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Abstract. If one examines the spot price series of electrical power over the 

course of time, it is striking that the electricity price across the day takes a 

course that is determined by power consumption following a day and night 

rhythm. The daily course changes in its height and temporal extent in both, the 

course of the week, as well as with the course of the year. This study deals 

methodologically with this intra-day and seasonal behaviour. We contribute the 

usage of Generalized Additive Models (GAM) and apply these models with 

European data. 
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1 Introduction 

Since the come about of energy deregulation in the 1990s, the electric power industry 

has undergone significant restructuring, driving the market away from its natural mo-

nopoly and opening chances for thriving competition and reduction in prices through 

privatization. As a result, the last two decades have seen a remarkable rise in im-

portance of electricity price forecasting (EPF). Invaluable inputs are provided in aid 

of optimal decisions and responses from both producers and retailers in the pool-

based market. 

Electricity, though conforming to the definition of a commodity [11], is a special 

case with very distinct characteristics: non-storability of electricity, inelasticity of the 

short-term demand, wide spectrum of cost, and oligopolistic behavior of the genera-

tors [20]. Without any loss-free form of storage, it is crucial that great effort is needed 

to ensure and maintain the stability of a balanced supply and demand [10]. Hence, 

there are many challenges in modeling electricity prices. 

In comparison to the time series of the electricity load, Aggarwal et al. [1] men-

tioned that the series of the electricity price oftentimes contains patterns of much 

greater complexity, including non-constant mean and variance, strong seasonality and 

various calendar effects. Moreover, EPF models must effectively cope with numerous 

abrupt large jumps in the course of the time series. This phenomenon is attributable to 

problems with transmission infrastructure and unforeseeable, non-proportional or 

inverse fluctuations in demand and supply [8]. Ziel et al. [28] also pointed out that the 
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existence of a universal model for electricity price forecasting is highly improbable 

due to vast differences among countries, such as their individual political and climatic 

circumstances. Thus, not all the findings and methodologies successfully employed to 

one country are applicable to another country or region. 

For these reasons, many different approaches to electricity price forecasting have 

been proposed to various extents of effectiveness and success. Papers published by 

Weron [24, 26] summarize the current methods of EPF, reviewing their strengths and 

weaknesses, effectiveness and potential, as well as providing an outlook on this topic 

over the next decade. For more than 15 years, various solutions and fitting models can 

be categorized into the following groups of methodology: fundamental/structural 

methods, reduced-form quantitative, stochastic models, statistical approaches, and 

computational intelligence; many of which being hybrid of two or more of these 

groups. These papers also emphasize the importance of appropriate inputs and predic-

tors, along with the possibility of capturing different levels of seasonality in the mod-

els. Moreover, the author suggests extensions of the methodology going far beyond 

point forecasting: interval forecasting, density forecasting, threshold forecasting, and 

their combinations.  

This paper proposes the use of the Generalized Additive Models (GAM) in attempt 

to improve the quality of the electricity spot price forecasting by applying a non-

parametric estimation of multiple seasonal predictors. In the case of multivariate 

analysis, the key problem is to fit a d-dimensional model to the observed data, which 

leads to the exponential increase in the model’s complexity as more variables or fea-

tures are added to the dataset [18]. To combat this so-called “curse of dimensionali-

ty”, a term coined by Bellman [3], the Additive Model method deals with each di-

mension separately, treating them as individual univariate smooth functions and add-

ing up their approximations. This allows for an interpretable solution in which the 

marginal impact of a single variable could be explained independently of the other 

variables. Following this, the GAM method takes a major step forward where the 

response variable may be derived from any exponential family distribution, thus re-

moving even further constraints and allowing greater flexibility, capturing nonlinear 

patterns that a classic linear model would otherwise miss [27]. Moreover, with the 

utilization of tensor product smooth interactions, the degree of smoothness in each 

direction can be controlled independently, resulting in an overall anisotropic penalty. 

A comparable GAM was introduced by Pierrot and Goude [17] based on the hourly 

electricity load data in France from 2000 to 2005. Twenty-four separated time series 

regarding the daily observations are considered and fitted by the correspondent mod-

els. These models are set up to account for various levels of seasonality: daily, week-

ly, monthly, and a yearly global trend, so that a summer break (a large downturn in 

electricity demand during summer holidays) could be incorporated. Additionally, 

hourly meteorological data is included, e.g. the temperature, the cloud cover and the 

wind speed. A semi-parametric approach is adopted to these models, comprising a 

regressive part with explanatory variables and an autoregressive part with lagged 

loads. In the end, the residuals of the models are examined to detect remaining auto-

correlation. The best model selection was conducted based on the comparison of the 

Generalized Cross Validation (GCV) scores. The forecasting results from this model, 



measured using the Root Mean Square Errors (RMSE), were significantly better than 

the unspecified benchmark model used by the authors. 

In addition to point forecasting, Serinaldi [20] introduced the GAM for Location, 

Scale and Parameter (GAMLSS) for short-term price forecasting, based on the work 

of Stasinopoulos and Rigby [22, 23]. The aim of this paper is to reduce uncertainty of 

EPF by explicitly incorporating a wide range of distribution functions into the model, 

where the parameters of these distribution functions change dynamically in the course 

of a day, week, and year. According to this paper, the use of a position parameter, 

reflecting daily and weekly periodicity, a scale parameter, encompassing daily price 

standard deviation, and a shape parameter in form of a constant value is emphasized. 

The GAMLSS performance was put to test against many statistical benchmarks, from 

the naïve method [15], the classical linear Autoregressive model (AR) and General-

ized Autoregressive Conditional Heteroskedastic model (GARCH) [13], to the 

Threshold Autoregressive (TAR) models [15]. In some instances, the performance of 

GAMLSS outstood the reference models and proved to be a reliable method for the 

comparison among different forecasting procedures. 

Fan and Hyndman [7] took a semi-parametric additive approach with the aim of 

developing short-term forecasting models for regions in the National Electricity Mar-

ket (NEM) of Australia from 1997 to 2009. In order to predict half-hourly demand 

loads, 48 sets of model parameters were estimated for each half-hour slice. For the 

point forecasting, the proposed additive regression model framework allowed non-

linear and non-parametric terms to be accounted for the fit of the electricity load. 

Within the model setup, three mains effects were determined. Calendar effects include 

annual, weekly and daily seasonality, with public holidays also being recorded. Tem-

perature effects from two sites are considered, whose average temperature and the 

differences between the daily maximums and minimums were incorporated into the 

model. Lagged demand effects were added to capture the autocorrelations within the 

demand time series, as well as its variance throughout the time. Prior to execution, a 

piece-wise backwards variable selection process was implemented to identify the best 

model, using the Mean Average Percentage Error (MAPE) as the selection criterion. 

In addition to the point forecasting, the forecasting outcome distribution was also 

estimated, providing a further indication of the forecast accuracy. Since the paramet-

ric method of delivering the forecasting distribution and prediction intervals would 

assume an i.i.d. error with zero mean and finite variance, the alternative of using 

bootstrapping as a non-parametric approach is encouraged, which is robust against 

violations of the normality assumption. Due to heavy computational tasks, a modified 

bootstrap method was conducted, constructing the empirical prediction intervals by 

centering the simulated forecast residuals around the original predicted point values.  

The remainder of the paper is organized as follow. Section 2 provides a brief ex-

ploratory analysis to the data used in this study. Section 3 introduces GAM, as well as 

the model setup. Section 4 shortly introduces the structure and setup of the benchmark 

models. Season 5 evaluates the forecasting results. Finally, conclusion closes the 

study. 



2 Sample and Methodology 

This study focuses on the course of the hourly day-ahead spot price of the EEX 

Phelix-DE contract at the EPEX SPOT market of the European Power Exchange 

(EEX). This day-ahead spot contract is considered as a benchmark contract for Euro-

pean electricity. The exchange operates, among other trading activities, the power 

spot market for Germany, Austria, Luxembourg, France, the United Kingdom, the 

Netherlands, Belgium, and Switzerland. Purchase and sale orders are placed hourly 

for power which will be delivered the following day. The daily cycle ends at 12:00 

pm, at which time the EPEX SPOT calculates the market clearing price. The visuali-

zation of the data used in this study can be seen in Figure 1. 

 

Fig. 1. Electricity spot price at EPEX SPOT 

Figure 2 shows the average daily electricity price trend for four exemplary months 

in 2017, separately for weekdays and weekends. An overall M-shaped daily pattern 

throughout all months is evidently recognizable. The price is comparatively low for 

the first five hours of the day before rising to its first peak around 9 am, followed by a 

local minimum around 3 pm, peaking again around 8 pm before decreasing back to 

night level. Furthermore, the graphs also show a weekly pattern, as the weekend spot 

prices are constantly below those of the weekdays. Monthly seasonality also plays a 

part in determining the spot prices. Spring and summer time see a steeper mid-day 

gradient, while during fall and winter the price declines more constantly without re-

taining its peak. 



 

 

Fig. 2. Average hourly price for selected months in 2017, weekdays vs. weekend 

3 The Generalized Additive Model 

3.1 The GAM theory 

Generalized Additive Model (GAM) [9, 27] is a non-parametric extension of the 

Generalized Linear Model (GLM), in which the relationship between the response 

and predictors are expressed by several smooth functions in order to capture the non-

linearities underlying the data. The GAM can be formally expressed as: 

 
                                  (1) 

where i = 1,…,N, g is a link function (identical, logarithmic or inverse, etc.), y is a 

response variable,   ,…,    are independent variables,    is an intercept, 

       ,…,         are unknown non-parametric smooth functions, and ε is an i.i.d. 

random error. 

One way of determining these smooth functions is through the use of smoothing 

splines [9, 27]. These piecewise polynomial functions join many polynomials to gen-

erate a smooth curve through a set of points. The polynomials connect at certain 

points, called knots. At these knots, the joint polynomials share the same derivatives 

up to several degrees. The level of model smoothness depends on the degree of the 

polynomials, the number of knots, and their location. The locations of these knots are 

typically evenly-spaced. In this case, the smooth function is estimated by minimizing 

the penalized sum of squares: 
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The first half of the function,            
  

   , is the standard residual sum of 

squares, representing how closely the fitted values are in alignment with the observed 

values, whereas the second half,             
    

    
, penalizes the “roughness”, or the 

“wiggliness” of the data. Minimizing the integrated square of the second derivative 

would smooth out the data towards linearity. The key here is the smoothness parame-

ter λ, which controls the trade-off between model fit and model smoothness. Wood 

[25] postulates, that the natural cubic splines are the smoothest interpolators, making 

the cubic smoothing splines (a natural cubic spline with knots at every data point) the 

best choice regarding the polynomial degree of the smooth term. However, this pro-

cedure has one major disadvantage: if the number of knots is approximately equal to 

the number of data records n, this will lead to model overfitting, and furthermore to a 

computational waste. Since λ, in most cases, obviously shrinks down the roughness at 

many knots, this will result in a spline that is much smoother than n degrees of free-

dom. 

Another alternative to the presentation of the smooth functions is the penalized re-

gression spline [27]. It can be expressed as a linear combination of a family of basis 

functions: 

                                               (3) 

where               are the basis functions,         are the associated coeffi-

cients with the basis dimension q, so that a linear relationship between the predictor 

and the smooth function is formed through the basis functions, with   being the mod-

el matrix of the basis functions, and   being the vector of regression coefficients. 

These coefficients applied to the basis functions act as amplifiers of the curvature of 

the spline. Like in the case of the above-mentioned smoothing spline, it is also possi-

ble to apply a penalty in the course of estimating the basis function coefficients of the 

regression spline to produce smoothness. Hence, in lieu of solving for the estimated    
with a standard linear model, the penalized sum of squares can be minimized: 

 
    

 
                       (4) 

where   is the penalty matrix, imposing smoothness by directly penalizing the dif-

ference among the adjacent coefficients. This method is called the Penalized Iterative-

ly Reweighted Least Squares method (P-IRLS), that for any given λ, the regression 

coefficients    can be obtained. 

Hence, the problem has shifted from measuring the degree of smoothness for the 

model to determining the smoothing parameter λ. Since there is a trade-off between 

overfitting and oversmoothing the data, one option of determining the optimal degree 

of smoothness is by implementing backwards selection. This method is rather compu-

tationally expensive and can also result in relatively poor model accuracy due to une-

ven knot spacing. Instead, the smoothing parameter λ can be estimated using either 

the Generalized Cross Validation criteria (GCV) or the mixed model approach via 

Restricted Maximum Likelihood (REML). 



With regard to the available choices of regression splines, GAM offers a wide 

range of smoothing bases, including cubic regression splines, cyclic regression 

splines, thin plate regression splines, P-splines, etc. These models differ in the choice 

of number of knots, the spacing of the knots, the level of rank and order, as well as the 

number of predictors in the model. Moreover, the interactions among the predictors 

play a critical role in the regression model. The inclusion of interactions extends from 

the most basic form of multiplication to the tensor product, allowing the possibility of 

implementing different smoothing bases for variables while applying penalization in 

different ways, resulting in an anisotropic penalty. In this paper, the use of tensor 

product smooth and the choice of cyclic penalized cubic thin plates regression spline 

are emphasized through the model setup below. 

3.2 Model setup 

Aggarwal et al. [1] classified the factors that have possible impact on the electricity 

prices in five different categories: market characteristics, nonstrategic uncertainties, 

other stochastic uncertainties, behavioral aspects, and temporal effects. As shown in 

the data analysis, there are three main seasonal patterns: the daily effect, weekly ef-

fect, and yearly effects which are represented by the dichotomous explanatory varia-

bles hour of the day, day of the week, and month of the year.  

The goal of this model is to produce short-term forecasts for 12 randomly chosen 

weeks (one in each month) within the year 2017. For this setup, each model receives 

260 weeks (approximately five years) of training data prior to the forecasted week. 

We begin setting up the model structure by determining the smooth function compo-

nents for the daily, weekly and yearly pattern separately. Thus, in model M1 the indi-

vidual effects form three different univariate smooths additively: 

                                             (5) 

Cubic regression splines were applied for all individual components. The number 

of knots is equal to the number of unique values in each predictor, in this case 24, 7, 

and 12, respectively. This initial model treats the three predictors individually, assum-

ing that all effects are independent. This assumption is not realistic, since in the ex-

ploratory data analysis it could be observed that the effects are mutually dependent.  

To account for the interaction among the predictors, thin plate regression splines 

are recommended by the extant literature [27]. Here, a truncated version of the thin 

plate splines is applied, using the thin plate spline penalty to acquire a low-rank 

smoother that has far fewer coefficients than there is data to smooth. Moreover, it can 

deal with any number of predictors and tends to give the best MSE performance [27]. 

Accordingly, the same isotropic smoothing base is used for all three predictors in one 

smooth function: 

                                    (6) 

In this case, only one single value of the smoothing parameter λ is applied in all di-

rections. The problem with this isotropic penalty is, that its result is only reliable 

when the predictors are approximately on the same scale. In other words, the discrep-



ancy among the different units of the different explanatory variables could result in a 

false integration of the second derivative due to their disproportional contribution to 

the overall integration. Hence, the use of tensor product smooths is proposed [27]. 

Tensor product smoothing is a type of multivariate smoothing base that derives the 

multivariate bases from individual univariate marginal bases. In other words, the non-

separable smooth function                        can instead be approximated 

by the tensor product of its component,                    and           . Each 

of the basic functions is smoothed in its corresponding dimensions individually, so 

that the correspondent coefficient matrix is obtained. Then the tensor product ( ) of 

the three matrices is computed, as shown in model M3: 

                                              (7) 

As a result, each component represents a unique combination of the three marginal 

basis functions. This allows for an overall anisotropic smoothing penalty, with the 

possibility of using different smoothing bases for every predictor and penalize it in 

many different ways. Each smoothing parameter       ,         and         is indi-

vidually determined through the same method as the single smoothing parameter for 

the univariate smoothing, which results in an overall tensor product smooth that is 

indifferent to the rescaling of its independent variables. 

Although this method proves to yield significantly better results, it also becomes 

significantly more computationally expensive as the dimensionality of the tensor 

product increases by the introduction of more predictors. Within the framework of 

this paper, this issue is addressed by using the pairwise bivariate tensor product 

smooths for the three predictors, resulting in model M4: 

 
                                                 

                           
(8) 

Finally, the combination of the three individual effects and their three mutual inter-

actions enables the decomposition of the model, analyzing to what extent each indi-

vidual predictor influences the response individually, as well as each of the pairwise 

interactions. Accordingly, the ultimate model M5 can be annotated as follows: 

 

                                        
                                           

                           

(9) 

In the extant literature a variety of model accuracy measures are discussed. The 

trade-off between model accuracy and model complexity is often in the focus of the 

consideration. Accuracy measures that penalize for model complexity are proposed by 

Akaike (Akaike Information Criterion, AIC) [2] and Schwarz (Bayes Information 

Criterion, BIC) [19]. However, the AIC and the BIC are typical in-sample accuracy 

measures. Since this study deals with forecasting accuracy and not with model fitting, 

an out-of-sample / forecasting accuracy measure needs to be applied. A popular 

choice among the forecasting accuracy measures, the Mean Absolute Percentage Er-

ror (MAPE) fails in the context of price forecasting, since the spot prices for electrici-

ty are oftentimes negative, which leads to a possible erroneous interpretation. Moreo-

ver, when the prices are high, MAPE is rather indifferent to a considerable absolute 

change, whereas it would scale up drastically to the same price difference, when the 



prices are close to zero. In line with extant literature, the weekly Root Mean Square 

Errors (RMSE) is used for the evaluation of the forecasting accuracy here [26].  

4 Statistical benchmark models 

4.1 Autoregressive Integrated Moving Average model with external 

regressors (ARIMAX) with seasonality 

The benchmark ARIMAX model in this paper, as derived by Meier et al. [14], is an 

extension of the classical ARIMA model [4]. The X-term of the model comprises the 

external regressors, accounting for various level of seasonality in form of dummy-

coded variables, including hour of the day, day of the week, and month of the year. 

The Hyndman-Khandakar algorithm [12, 13] is utilized to achieve the optimal 

ARIMAX parameterization. This step includes the determination of the number dif-

ferentiations (d) needed to achieve stationary using the KPSS tests as well as the sim-

ultaneous determination of the number of lags for the autoregressive (p) and the mov-

ing average (q) term, applying Akaike Information Criterion (AIC). Since the data 

sample is identical with Meier et al. [14] in both analyses, the original ARIMAX 

(3,1,3) model with 40 dummy variables is adopted as the benchmark model for this 

paper. 

4.2 Naïve forecasts 

The similar-day method estimates the electricity price of a certain day on the basis of 

the electricity price of the same weekday of the previous week [21, 24]. Further adap-

tations of this method match characteristics like the hour of the day, the day of the 

week, the month of the year by applying linear combinations or regression proce-

dures. One of the variations of the similar-day method, is the naïve method. Here the 

forecast is based on the previous day, with the exception of the Saturdays, Sundays, 

and Mondays. These are forecasted by looking back to values of the previous week 

[16, 24]. Despite its simplicity, this “naïve test” proves its effectiveness in identifying 

inept forecasting models, thus turning it into one of the most popular benchmark 

models in EPF [5, 6, 16]. 

5 Assessment of the model performance 

Figure 3 represents three seasonal smoothed effects of the electricity price time series 

which originate from model M5: daily, weekly and yearly. As seen in the data analy-

sis, these plots confirm that there is a difference in price throughout the course of a 

day, throughout the course of a week, and throughout the course of a year. The first 

daily peak around 10:00 am could be due to the morning working routines, and the 

second one around 8:00 pm accounts for the heating and lighting needs in winter, as 

well as extra activities in summer, where there is a longer period of daylight. The 

electricity price is fairly stable at a higher level from Tuesday to Friday, and sinks at 



the weekend to rise again at the Monday, confirming the higher need for electricity on 

working days. Regarding the yearly pattern, the prices in fall and winter are higher 

than in the other two seasons, emphasizing the heating and lighting demands.  

 

Fig. 3. The electricity price as a mean deviation with forecasting intervals  

Figure 4 shows the tensor product smooths of the effects in pairs, so that the inter-

action among the effects are easier to spot. It can be observed from the daily and 

weekly smoothing, that the daily peaks around 10 am and 8 pm are still prominent 

throughout the week, although at a remarkably lower level at the weekends. The mid-

dle graphs show the relationship between the weekly and the yearly effect: the daily 

peaks are now smoothed along different months, with the prices in summer lower 

than in winter, showing peaks at the morning and evening time in December and Jan-

uary. Lastly, the tensor product between the weekly and yearly effect showcases a 

minimum price on Sundays in May, as opposed to the maximum on Mondays in Jan-

uary.  

These figures demonstrate one of the most decisive advantages of GAM in com-

parison to other methods: interpretability with visualization. GAM takes on the nature 

of an additive regression model, in which the interpretation of the marginal impact of 

a singular variable, the partial derivative, is not contingent on the values of the other 

variables in the model. Looking at Figure 3, one could intuitively draw conclusion on 

the effects the temporal predictors have on the electricity prices, each of which is 

accounted for separately by an individual smoothed function; so that the daily peaks, 

the weekend cutback, and the decrease of prices in summer months are appointed to 

the right temporal effects accordingly. Moreover, GAM is able to isolate the individu-

al effects from the predictors alone from the intercorrelated influences among them 

upon the response variable; for instance, in our final model, the influence of the hour-

ly variable alone, the interaction between the hourly and the weekly variable, as well 

as the one between the hourly and the monthly variable, are all accounted for sepa-

rately. Figure 4 shows the interactions being plotted, so that the original patterns 

could be revealed, even though the dataset at hand may suggest a noisier relationship. 

Hence, by simply taking a glance at the output and its visualization of the model, one 

can make intuitive statements about the effects of the predictors which is comprehen-

sible to a nontechnical person. 



 

Fig. 3. Pairwise tensor product interactions (with flipped graphs), model 1 



Figure 5 illustrates the forecasting accuracies of the GAM, ARIMAX and naïve 

models applied using the months of March and April of the 2017 forecast period as 

examples. 

 

Fig. 4. Forecast vs. real time series 

Table 1 documents the forecasting accuracy of the GAM against the other two 

benchmark models. The GAM proves to be more accurate in the overall testing and 

less prone to price peaks and troughs. In roughly 75% of the cases GAM shows better 

forecasting accuracies than the benchmark models.  

Table 1. Forecasting performance of GAM in comparison with the benchmark models 

 
 

For checking the robustness of the presented GAM models, the outliers were iden-

tified and substituted by applying the seasonal and trend decomposition method Loess 

(Locally Weighted Least Squares Regression). Loess smoothing calculates an average 

of the data around the vicinity, giving more weight to data near the vicinity and less 

weight to data further away from the vicinity. Given the identical model set up, the 

(RMSE of Real vs Predicted Price)

Begin End Begin End GAM ARIMAX Naïve

10.01.2012 02.01.2017 03.01.2017 09.01.2017 16.78 17.331 16.816

10.02.2012 02.02.2017 03.02.2017 09.02.2017 19.185 12.713 12.668

28.03.2012 21.03.2017 22.03.2017 28.03.2017 5.796 5.95 7.386

23.04.2012 16.04.2017 17.04.2017 23.04.2017 10.487 12.494 8.565

08.05.2012 01.05.2017 02.05.2017 08.05.2017 6.639 18.588 27.218

02.07.2012 25.06.2017 26.06.2017 02.07.2017 5.638 6.765 6.87

13.07.2012 06.07.2017 07.07.2017 13.07.2017 6.2 4.93 6.218

27.08.2012 20.08.2017 21.08.2017 27.08.2017 6.427 11.116 10.042

23.09.2012 16.09.2017 17.09.2017 23.09.2017 5.817 8.65 10.121

08.10.2012 01.10.2017 02.10.2017 08.10.2017 18.791 13.901 20.018

06.12.2012 29.11.2017 30.11.2017 06.12.2017 12.073 13.384 8.776

15.12.2012 08.12.2017 09.12.2017 15.12.2017 12.454 12.884 13.799

Training Phase Test Phase
Comparison



GAM model fitting process shows little difference in results when fed with the origi-

nal or the modified input data. Accordingly, the GAM model is robust towards outli-

ers. Nevertheless, the identified outliers are not measurement inaccuracies but real 

clearing prices and reflect the stark fluctuation of the electricity price time series. 

Thus, they should be included in the model.  

Furthermore, it was examined whether the length of the training data time series 

has an influence on the forecasting accuracy. Hypothetically, the quality of the model 

would monotonically rise as the number of training data records increases. We were 

not able to find an optimum length of the training time series that could be applied for 

all months. This indicates that a large number of structural breaks make a perfect 

adaptation of the model impossible. These structural breaks are mainly due to the 

strong promotion of renewable energies in Germany, which over time are accompa-

nied by a strong increase in volatility and are predominantly politically driven. 

6 Conclusion 

In this study, the use of Generalized Additive Model (GAM) [9, 27] is proposed as an 

alternative stochastic method to conduct one-week ahead forecasting of electricity 

market prices. Overall, GAM is an extension of the Generalized Linear Model, 

demonstrating its superiority in terms of flexibility, in which the relationships be-

tween the predictor and the response variables are assumed to be non-linear. A model 

using isolated additive smoothing components according to our model M1 could 

therefore not exploit the advantages of GAM, since the interactions between the di-

mensions are not taken into account. The complete consideration of all interactions of 

the predictors in only one smoothing function lead to the best prediction accuracies, 

but is so computationally intensive that, so that its practical applicability is rather 

limited. A significant improvement was the use of tensor smoothing function in our 

model M3, where the single smoothing functions were connected via the tensor prod-

uct. In order to be able to work out the interactions between the dimensions even bet-

ter without running the risk of achieving high computing capacities again, we devel-

oped the models M4 and M5. These models combine the tensor products between the 

smoothing functions pairwise, so that an excessive computing load is avoided and the 

interaction effects can still be reproduced with sufficient accuracy. 
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