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Abstract. For the case when quantitative characteristics of traffic flows and the 

failure rates of traffic lights’ elements are known, quantitative relationships for 

the feasibility analysis of warm standby of the adaptive traffic lights at intersec-

tions have been found. The equations and recurrence relations of their probabil-

ity distributions are obtained as the Laplace transform of sequences of times of 

limited permissive phases of alternative movement directions. The intelligent 

system of traffic control with the adaptive traffic lights as the main control unit 

is considered as a single-line queuing system with the FIFO (first in, first out) 

service discipline for the Markov flow of recoverable components’ failures. 

As a result, two-way estimate for the failure probability of the adaptive traf-

fic lights is obtained and the effect of warm standby use for the traffic lights at 

two-way stop-controlled intersection is assessed. In the presented example wait-

ing time for the vehicles at the intersection with adaptive controlled traffic ap-

peared to be considerably less than in the case when there is no adaptive traffic 

control. It allows to highlight advantages of warm standby use as a mean to en-

sure the reliability of the adaptive traffic lights. 

Keywords: Warm Standby, Reliability, Markov Flow, Adaptive Traffic Lights, 

Laplace Transform. 

1 Introduction 

Adaptive traffic lights are the most common and most powerful components of con-

trol in intelligent traffic management systems (ITMS). It allows actuating of time 

phases depending on actual traffic demand and, compared to pre-timed control, it 

significantly reduces traffic delays at intersections when properly configured. Though 

the advantages of ITMSs are obvious, ensuring the reliability of their work is not 

explored enough due to the absence of critical consequences when traffic lights fail, 

since this situation is foreseen by the traffic codes and is not a direct cause of traffic 

accidents. The failure of the traffic lights leads to a deterioration in the passage condi-

tions at the intersection and an increase in vehicle delays. Pedestrians do not suffer 

from the failure as they receive a preferential right to cross the street via unregulated 

crosswalks. 
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Ensuring the reliability of light signaling systems is of considerable attention in 

railway transport, because railway signaling systems are used to ensure the safe op-

eration of railway traffic [1, 2]. As a result, a lot of effort has gone towards ensuring 

the reliable operation of railway signaling systems that have to be designed to avoid 

single-point failures [1]. 

A new impetus to ensure reliability of traffic lights is added by LED (Light-

Emitting Diode) arrays as a color signal emitter. LED emitters have allowed to mini-

mize power requirements for the functioning of traffic lights, while expanding the list 

of standbys for their functioning with the ideal switching arrangement (warm 

standby), which makes it possible to increase the reliability of adaptive traffic lights 

in urban ITMSs. 

A redundant warm standby is a very promising means of ensuring the reliability of 

ITMS comparing to a cold standby since traffic lights are always dispersed over fairly 

large territories. This leads to randomness of the recovery time of failed items, which 

leads to high expenditures due to the need of the repair crew to get to the failed traffic 

lights. Police and signal maintenance crews can often be stretched too thin when re-

sponding to power failure situations, especially in cases of concurrent failures at a 

large amount of intersections [3]. Throughout this time, the ITMS does not work, that 

causes undue delays of vehicles. At the same time, the warm reservation of traffic 

lights’ elements allows to postpone the process of restoring its failed items until a off-

peak traffic period, when it does not lead to negative consequences for road users. 

By now two warm standbys for traffic lights are known: redundant LED groups to 

allow indication in degraded mode [4, 5] and alternative power sources as backup 

power to maintain normal signal operations during power outages [3]. The list can be 

expanded if a metric to quantify results of warm standby is defined since a cost of 

new units is always known and both variants of reservation are expensive enough. 

Transportation agencies, facing limited budgets, need decision-making support when 

solving the question whether the traffic operation can be improved by installing warm 

standbys for traffic lights – and if so, by how much. 

Statistical models of road accidents [3] and a point system to score each site [6] are 

not a sufficient basis for making decisions in this area. The number of reported road 

accidents is relatively low and when traffic lights are fault there is no way to statisti-

cally quantify the expected number of accidents [6]. The point system includes traffic 

volume, frequency of injury accidents, proximity to a school zone, speed of approach 

traffic, and availability of pedestrian pre‐emption controls and provides prioritization 

sites only [6]. The Markov technique is the most suitable for modelling road signaling 

systems in which the level of redundancy varies with time due to component failure 

and repair [1]. 

2 Laplace transform of the distribution function of the 

intersection busy period 

It is possible to evaluate the feasibility of warm standby use to ensure the reliability of 

adaptive traffic lights through obtaining quantitative estimates for both the probability 
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of failure of adaptive traffic lights with a different number of standbys for one operat-

ing item, and for the negative consequences of failure from the road user’s point of 

view. 

The first quantitative estimates should be obtained for the most common intersec-

tion of two nearly perpendicular roads. When traffic is controlled by traffic lights, the 

times of permissive phases in alternative intersecting directions are limited. Adaptive 

traffic control at the intersection allows switching of the permissive signal between 

alternative directions depending on current circumstances at the intersection. That is, 

when, with the permissive signal turned on in one direction I , there are no vehicles 

for moving in it, and the queue of vehicles is on the other direction II . Vehicles can 

pass through the intersection as long as they are at a given spacing or if there are no 

vehicles coming from the other direction, but the permissive phase should not exceed 

the time limit for the corresponding direction. 

We have: 

─ 
    
I

IB t


 is the distribution function for the time of passing over the intersection 

from the start of the permissive signal in direction I ;
           

0

exp
I I

I I

t

s st dB t
 




   is the Laplace transform of this variable; 

─ 
    
I

I t


  is the distribution function for the intersection’s busy period as a single-

line queuing system, which begins with the  I  vehicles’ departure and the flow 

rate I  of the vehicles arriving in the direction I  of the intersection; 

─ 
           

0

exp
I I

I I

t

s st d t
 




    is the Laplace transform of this variable. 

We use the additional event method according to the total probability rule. Provid-

ed that passing-over  I  vehicles from direction I  take the time t , and during this 

time t  exactly n  cars have arrived at the intersection in direction II , the conditional 

probability that the additional event, the rate of which equals s , does not occur during 

this busy period t  and during the n  busy periods, generated by the arrival of these n  

cars, is equal to      1
exp

n

I s st  
 

. Then we multiply it by the probability of the 

arrival of exactly n  cars in the direction I  during this busy period t  

 
 exp

!

n

I

I

t
t

n


 . 

The sum of all these multiplications 
 

       1
exp exp

!

n
n

I

I I

t
t s st

n



  
 

 for all 

non-negative integer numbers of incoming cars 0n   is equal to 

 
 

       1

0

exp exp
!

n
n

I

I I

n

t
t s st

n





  
   (1) 
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Then we integrate the obtained expression over all 0t   values with the distribution 
    
I

IdB t


 for the time of passing over  I  vehicles from the moment of the ena-

bling signal in the direction I : 

 
 

            1

00

exp exp
!

n
n

II

I I I

nt

t
t s st dB t

n







  
  . (2) 

As a result, we obtain the equation 

 
    

 
            1

00

exp exp
!

n
n

I II

I I I I

nt

t
s t s st dB t

n

 
 




   
  . (3) 

After identical transformations we come to the following: 

 

 
            

   
        

   

   
    

            

          

1

00

1

00

1

00

1

0

1

0

exp exp
!

exp exp
!

exp exp
!

exp exp exp

exp 1 .

n
n

II

I I I

nt

n

I I I

I I

nt

n

I I I

I I

nt

I

I I I I

t

I

I I I

t

t
t s st dB t

n

t s
t st dB t

n

t s
t st dB t

n

t st t s dB t

s s dB t
































   
 

 
 

   

 
 

   

     
 

     
 











 (4) 

By definition, the integral 
          1

0

exp 1
I

I I I

t

s s dB t





    
   is equal to the 

Laplace transform         1
1

I

I I Is s


     at the point
    1

1I Is s   : 

 
                   1 1

0

exp 1 1
I I

I I I I I I

t

s s dB t s s
 

  


       
  . (5) 

Then we have a functional equation for the Laplace transform as a result: 

              1
1

I I

I I I Is s s
 

      . (6) 

In particular, with   1I  , 

            1 1 1
1I I I Is s s     . (7) 



5 

By definition, it is considered that the time of the permissive phase in the direction I  

is limited by the value 
IT . Therefore, a random variable with a distribution 

    
I

I t


  

of the intersection busy period limited by the value 
IT  to the segment  0; IT , which 

began with vehicles passing over the intersection in the direction I  with the flow rate 

I , will have distribution function as follows: 

 
     

    
    

   0

I

I I

I I I II

I I

t
T t I t T I t T

T








      


 (8) 

and the Laplace transform 

 
             

      

    
0

0

exp

exp

I

I

T

I

T I

I I

I I I I I

I I

st d t

T s st d T t
T



 




 

   



 . (9) 

During the intersection busy period limited by the value IT , which began with  I  

vehicles passing over the intersection in the direction I  with the flow rate I , that is, 

during this permissive phase for vehicle direction I , some vehicles may arrive from 

the perpendicular direction II . 

Next, we find the Laplace transform of the intersection busy period, which is 

formed by movement in direction II  generated at the intersection by the vehicles 

arriving in this direction with flow rate II  during the previous permissive phase for 

direction I , using the total probability rule according to the method of the additional 

event, the rate of which equals s . 

Provided that passing-over  I  vehicles from direction I  take the time t , and 

during this time t  exactly n  cars have arrived at the intersection in direction II , the 

conditional probability that the additional event, the rate of which equals s , does not 

occur during this busy period t  and during the n  busy periods, generated by the arri-

val of these n  cars, is equal to      1
exp

n

I s st  
 

. Then we multiply it by the prob-

ability of arrival of exactly n  cars in direction II  during this busy period t  

 
 exp

!

n

II

II

t
t

n


 .

 The sum of all these multiplications 
 

       1
exp exp

!

n
n

II

II II

t
t s st

n



  
 

 for all 

non-negative integer numbers of incoming cars 0n   is equal to 

 
 

       1

0

exp exp
!

n
n

II

II II

n

t
t s st

n





  
  . (10) 
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Then we integrate the obtained expression over all 0t   with the distribution 
     
I

I Id T t


  for the time of passing over  I  vehicles from the moment of the 

enabling signal in direction I . 

After that we integrate the obtained expression over all 
     
I

I Id T t


  of the busy 

period, which began with the  I  vehicles’ departure and the flow rate I  of arriv-

ing vehicles from the direction I of the intersection and limited by the value 
IT : 

 
 

             1

00

exp exp
!

n
n

III

II II I I

nt

t
t s st d T t

n







   
  . (11) 

As a result, we obtain the equation 

 
    

 
             1

00

exp exp
!

n
n

I III

II II II I I

nt

t
s t s st d T t

n

 
 




    
   (12) 

for the Laplace transform 
           

0

exp
I I

II II

t

s st d t
 




    of the distribution of the 

intersection busy period in direction II , generated by vehicles arriving at the inter-

section in this direction with the flow rate II  during the previous permissive phase 

for direction I . 

After similar identity transformations, we have 

 

 
             

          

1

00

1

exp exp
!

1 .

n
n

III

II II I I

nt

I

I I II II

t
t s st d T t

n

T s s







 




    
 

   


 (13) 

We obtain an expression of the Laplace transform: 

                1
1

I I

II I I II IIs T s s
 

     . (14) 

The equation for the function 
   1

II s  will be written below when studying the distri-

butions of the sequence of permissive times that begins with direction II . 

By the definition, it is considered that the time of the permissive phase in direction 

II  is limited by the value IIT . Therefore, a random variable with distribution 

    
I

II t


  of the intersection busy period is limited by the value IIT  to the segment 

 0; IIT , which begins with vehicles passing over the intersection in direction II  with 

the flow rate II  have following distribution function: 

 
                   0
I I I

II II II II II II IIT t t T I t T I t T
           

 
 (15) 
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and the Laplace transform equals 

 
             

      

    
0

0

exp

exp

II

II

T

I

T II

I I

II II II II I

II II

st d t

T s st d T t
T



 




 

   



 . (16) 

Further we use the same set of formulas to obtain other related values. 

If the process of passing over the intersection begins with cars from direction II , 

then the entire sequence of the distributions of limited periods of permissive phases is 

constructed similarly, but this time starting from direction II . 

We have: 

─ 
    
II

IIB t


 is the distribution function for the time of passing over the intersection 

from the start of the permissive signal in direction II ;
           

0

exp
II II

II I

t

s st dB t
 




   is Laplace transform for this random variable; 

─ 
    
II

II t


  is the distribution function for the intersection busy period as a single-

line queuing system, which began with the  II  vehicles’ departure and the flow 

rate II  of arriving vehicles in direction II of the intersection; 

─ 
           

0

exp
II II

II II

t

s st d t
 




    is Laplace transform for this random variable. 

Using the method of the additional event according to the formula of full probabil-

ity, we have a functional equation for the Laplace transform: 

              1
1

II II

II II II IIs s s
 

     . (17) 

In particular, with   1II   

            1 1 1
1II II II IIs s s      . (18) 

By the definition, it is considered that the time of the permissive phase in direction II  

is limited by the value IIT . Therefore, a random variable with distribution 
    
I

II t


  

of the intersection busy period is limited by the value IIT  to the segment  0; IIT , 

which began with vehicles passing over the intersection in direction II  with the flow 

rate 

II , have following distribution function: 

 
     

    
    

   0

II

II I

I I I III

I I

t
T t I t T I t T

T








      


 (19) 
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and the Laplace transform 

 
             

      

    
0

0

exp

exp

I

I

T

II

T I

II II

I I I I II

I I

st d t

T s st d T t
T



 




 

   



 . (20) 

The obtained equations and recurrent expressions of Laplace transform of the se-

quences of durations of the permissive phases in alternative traffic directions ultimate-

ly allow paying attention to the direction of increased intensity of movement and 

speed of passing over the intersection, and thereby reconcile the restrictions on the 

times of the permission signals with the loads 

 
    

0

I I

I I I I

t

tdB t m





     (21) 

and 

 
    

0

II II

II II II II

t

tdB t m





     (22) 

of the corresponding directions I  and II  using equations (7) and (18). Differentia-

tion of equation (7) with the opposite sign with respect to s at zero gives 

 
           1 1 1

0 0

1I I I I

s s

d d
s s s

ds ds
  

 

      (23) 

using the derivative of a complex function for 
    1

1I Iu s s     and expression 

of first moments 

 
   1

0

I

I

s

d
z s

ds




   (24) 

and 

 
   1

0

I

I

u

d
m u

du




   (25) 

we have 

 
       1 1

0 0

1I

I I I

u s

d d
z u s

du ds
 

 

  
       

  
, (26) 

or 

  1I I I

Iz m z  . (27) 
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From this equation the expectation 
Iz  of the period of vehicle service in direction I  

in the absence of restrictions  IT    equals 

 
1

I
I

I

m
z





. (28) 

Similarly, 

 
1

II
II

II

m
z





. (29) 

The obtained expressions for the mathematical expectations of vehicles’ passing times 

in the absence of restrictions can be used to obtain relations for constraints IT  and IIT . 

Namely, 

 
I

I

II

II

T z

T z
 , (30) 

or 

 
   1 1

I II

I I II II

m m

T T 


 
. (31) 

The obtained Laplace transforms for travel time (7) and (18), in the absence of re-

strictions on the duration of the permissive phases, make it possible to determine the 

ratio of the values of these restrictions from a practical point of view. The absence of 

such restrictions, with a high total intensity of traffic flows on competing directions, 

will lead to undue delays for a secondary direction. Failure of the adaptive traffic 

lights means the removal of restrictions IT  and IIT . 

In this regard, the study of the reliability of the adaptive traffic lights is of great in-

terest when they are considered as recoverable systems with redundancy, which is 

provided by warm standby for their components. 

3 An estimate of the probability of system failure during the 

regeneration period 

Some elements of adaptive traffic lights may fail over time. The restoration of system 

elements is provided by repair facility (RF), which is a single-line queue with a FIFO 

service discipline. The repair times for failed elements are independent and identically 

distributed with distribution function  G x . The flow of system’s element failures 

complies with Markov chains. 

If all the elements are in order, that is, the random process of servicing the failed 

elements is in the state  0 , then the failure rate of at least one element in the system 
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is  0 . If the system contains failed elements, then the failure rate of an element in 

the system is  . After recovery, the element returns to where it came from. A ran-

dom regeneration process of maintenance at a time t  is defined by the number of 

serviced elements in the RF. The moments of regeneration are the times of transition 

of a random process to the state  0  when there are no requirements in RF. At the 

moment of transition of this random process from the state  n  to the state  1n  , a 

failure occurs ( 1,2,...n  ). Let the probability of failure on the regeneration period of 

this random maintenance process be denoted by q . Let 

    1G x G x   (32) 

and 

 
 

 
   

1

1

0

exp
1 !

n

n

x
b x G x dx

n


 



  
 . (33) 

Lemma 1. Let for numbers 0ija  , 0ib  , 0jx  , 1,2,...,i n , 1,2,...,j n  it is 

known that 
1

n

i i ij j

j

x b a x


   for all 1,2,...,i n . Then for all 1,2,...,i n  the inequal-

ity 
1

i

i

b
x





, where 

1
1

max
n

ij j

i n
j i

a b

b


 


  , is fair. 

Proof. From the lemma’s condition for all 1,2,...,j n  we have 0 j jx b  . From 

here, for all 1,2,...,j n  it can be established that 
1

j

j

j

b
x





, where 1

j

j

j

b

x
   . If 

we let 
1
maxk j

j n
 

 
 , the chain of relations from the condition and the last equality is 

fair: 

 

 
 

1

1

1 1

1 1
1 1

1
1 1 .

1

n

kj jn
jk k

k k k kj j k

jk k k

n n
j

kj kj j
j j j

k k

k k k

a x
b

b x b a x b
b

b
a a b

b b
b b



 









 

 
 

 
         
   
 
 

   
            
       




 

 (34) 

Comparing the left and right sides of these relations, we see that 
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 
1

1  1
1 1

n

kj j

jk

k k

k k k

a b

b b
b



 



 
 

 
    
   
 
 


, (35) 

hence the inequalities 

 
1

1 1

max .
n n

kj j ij j

j k
i n

j jk i

a b a b

b b
  

 
 

      (36) 

are fair. 

Therefore, for all 1,2,...,j n  it is true that 

 
1 1

j j

j

j

b b
x

 
 

 
. (37) 

Lemma 2. For any non-negative integers i  and j  the inequality 
0

i

i j i j i jb b C b b   is 

fair. 

Proof. We denote  

  
   

   
0

exp

exp

x G x
f x

x G x dx

 

 







 (38) 

and 

  
0

i

iM x f x dx



  . (39) 

It needs to be noted that 
0

! i

i i

i b
M

b
 . 

Hence, a chain of relationships follow from the inequality for the moments 

i j i jM M M   [7]: 

 
 

2 2 2

0 0 0

0 0

2

0

0

0

!!

! ! ! ! ! !

!
,

! !

j i j i j i ji

i j i j i ji j

i ji j i

i j i ji j

j bb i b b b
b b M M M

i j i j i jb b

i j bb
C b b

i j b

  
 




  





 

   


 

 (40) 

i.e. 
0

i

i j i j i jb b C b b  . 
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We denote the conditional probability of failure during the regeneration period as 

 1rq n  , provided that at its beginning in RF there are exactly r  complete require-

ments for the element repair, 1,2,..., 1r n  . 

Theorem 1. For all natural numbers n , the inequality 

 
 

1

1 1

0

1
1 2 1

n

n

b
q q n

b




  

 
 is true. 

Proof. Let j  denote the number of failed elements during the recovery of the first 

failed element in the RF busy period. Using the total probability rule, we have 

    
1

1 1

1

1 1
n

n j j

j

q n b a q n






    . (41) 

According to the total probability rule we create the expression for the probability of 

failure  1rq n  , when at the beginning of the busy period in RF there are exactly r  

(at least two) full requirements: 

    1

0

1 1 , 2
n r

r n r j r j

j

q n b a q n r n


  



      . (42) 

Note that 
0 01a b   and 

1j j ja b b  , 1j  . 

These equalities and the Abel transform make it possible to write out and estimate, 

from the above formula, the second terms on the right-hand sides of the last two series 

of expressions, respectively, in the form 

 

   

     

   

1 1

1

1 1

1

1 1 1 1

1

1

1 1

1

1 1

1 1 1

1 1

n n

j j j j j

j j

n

j j j n n

j

n

j j j

j

a q n b b q n

b q n q n b q n

b q n q n

 



 



   





 



      

        

     

 





 (43) 

Here by definition we consider  0 1 0q n  , 

 

       

       

     

1 1 1 0 1

0 1

1 1 2 1 1

1

1 1 2 1

1

1 1 1 1

1 1 1 1

1 1 1

n r n r

j r j j j r j r

j j

n r

j r j r j n r n r

j

n r

j r j r j r

j

a q n b b q n b q n

b q n q n b q n q n

b q n q n q n

 

     

 



       





     



         

          

       

 





 (44) 

for 2 r n  . 
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We denote      1 11 1 1n j j jn q n q n        , 2 1j n   . 

By definition    11 1n n q n    . Substituting the obtained upper estimates in-

stead of the secondary terms in the right-hand sides of the above expressions and 

transferring the last terms (for r  equal to at least two) from right to left, we transform 

expressions of the probability of failures having the form of equalities into inequali-

ties for them and their mathematical differences, respectively 

      
1

1 1 1
1

1 1
n

n n j n j
j

n b b n 


   


     for 1r   (45) 

and 

      1 1 1 1
1

1 1
n r

n r n r j n r j
j

n b b n 


       


     for 2 1r n   . (46) 

For this system of inequalities under the conditions of Lemma 1, a square matrix of 

 ijA a  of  1n  -th order is 

 

2 3 4 1 0

3 4 5 0

2 1 0

1 0

0

...

... 0

..........................

...........00

0.............00

00..............00

n n n

n n n

b b b b b

b b b b

A
b b b

b b

b

  

  

 
 
 
 

  
 
 
 
 
 

. (47) 

For the above system of inequalities, we can use Lemma 1 with 

  1 1 , 1,2,..., 1i n ix n i n      . (48) 

Than from this system of inequalities according to Lemma 1 

     1

11 1
1

n

n

b
n q n


   


, (49) 

where 
1

1 1
1 1

max
n i

j n j

i n
j n

b b

b



 

  
 

  . 

According to Lemma 2 the inequality 1 j n   is true for all integers 

 1

1 1 0 1

j

j n j n nb b C b b

     (50) 

and 
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 

1
1 1 0 1

1 1 1 1
1 11 1

1
1 1 1

0 1 0 1 0
1 1

1 1

max max

max 2 1

jn i n i
j n j n n

i n i n
j jn n

n i n
j j n

n n
i n

j j

b b C b b

b b

b C b C b


 

   

     
  

 
  

 
  

 

  

   

 

 

 (51) 

Having obtained the upper bound for the value  , 

  1

0 2 1nb   . (52) 

we have also estimated the probability of system failure during the regeneration peri-

od of a random process in the redundancy model with recovery 

  
 

1

1 1

0

1
1 2 1

n

n

b
q q n

b




  

 
. 

Let  
0

k

k

t

m t dG t


  – k  is the moment of service time and 1 1m   . At the initial 

moment of time 0t   the system is in the state  0  (all elements are in order). We 

denote by   the time of the first failure of the ITMS from the moment when all of its 

elements are in order. Theorem 1 of this paper implies the following theorem. 

Theorem 2. Let there be a finite moment 2m   . Then in the process 

 
2

1

0
1

m
q

m







 probability 

 
  

 
 

1

0 1
exp

1 0
P q x x

m

 


 

  
   

   
. (53) 

where the two-way estimate q  is true for the failure probability 

  
 

1

1 1 1

0

1 , 1,2,...
1 2 1

n

n n

b
b q q n n

b



 
    

 
, (54) 

that is the time until the first failure of the ITMS which has asymptotically exponen-

tial distribution. This means a higher frequency of small periods of time before the 

first fail and, given the large number of adaptive traffic lights in ITMSs, it indicates 

the importance of finding new kinds of warm standby for them. 

4 Results 

The main result of the failure probability estimation presented above is the fairness of 

two-sided estimate (54). For simple duplication, when 1n  , this estimate gives the 

exact value of the probability 
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   01
2q b . (55) 

We can compare this result with result according to another method – with a similar 

upper estimate obtained by A.D. Solovyev in [8], where there is no subtracted unit in 

brackets in the denominator: 

   1

1 1 1

0

1
1 2

n

n n

b
b q q n

b



 
   


. (56) 

So, the estimate of the failure probability (54) is more narrow than the estimate (56) 

and can provide more exact predicted reliability of traffic lights with and without 

warm standby. In case when the traffic lights fail with probability 1q , it is possible to 

estimate the effect of warm standby use for adaptive traffic lights at two-way intersec-

tion. It can be done by means of determining the difference between vehicle service 

time at the intersection with and without adaptive traffic control. 

Comparing to the intersection with adaptive traffic control, the uncontrolled inter-

section with one major direction (street) has the next differences: 

─ vehicles on the major road have no delays when passing the intersection; 

─ vehicles on the minor road are obliged to slow down or even stop before entering 

the major road and make sure of ability to move forward without traffic hindrances 

on the main road. 

It increases the time of passing the intersection and for vehicles on the minor road 

it can be estimated as 2II Im m  [9]. Hence, an average waiting time for the vehicles 

on the minor (critical) movement direction can be estimated as the consequence of 

adaptive traffic lights failure. 

For example, let the traffic volume on one lane of the major road equals to 
10.3 sI  . Time of passing the intersection when traffic is permitted (for the major 

road) equals to 2Im  s. Analogous time for the vehicles on minor road when there is 

no adaptive traffic control at intersection equals to 2 4II Im m  s. Also let the traffic 

volume on the minor road equals to 10.075 sII  . Then, when the traffic lights fail, 

total intersection load equals to 0.6 0.3 0.9I II I I II IIm m           . Then 

average waiting time in a queue on the minor road [7] equals to 

    (1 ) 1II I IW m       . (57) 

After example data substitution    (0.6 2) / (1 0.9) 0.9 1 0.9 129IIW       s. The 

upper estimate of analogous time expenses on the minor road when there is an adap-

tive traffic control at intersection can be obtained regarding to restrictions from equa-

tion (31) and denoting that 80I IIT T T    s. Then 

 (1 ) (1 ) 0.4 0.85II I II

II I I IT T m m m T            , (58) 
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wherefrom 25.6IIT   s, 54.4IT   s. 

The upper estimate of waiting time is obtained upon the Smith theorem [10]: 

/ 2 27.2II

IW T   s. It means that waiting time is upper bounded by the value that is 

almost 5 times less than in the case when there is no adaptive traffic control at inter-

section. At that, average waiting time for the vehicles on the major road does not ex-

ceed the value of / 2 12.8I

IIW T   s that allows to highlight advantages increasing 

the reliability of adaptive traffic lights by warm standby use. 

5 Conclusions 

1. The Laplace transforms (7) and (18), which were obtained for the time interval of 

passing over the intersection in a given direction when there are no restrictions on 

the duration of the permissive signal, allow the determination of the ratio of values 

of such restrictions from a practical point of view. 

2. An upper estimate of the probability of failure of the system with one standby dur-

ing the regeneration period has been found. It leads to an exact value of the proba-

bility of failure, which coincides with a lower estimate. 

3. This article defines the quantitative ratios that create the opportunity to assess the 

feasibility of using warm standby in adaptive traffic lights, when quantitative char-

acteristics of traffic flows and the failure rates of TMS’ elements are known. 
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