
Dynamic Signature-based Malware Detection Technique

Based on API Call Tracing

Oleg Savenko[0000-0002-4104-745X], Andrii Nicheporuk[0000-0002-7230-9475] , Ivan Hurman and

Sergii Lysenko[0000-0001-7243-8747]

Khmelnitsky National University, Khmelnitsky, Ukraine

{savenko_oleg_st@ukr.net, andrey.nicheporuk@gmail.com,

devastator192@gmail.com, sirogyk@ukr.net}

Abstract. The paper presents a method for a malware’s signature generation

based on API call tracing. Technique allows malware detection using a pro-

posed form of signature. The main idea of proposed signature generation is a

difference between frequency and interaction of a critical API calls performed

by malicious program and benign applications in the process of their own exe-

cution. Accordingly the program's behavior signature based on API call tracing

consists of two components: the call frequency and the nature of the interaction

of critical API calls. An analysis of the first component allows determining the

distribution of the critical API calls by groups concerning theirs malicious ac-

tivity and displays the quantitative component of the signature. An analysis of

the second component of the signature provides an opportunity to distinguish

malware from benign applications not only in the presence of critical API calls,

but also in their interaction with each other. The experimental results showed

that the effectiveness of the malware detection using proposed signatures is up

to 96.56%.

Keywords: Malware, Cybersecurity, Signature, Behavior, API, API Call Trac-

ing, Chi-Squared Test

1 Introduction

Today, the importance of the problem of cybersecurity is beyond doubt. Since new

instance of malware are created and spread faster than the tools are able to identify

them, there is always a gap in detection, which leads to computer systems’ infection.

According to the McAfee threat report, the number of new samples of malicious

software at the end of 2018 has exceeded 60 million [1]. Moreover, the total amount

of malware continues to grow in exponentially. This is due to the creation of new

technologies and tools for the malware development and improvement of the antivirus

evasion techniques [2-4]. Therefore, the development of new methods for malicious

software detecting remains an important task.

In this work we propose dynamic signature-based malware detection technique

which involves executing a possibly malicious piece of code or executable and detect-

ing its effect upon execution by using specialized monitoring mechanisms. As a fea-

ture of detection the API calls that made by executable was chosen. Application Pro-

gramming Interface or API is a medium communicating layer between Windows

mailto:andrey.nicheporuk@gmail.com
mailto:devastator192@gmail.com,savenko_oleg_st@ukr.net
mailto:sirogyk@ukr.net

2

environment and executable. Experimental studies show that malicious and benign

programs can be distinguished by API calls frequency performed by them [5].

So our goal is to develop a signature of executable that based on API calls, the

analysis of which would allow to separate malware and benign applications.

2 Related works

Today, a number of methods and techniques are used to detect the malware by antivi-

rus tools. The most important is signature analysis. A classic signature-based analysis

is based on comparison of a byte patterns or a checksum demonstrates its inefficiency

for malicious software that modifies its own code. Therefore, the attention of re-

searchers is focused on the development of new approaches for the signatures genera-

tion on the basis of other features that would be able to describe the malware’s behav-

ior fully.

In [6] authors are focused on the problem of attack for sensible data with the aid of

the virus scanner itself with the use of extracted signatures. The method for automati-

cally deriving signatures from anti-virus software was proposed. Method involves

steps: the determination of relevant bytes in each malware sample by utilizing feed-

back from the virus scanner over multiple runs; aligning the relevant bytes from sam-

ples with the same signature and merge them into a single sequence by employing the

Needleman-Wunsch algorithm; the transformation the merged sequences into a valid

signature format. However, in case then several signatures present in single malware

binary, proposed method is not able to recognize any of them.

Authors of DeepSign [7] apply deep belief network (DBN) to solving the problem

of malware signature generation and classification. It uses the Cuckoo sandbox to

record the execution behavior of each malware. Then, it treats the behavior report as a

raw text file and uses uni-grams to convert each report into a 20,000 bit vector. The

bit vectors are then fed into deep belief network to generate signatures. Finally, the

signatures are fed into a support vector machine for classification. Experiments on

1800 malware samples without benign applications show that DeepSign is able to

reach 96.4% accuracy. However, in order to obtain the high reliability of the experi-

ment, the test sets should contain, in addition to the malware, also benign applica-

tions, since the rate of false positives is no less important than the accuracy.

In work [8] authors have proposed a method which combines use signature-based

and anomaly-based detections. The proposed framework mainly consists of three

modules: a database of malware and the PE file, modules of static and dynamic analy-

sis, and a module of classification by similarity analysis. The static analysis consists

of the de-obfuscation of packed malware in order to know the packers names and the

contribution level of each of them. A dynamic analysis module consists of a virtual

environment set up by Cuckoo Sand-Box to run the executable files of malware with-

out infecting the rest of the system. As a result a list of API call sequences that reflect

the malware behavior of its code have been used to detect behavior such as network

traffic, modifying a file, writing to stderr or stdout, modifying a registry value, creat-

ing a process. For classify malware behaviors similarity analysis and various machine

learning algorithms were used.

Another API call signature-based approach to malware detection is presented in

[9]. To have a higher level of abstraction, related Win-APIs have been mapped to 26

3

categories, which differ in the nature of the actions performed (files, system registry,

etc.), so the behavior of each malware is captured through sequence of these 26 cate-

gories of APIs. In order to generate signature Context Triggered Piecewise Hash

(CTPH) was computed. The concept of fuzzy hashing has been used as it has the ca-

pability to compare two different samples and determine the level of similarity be-

tween them. Instead of generating a single hash for a file, piecewise hashing generates

many hashes for a file based on different sections of the file.

In [10] a new information technology for botnets detection based on the analysis of

the botnets’ behaviour in the corporate area network is proposed. Botnets detection is

performing combining two ways: using network-level and host-level analysis. One

approach makes it possible to analyze the behavior of the software in the host, which

may indicate the possible presence of bot directly in the host and identify malicious

software, and another one involves monitoring and analyzing the DNS-traffic, which

allows making conclusion about network hosts’ infections with bot of the botnet.

Based on this information technology an effective botnets detection tool BotGRAB-

BER was constructed. It is able to detect bots, that use such evasion techniques as

cycling of IP mapping, “domain flux”, “fast flux”, DNS-tunneling.

The mentioned above methods of detecting viruses have shown a high level of ef-

fectiveness, but inserting and executing dummy and redundant API calls can lead to

an increase the false positives rate.

Therefore, this study is focused on a problem of creation malware detection meth-

od, the basis of signature generation, which is invariant to small scale changes.

3 Dynamic signature-based malware detection technique based

on API call tracing

The usage the obfuscation and anti-evasion techniques in malware disables the possi-

bility to isolate a constant part of program code, the analysis of which would make it

possible to detect a possible infection. However, it becomes possible using the API

calls as the basis for signature, that is, the set of classes, procedures, functions, struc-

tures and constants provided by the application or the operating system for use by the

external software products.

In order to implement a malware detection process, a new technique has been de-

veloped. It involves the following steps:

1. Data preprocessing:

1.1 Signature generation for malware class based on API call tracing of each

malware instance;

1.2 Determination of the membership degree of each sample to malware

class.

1.3 Construction of a database for malware’s behaviors classes and its mem-

bership degrees to each classes.

2. Detection of a malicious program represented by signature of program behav-

ior based on API call tracing:

2.1 Monitoring of the executables and their API call tracing;

2.2 Signature construction of the suspicious program;

2.3 The search of the virus signature within the class and the determination

whether the suspicious program belongs to one of the malware’s class;

4

2.4 Assignment the malware families (variant).

Let us take a closer look at each step of the method.

3.1 Data preprocessing.

The programs’ executing process uses the API calls. For example, in order to per-

form the searching of the executable files to be infected, a virus program as a rule

uses the following sequence of API calls: FindFirstFileA, FindNextFileA and

FindClose, which are located in the KERNEL32.DLL library. Thus, the specified

sequence of API calls can be used to build the signature of the malicious program. In

general, it can be noted that the usage of API calls as a signature allows isolating a

constant semantic (behavioral) component, while the syntactic component will be

different.

In order to trace API call, the software that monitors and displays API calls made

by observed applications and services was used. A result of the data preprocessing

stage is a file with a list of API calls. The next stage of the method involves the signa-

ture generation based on API call tracing.

3.2 Signature generation based on API call tracing

Signature generation of the a malware instead of using all the API calls the malware

performs, involves only critical API call [9, 10]. Critical API calls contain all API

calls that can lead to security infraction, changes to the operating system's behavior or

API calls used for communication (modification of the system registry value, In-

put/Output, API functions for network resources access, etc.). It should be noted that

in the process of the malware’s signature generation doesn't take into account the API

calls which can be added or removed from the virus program without modifying its

malicious behavior (for example, MessageBox, printf, etc.).

The signature of program behavior based on API call tracing can be presented as a

set of two components (fig. 1): the call frequency and the interaction of the critical

API calls. An analysis of the first component allows determining the distribution of

the critical API calls by groups concerning theirs malicious activity and displays the

quantitative component of the signature. The second component of the signature im-

plies the mapping the nature of the interaction of malware’s critical API calls into the

vector space, and have describes their interactions.

In order to describe the nature of the critical API calls interaction, let us present

the malware as a directed graph:

,, EVGV  (1)

where V is a set of vertexes of a graph, which presents a group of critical API func-

tions, and E is the set of transitions between groups of the critical API functions,

which describe the malwares behavior.

For a formal definition of the malware’s signature, let us present it as a tuple:

,,,,, EG ndDFАS  (2)

https://www.multitran.ru/c/m.exe?t=3202597_1_2&s1=%EA%EB%E0%F1%F1%E8%F7%E5%F1%EA%E8%E9%20%E8%ED%E4%E5%EA%F1%20%C2%E8%ED%E5%F0%E0%20%F0%E0%E2%E5%ED%20%F1%F3%EC%EC%E5%20%F0%E0%F1%F1%F2%EE%FF%ED%E8%E9%20%EC%E5%E6%E4%F3%20%E2%F1%E5%EC%E8%20%EF%E0%F0%E0%EC%E8%20%E2%E5%F0%F8%E8%ED%20%E3%F0%E0%F4%E0

5

where А is the set of API calls, performed by malware of the class iC ; F is a set of

frequencies of the critical API calls; D is vector of the graph’s vertex degrees; Gd is

the diameter of the graph; En – number of edges of the graph.

During signature generation of the malware's behavior based on the tracing of API

calls, common to both phases is the categorization of API calls by classes. To gener-

ate the signature of malware, all set of critical API calls were divided into 26 classes

[11, 12]. Table 1 shows the examples of API calls classes and their description. For

example, the DeleteFiles and CreateDirectory functions are defined as Class B, i.e.

functions for processing files and directories. If we have sequence API calls with

CallNextHookEx, isDebuggerPresent and CreateProcess, then we will receive the

following sequence “AFH” as the part of the signature. Mentioned above representa-

tion of API calls can compactly store the program’s behavior presented by API calls.

Additionally, combining API calls into classes of critical actions allows representing a

set of functions as a group by theirs functionality (for example, CreateProcessAsUser

and CreateProcess are similar by its executed functions) and can be used for different

samples belonging to the same malware family. Furthermore, the process of signature

generation and categorization of critical API calls doesn’t take into account the func-

tion’s input parameters and the result of its execution.

Fig.1. The signature generation of the malware's behavior based on the tracing of API calls

Table 1. API calls classes, their description and examples

API class Description Examples of API function Number

of API

Class A Hooking function CallNextHookEx, SetWindowsHookEx 12

Class B File and directory DeleteFiles, CreateDirectory, CopyFile 242

Class C System registry RegCreateKey, RegDeleteValue 48

Class D Synchronization CreateMutex,CreateMutexEx 213

… … … …

Class Z Device management features DeviceControl, DvdLauncher 24

6

The analysis of the frequency critical API calls allows defining the membership

degree - a measure of belongingness of malicious program to a malware class. It will

determine the relationship between the malware sample and one of the malware clas-

ses in terms of the number of critical API calls. This is a necessity statement for as-

signment of the suspicious program into one of malware or benign programs classes.

However, the analysis of this parameter does not provide information about the nature

of the interaction between critical API calls, and, accordingly, it is not possible to

refer the suspicious program to a certain modification of the malware, but only to the

whole class.

Therefore, the second component of the malware's signature is intended to reflect

the nature of the interaction and the relationship of the malware’s critical APIs, as it

allows separating the malware samples within the class.

To this end, the virus program can be represented as a directed graph D (1). For

example, having the a set of degrees of vertex {3,3,2,2,1,1}, it is possible to construct

the following graphs as in fig.2.

Examples of simple graphs demonstrated in fig. 2 with the same degrees of vertex

are characterized by the presence of a constant component (connections in the form of

a square). Similar patterns can be inherent in malware.

In addition, to distinguish malwares within the class, let us involve two features:

the graph diameter and the number of edges. The graph diagram determines the max-

imum sequence of the critical API calls, while the number of edges determines the

total number of actions performed by the malware.

Fig. 2. Graphs with same the vertices degrees of a {3,3,2,2,1,1}

(the vertices represent the critical API calls)

3.3 Determination of the degree of membership of malicious program to a

malware class.

One of the components of the proposed signature is a set of frequencies of the crit-

ical API calls. On the basis of this set the definition of the degree of membership of

malicious program to a malware class is carried out. Thus, the signature base besides

the frequencies of the critical API calls should contain the degree of membership of

malicious program to a malware class.

The evaluation process for the degree of membership of malicious program to a

malware class is based on the difference between the number of API calls performed

by malicious program and benign applications in the process of their own execution.

Therefore, the distinguishing between the classes of malicious programs and benign

applications is possible by their behavior, that is, by the sequence of critical API calls.

7

In order to construct the behavior of a malware class },...,,{ 21 x
iiii cccС  on the

basis of frequencies of the critical API calls, let us represent the behavior of an mal-

ware’s sample of this class as a tuple (
j

ic –malware’s sample of the class iC , where

х – the number of malware’s samples of the class iC):

,,...,, 2621 fffc
j

i  (3)

where 2621 ,...,, fff – the frequencies of the critical API calls.

Let us group all the frequencies values of the critical API calls
j

ic (i
j

i Сс ) and

represent them in the form of a matrix
iCR :

,

,...,,

...

,...,,

,...,,

2621

2621
2

2621
1





























fffc

fffc

fffc

R

x
i

i

i

Ci
 (4)

Based on the formed matrix
iCR , let us definite the malware’s behavior of the class

iC

as the set of mean values of the calls for each of critical API functions class:

,,...,, 2621 FFFS
iC  ,

1

0






x

j

ji f
x

F (5)

where j is the class of the critical API calls.

On the basis of the received behavior of the malware class
iCS , the determination

of the degree of membership of malicious program to a malware class iC

is carried

out using Chi-square test. The Chi-square test determines the maximum probability of

a statistical significance test that measures the difference between proportions in two

independent samples.

Then, to obtain the membership degree to class iC , with the use of the Chi-square

test, the determination of the difference between the proportions in the signature of

the malware class
iCS and each of the samples’ behaviors of the

j
ic

with the correc-

tion for continuity using the Yates's correction is carried out as follows:







26

1

2
,2 ,

)5.0|(|

,

,

l C

C
j
li

j

li

li

S

Sc
 (6)

where l is the corresponding class of critical API calls.

As a result a set of values pairs (
j

ii c,2) is obtained.

The next stage of method involves the determining of the average value of the

membership degree to the malware class iC using formula:

8

.
1

1

2




x

i

iC
xi

 (7)

Thus, the parameter
iC determines the membership degree of suspicious sample

j
ic to malware class and allows evaluating malware relationship within the class iC .

3.4 Detection of a malicious program represented by signature of program

behavior based on API call tracing.

Having the membership degrees
іС

 for each of malicious and benign programs

to classes Ci and the constructed signatures Sj it is possible to perform the suspicious

program’s detection.

The first step of the proposed method of detection involves determining the mem-

bership degree to one of the malicious or benign programs class. For this purpose,

using the Chi-square test (7), the difference between the proportions of the frequen-

cies of the critical API calls of a suspicious program (first part of S signature) and the

frequency of critical API calls for each class (5) is determined.

As a result, a set of the values of membership degree of the suspicious program to

each of the classes is obtained. Then the class with the best matches for the given

signature is determined based on the following condition:

|)min(|
ij CS   (8)

where
jS is the value of the membership degree to each of the j-th malware classes.

As a result, a class iC that corresponds to the suspicious program by the frequen-

cy of critical API calls is determined.

The next step of the method involves the search of the virus signature within the

class iC . Let us consider the second component of the proposed signature (2) and

denote it as a features vector V:

2821 ,...,,,, vvvndDV EG  (9)

The specified vector consists of 28 numerical attributes, where 26 characters de-

termine the degree of vertex of the graph (each vertex of the graph is determined by

the class of critical calls of ARIs), and the last two are the diameter of the graph and

the number of edges.

In order to distinguish the suspicious program within a malware classes, the classi-

fication of features vector V is carried out. It allows to assign the suspicious program

to one of the virus modifications. As an algorithm of machine learning, a Naive Bayes

classifier was chosen, as it is widely used in image recognition, is easy to implement

and does not require a large training set [13, 14]. The idea behind a Naive Bayes algo-

rithm is the Bayes’ Theorem and the maximum posteriori hypothesis. Bayes theorem

finds the probability of an event occurring given the probability of another event that

has occurred already. In order to determine the belonging of the features vector V to

9

the j-th modification of the i-th malware family jiC ,
with probability)|(, jiCVP ,

let's write down Bayes' theorem in the following way.

)(

)()|(
)|(

,,
,

VP

CPCVP
VCP

jiji
ji  (10)

The determination of the most probable hypothesis using a posterior maximum is

carried out as follows:





26

1
,,)|()(maxarg

,
i

jikji
Cc

CvPCPc

ji

 (11)

Thus, the technique of the signature formation for a malware, which is invariant to

minor changes, is presented. The malware detection approach via proposed malware’s

signatures is proposed. It allows not only to distinguish detected malware to proper

class, but also to determine its modification.

4 Experiments

In order to evaluate the effectiveness of the malware detection based on proposed

method, experimental studies were conducted. For this purpose, 280 malware samples

received from the VX Heavens resource [15] were used. All malware belongs to the

virus families Ramnit, Gammima, Delf, Bifrose and MyDoom of various modifica-

tions (Table 2). Except for the virus programs, 74 benign applications were used,

which are executable files of the operating system MS Windows© (mspaint, bfsvc,

etc.). All malware samples of and utility programs were divided into: the training and

testing sets. The training sample set consisted of 81 viral programs and 20 benign

programs. The rest of malicious and benign samples were used to conduct the testing.

Table 2. Number of samples for each of malware families and benign applications.

 Training set Testing set

 Malware variant Samples Malware variant Samples

Malware Ramnit a 12 b,c 37

Bifrose a 17 ae, aq, bg, bh 33

Delf g 13 a, d, f, h, r 41

MyDoom c,h 21 a, b, g, f 51

Gammima a 18 b, c 37

Benign Windows app - 20 - 54

The experiments involved the execution of all the samples and obtaining its API

call sequences using API Monitor [16]. The next stage involved the behavior's base

formation for all viral classes. For this purpose, for each class, membership degrees

were determined using the Chi-square test (3-8). The classification results are pre-

sented in the table 3. It shows that the best detection accuracy was shown for the virus

programs of the class MyDoom (96,56%) with a false positive values 3,78%. At the

same time, the lowest accuracy rate of detection was seen at the level 92,74%, that

defines overall accuracy of the proposed technique in the range from 92,74% to

10

96,56%. It should be noted that in case of wrong assignment of the malware to anoth-

er modification of the same class, the result of such an experiment was considered as

unsuccessful. For example, if the Delf.a virus was classified as a Delf virus class with

modification b.

Table 3. Classification result

Malware FPR FNR Precision Recall Accuracy

Ramnit 1,25% 8,56% 97,25% 96,54% 96,42%

Bifrose 5,12% 4,23% 92,12% 92,54% 93,80%

Delf 3,32% 4,89% 91,45% 91,23% 92,74%

MyDoom 3,78% 3,54% 94,37% 93,28% 96,56%

Gammima 2,74% 3,40% 92,76% 91,61% 93,10%

5 Conclusion

The paper presents a method for a malware’s signature forming based on API call

tracing. Technique allows malware detection using a proposed form of signature. The

program's behavior signature based on API call tracing consists of the call frequency

and the nature of the interaction of critical API calls. The detection process using the

proposed signature enables to distinguish the malicious programs from benign not

only by the presence of the critical API calls, but also in their interaction with each

other. The experimental results showed that the effectiveness of the malware detec-

tion is up to 96.56%.

Presented technique of malware detection using a proposed form of signature has

shown good detection accuracy and intended for specialists in the antivirus industry,

which are engaged in the analysis of malware and support for antivirus databases.

However as a majority of a dynamic approaches our method have some limitations,

which are primarily related to the obfuscation and detection evasion techniques em-

ployed by the malware authors who try to develop stealth malware. In future we will

concentrate to overcome this shortcoming.

References

1. McAfee Labs Threat Report. December 2018. Availabe: https://www.mcafee.com

/enterprise/en-us/assets/reports/rp-quarterly-threats-dec-2018.pdf

2. Savenko, O., Lysenko, S., Nicheporuk, A., Savenko, B.: Approach for the Unknown Met-

amorphic Virus Detection. In: 9-th IEEE International Conference on Intelligent Data Ac-

quisition and Advanced Computing Systems. Technology and Applications, Bucharest,

Romania, pp. 453-458 (2017)

3. Savenko, O., Lysenko, S., Nicheporuk, A., Savenko, B.: Metamorphic Viruses’ Detection

Technique Based on the Equivalent Functional Block Search. CEUR Workshop, Vol.

1844, pp. 555-569 (2017)

4. Pomorova, O., Savenko, O., Lysenko, S., Nicheporuk, A.: Metamorphic viruses detection

technique based on the modified emulators. CEUR Workshop, Vol. 1614, pp. 375-383

(2016)

11

5. Ki, Y., Kim, E., Kim, H.K.: A novel approach to detect malware based on API call se-

quence analysis. International Journal of Distributed Sensor Networks - Special issue on

Advanced Big Data Management and Analytics for Ubiquitous Sensors, Vol. 2015 (2015)

6. Wressnegger, C., Freeman, K., Yamaguchi, F., Rieck, K.: Automatically Inferring Mal-

ware Signatures for Anti-Virus Assisted Attacks. In: Proc. of the 2017 ACM on Asia Con-

ference on Computer and Communications Security, pp. 587-598 (2017)

7. David, O.E., Netanyahu N.S.: Deepsign: Deep learning for automatic malware signature genera-

tion and classification.: International Joint Conference on Neural Networks, pp. 1-8 (2015)

8. Ndibanje, B., Kim, K.H., Kang, Y.J., Kim, H.H., Kim, T.Y., Lee, H.J.: Cross-Method-

Based Analysis and Classification of Malicious Behavior by API Calls Extraction. Applied

Sciences, Vol. 9 (2), pp. 1-15 (2019)

9. Gupta, S., Sharma, H., Kaur, S.: Malware Characterization Using Windows API Call Se-

quences: In Proc. of the Sixth International Conference on Security, Privacy and Applied

Cryptographic Engineering, (2016)

10. Lysenko, S., Savenko, O., Bobrovnikova, K., Kryshchuk, A., Savenko, B.: Information

technology for botnets detection based on their behaviour in the corporate area network.

Communications in Computer and Information Science, Vol.718, pp. 166-181 (2017)

11. Windows Developer Center, https://msdn.microsoft.com/en-us/windows

12. Lim, H.: Detecting Malicious Behaviors of Software through Analysis of API Sequence k-

grams.: Computer Science and Information Technology, Vol. 4 (3), pp. 85-91 (2016)

13. Mansour, A.M.: Texture Classification using Naïve Bayes Classifier: International Journal

of Computer Science and Network Security, Vol.18, No.1, pp. 112-120 (2018)

14. Brad, G.V.: Uses and misuses of Bayes’ rule and Bayesian classifiers in cybersecurity. In

Proc. of the 43-rd International Conference Applications of mathematics in engineering

and economics, pp. 1-8 (2017)

15. VX Heavens Computer virus collection. Availabe: http://vx.netlux.org

16. API Monitor. Availabe: http://www.rohitab.com/apimonitor

https://msdn.microsoft.com/en-us/windows

