditional probability rule. 

During the segmentation stage, a spatial connectivity analysis of the clustering results is provided 

to obtain the segments that are homogenous in both spatial and feature domains. It is likely that each 

particular image segment entirely corresponds to one vegetation class. Both stages segmentation and 

clustering may be implemented as a single segmentation process adapted to the seasonal data 

processing, for example, using the method [21]. 

To implement the supervised pixel-wise classification we selected the support vector machine 

classification with the radial basis functions (SVM-RBF)[22]. This algorithm is one of the best pixel-

wise classifiers tested with the hyperspectral images of vegetation [23]. The algorithm is trained using 

the training sample mask and the training feature image. The classification model obtained after 

training is used for the further test sample classification. 

At the next stage, we perform merging of the pixel-wise classification and segmentation results. 

For this purpose, the majority voting is used by the segments, i.e. the final class label is the same for 

all pixels belonging to the same segment and it is defined as the most frequent class label for this 

segment. The resulting image is spatially much more homogenous than the image after pixel-wise 

classification. 
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Finally, spatial post-processing is performed. This kind of spatial post-processing was proposed in 

[18]. It is organized as the sliding window filter of size MM   and threshold T . For each window 

position, the dominant class is defined. If the number of pixels belonging to the window and 

corresponding to the dominant class exceeds the threshold T  and the class label of the current pixel 

differs from the dominant class label, the current pixel class is substituted by the dominant class label. 

This spatial post-processing algorithm is an analogue of the median filtration and tends to minimize 

the amount of singular misclassified pixels. 

4.2.  Forest classification using the proposed technology 

To train our classifier we applied the available Forest plan data as the ground truth information. These 

data represent a vector map of the forest parcels with the detailed tree species description. However, 

the last available Forest plan was made during the 2013-2014 years. Since the situation is likely to be 

changed for the past 5 years, the training sample obtained from the Forest plan might contain errors 

and lead to the classification inaccuracies as a result. 

To estimate the classification accuracy more precisely we performed our study in the following 

way. We divided the available Forest plan data into the training and control sets. Both sets included 

the forest parcels occupied mostly with one type of tree species and the dominant tree species fraction 

was more than 80%. Then, we trained the classifier using the training set and applied it to the control 

set to estimate the basic achievable classification accuracy. After that, we extracted the largest parcels 

that were classified differently from the Forest plan data. Extracted parcels were used for the ground 

survey to discover the reasons for misclassification. Finally, we corrected training and control sets 

using the ground truth data obtained by the survey and estimated the classification accuracy using the 

corrected ones. 

The experimental research was conducted for the Krasnosamarskoye forestry as a test site. It is the 

largest forest area in the Samara region. The remote sensing data included 17 cloud-free and 

atmospherically corrected Sentinel-2 [24] images obtained for the period from April to October 2018. 

The multi-temporal image composite derived from these images contained 136 components in 8 

spectral bands. The spatial resolution of the image composite was 10 meters. We omitted the spectral 

channels with the original spatial resolution of 60 meters and applied an image sharpening to convert 

20-meters channels into 10-meters representation using Scanex Image Processor software [25]. 

The forest parcels extracted from the Forest plan data included 9 tree classes: birch, elm, oak, 

willow, maple, aspen, pine, poplar and ash. The vector objects of forest parcels were converted into 

compatible raster representation i.e. the mask image with the class labels had the same spatial 

resolution as the remote sensing image composite. 

The training and control mask images were generated separately and composed two different pixel 

sets with empty intersection. We formed our training set by the random selection of pixels from the 

northern part of the forest. To avoid the classifier adaptation to the particular class distribution, we 

included the fixed number of pixels per each class into the training set. As a result, our training set 

contained 2000 pixels per each class. The parcels from the southern part of the forest constituted the 

control set. 

To obtain the classification results we applied the classification technology described above with 

the following parameters. The number of PCA components used as features was 40 and the pre-

processing and post-processing spatial filtration parameters were 5,3,3  TMN . The achieved 

classification accuracy for the control set was 0.8160. Figure 5 demonstrates the largest 43 

misclassified forest parcels. For these parcels, the classification results mismatched the original Forest 

plan data. 

4.3.  Classification error analysis 

The forest parcels defined as the ground polygons for remote sensing data verification confirmed the 

correct classification of these parcels using the proposed classification methodology. A large area of 

these parcels explaines the long-term resistance of their vegetation communities to significant 

changes. This fact allows us to conclude that the selected ground polygons are suitable for verification 
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of remote sensing data in a wide time interval if the changes caused by emergency and anthropogenic 

activities remain minimal for these polygons. 

  
Figure 5. 43 largest forest parcels with classification errors: the map (left) and the mask (right). 

 

As for the forest parcels with an erroneous classification for which the Forest plan data do not 

coincide with the classification results, we made an additional analysis to identify the causes of the 

erroneous classification. 13 of the 43 largest forest parcels were selected to be verified by the ground 

survey that was conducted in the autumn of 2018. The survey included an assessment of the tree 

species composition and a determination of the current ecosystem status. 

The survey demonstrated that 8 from 13 visited parcels have unsatisfactory Forest plan data that do 

not correspond to the current state of the forest. Figure 6 shows the examples of the changes occurred 

in the observed forest parcels. 

 
 

 

  
Figure 6. The changes in forest parcels of the Krasnosamarskoye forestry: the loss of old trees and the 

introduction of young ones (upper images); burned conifer areas (bottom images). 

 

The discovered reasons for the Forest plan data inconsistency are listed below 

1. The loss of old trees and the introduction of young ones of other tree species into the emerging 

places leading to a partial change of the dominant tree species and the spatial distribution pattern of 

the forest. 

2. The burning down of the tree layer as a result of fires in recent years leading to parcel 

overgrowing by aspen and birch. 

3. The young age of conifer in some parcels leading to the different spectral reflection in 

comparison with the ripe conifer. 

4. The inaccuracies in forest parcel partition in the Forest plan used. 
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5.  Conclusion 

The research presented in this paper deals with the problem of forest and shrub vegetation 

communities estimation using remote sensing data in the Samara region. The paper addresses such 

issues as the ground control polygons selection for the remote sensing data verification, the 

classification accuracy assessment for the regional forest sites and the reasons for possible 

misclassification. We conducted our study in three stages including a preliminary ground survey, 

remote sensing data classification and the classification error analysis supplemented by the final 

ground survey. 

As a result of the preliminary ground survey, a set of ground control polygons corresponding to 

different forest and shrub communities was selected. These polygons were included in the regional 

ground control polygons network that can be used for remote sensing data verification in the natural 

vegetation studies in the Samara region. For the selected polygons, up-to-date description of the 

vegetation state was described. 

During the classification stage, we applied the earlier developed original classification technology. 

The training and control sets were defined using the available Forest plan data. The classification 

accuracy achieved was 0.8160. 

The classification results analysis made for the selected ground control polygons of forest 

vegetation showed that the selected polygons are resistant to significant changes over the past 5 years 

and, therefore, they represent the sustainable plant communities that can be used to verify other 

classification methods and algorithms of these communities in the Samara region. 

To analyze the discrepancy between the classification results and the Forest Plan, an additional 

ground survey of the largest sites with discrepancies was made. The survey revealed that the 

classification errors mostly deal with the inaccuracies in the forest parcel boundary of the Forest plan 

and with the significant changes in the dominant species composition within these areas. Overall 

classification error analysis confirmed the effectiveness of the forest classification by the technology 

regarded in this paper since the classification errors highlight the forest parcels with significant tree 

species changes. 

As for the shrub communities, it was found that in the Samara region these communities are 

arranged in the small places with the significant elevation difference (from 3 to 20 meters). Therefore, 

the study of shrub communities requires the use of high-resolution remote sensing instruments or 

unmanned aerial vehicles to obtain the representative remote sensing dataset. The future research is 

planned to involve these types of data for the shrub communities investigations. 
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