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Abstract. Generation of a publicly verifiable bias-resistant distributed
randomness is one of the actual problems in blockchain and its various
applications. The complexity of this problem increases significantly for
consensus algorithm operating on a decentralized network topology on
the assumption that there are neither a trusted third party nor a trusted
dealer. Such situation is caused by the fact that the logical structure
of algorithms intended to solve the subtasks typical for this problem be-
comes much more complicated. Besides, there arise some subtasks caused
by the complete distribution of the analyzed blockchain network. One of
such nontrivial subtasks is the implementation of random re-ordering of
the parties, based on generated randomness. This random reordering de-
fines the roles of the parties in the next epoch, and is intended to support
equal access of the parties to the functioning of the blockchain network.
We present a simplified version of the generation of a publicly verifiable
reliable distributed randomness for the consensus protocol operating on
a decentralized network topology on the assumption that there are nei-
ther a trusted third party nor a trusted dealer. On this base we solve the
problem of the random re-ordering for parties which will participate in
the implementation of the next epoch.

Keywords: Distributed randomness · Public verifiability · Random re-
ordering · Consensus protocols

1 Introduction

A completely distributed blockchain operating on a decentralized network topol-
ogy on the assumption that there are no trusted third parties or dealers, can
be considered as the backbone of the emerging open-access distributed Virtual
Machines [1] for decentralized, token-driven resource management.

Thus, the functioning of such blockchain networks significantly relies on the
performance of the used consensus mechanisms. It is worth to point out that
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many of these mechanisms can be considered in terms of a uniform framework
based on Zero-Knowledge (ZK) Proof systems [2]. Some survey of consensus
mechanisms in blockchain networks has been presented in [3].

It is generally accepted that public verification means that any party that
does not necessarily participate in the randomness generation can audit the
protocol execution a posteriori with the aim to attest that the randomness source
is reliable and unbiased.

The concept of a public randomness beacon that relies on a trusted third
party has been proposed in [4]. The necessity to use public randomness sources
effectively has increased sharply for blockchain networks [5].

An approach for generation of a distributed randomness beacon that guaran-
tees output delivery and uniformly distributed randomness for the parties that
use it, as long as a majority of them are honest, has been proposed in [6], on the
assumption that a dealer participates in the proposed protocols.

An important feature of this approach is that any party that does not neces-
sarily participate in the randomness generation can audit the protocol execution
a posteriori with the aim to be convinced that the randomness source is reliable
and unbiased. However the requirement of the presence of the dealer does not
allow to use these constructions directly for a completely distributed network on
which there is neither a trusted third party nor a dealer.

Our aim is to generate some uniformly distributed randomness for completely
distributed blockchain operating on a decentralized network topology, in the
assumption that there are neither the trusted third party nor the dealer, and to
apply this distributed randomness for the random re-ordering of parties for the
implementation of the next epoch.

1.1 Related Works

The basic scheme for secret sharing has been proposed in [7], and guaranties the
correct output only in the case when all parties are honest. Due to constructions
considered in [8], it has been established in [9] that there exists some poly-time
threshold verifiable secret sharing (VSS) protocol, on the assumptions that the
majority of the parties are honest and that some broadcast channel is available.

In [10] an approach to construct publicly verifiable secret sharing (PVSS)
protocols has been proposed. This protocol gives the ability to the parties to
verify their own shares, but also anybody can verify that the parties has received
correct shares.

The model of non-interactive PVSS has been proposed in [11]. Some other
PVSS schemes have been presented in [12–14]. Unfortunately, PVSS schemes,
presented in [10–14], lead to high computational cost. Critical survey of these
and some others PVSS has been presented in [15]. Lowering of the computational
cost has been one of the main aims in protocols presented in [6].

It is well known that the randomness can be manipulated by the parties of
the blockchain. To prevent these manipulations some delay functions [5, 16, 17]
can be used, so that when any malicious party computes the random output, it
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is too late to manipulate it. Thus, the delay function gives the chance to verify
that the randomness has not been manipulated.

Hash-based signature schemes that are most often used in PVSS, are RSA
[18] and ECDSA [19]. Security of these schemes are based on algebraic assump-
tions, i.e. security of RSA relies on the difficulties of solving the factorizing large
numbers problem, while security of ECDSA relies on the difficulties of solving
the discrete logarithm problem.

It is worth to note that if any of these assumptions is violated, for exam-
ple, due to the development of a quantum computer, then the corresponding
signature scheme is damaged forever.

The Merkle Signature Scheme [20] depends only on a secure hash function and
a secure one-time signature. Some variants of this scheme has been developed:
an improved Merkle signature scheme (CMSS) [21] in which two authentica-
tion trees are used, GMSS [22] which uses a scheduling strategy to precompute
upcoming signatures, XMSS [23] in which a hash tree is used to reduce the au-
thenticity of many pseudo-randomly generated one-time signature keys to one
public XMSS key, XMSS-MT [24] which is a multi Tree XMSS intended to pro-
vide a large number of signatures, and SPHINCS [25] which is some many-time
signature scheme that uses a hyper-tree, i.e. a tree of trees. Software implemen-
tations for some of above listed variants of Merkle Signature Scheme have been
analyzed in [26].

To provide equal opportunities for an involvement of parties in a completely
distributed blockchain operating on a decentralized network topology, unbiased
random generation of the re-ordering for the parties can be used.

The basic algorithm, called the Fisher—Yates shuffle [27], has been presented
in [28, 29], and is as follows (A is the given array with N elements, such that
A[i] = i for all i = 1, . . . , N).

RandomPerm(A, N)

begin

for i = 1 to N − 1

do

choose the integer j uniformly at random from the set {i, ..., N};
swap A[i] and A[j];

end do

end

This algorithm guarantee that the probability that A[i] = i equals to N−1 for
any i ∈ {i, ..., N}. Moreover, the expected number of fixed points in a random
permutation equals to 1, i.e. it is independent of the integer N .

It is evident that the subtle aspect for implementation of this algorithm
consists of how to choose uniformly and randomly an element of the given set.
Surveys of methods proposed for generation of permutations by computer have
been presented in [30, 31].
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1.2 Our contribution

To achieve the scalability for implementation of completely distributed blockchain
operating on a decentralized network topology on the assumption that there are
neither a trusted third party nor a dealer, the set of parties P = {P1, . . . , PN}
that take the part in the implementation of the current epoch are partitioned

into 3 groups Pj = {P (j)
1 , . . . , P

(j)
nj } (j = 1, 2, 3), where P1 is the set of ZK

validators, and the subset P2 is the set of Random Part (RP) validators. The
subset P3 consists of overwhelming number of parties, but these parties only
take part in the commit-delay-reveal scheme pointed in the next Section.

It is assumed that |P2| � |P \P2| (for example, it is enough to consider that
|P2| ≤ 0.05|P \ P2|). The necessity of this inequality is caused by the following
circumstances.

To achieve the reliability and scalability for the re-ordering of parties at
regular and predictable intervals in the presence of adversarial behavior, and
without any trusted dealer for the initial setup, the local sources of randomness
can be used in the following way.

The sufficiently small group of parties P2 independently generate their ran-
domness on the base of some threshold random scheme which we describe below.
The other parties generate their randomness with using the following commit-
delay-reveal scheme:

Step 1. Each party from the set P\P2 generates 32 bit random data and
publish hash(data).

Step 2. Each party from the set P\P2 is forced to wait for the prescribed
period of time.

Step 3. Each party from the set P\P2 provides its data.

Such approach gives the chance to implement the interactions in the com-
mitment scheme as follows: during the commit phase the values of randomness
are chosen and specified, while during reveal phase which starts with some ad-
missible delay these values are revealed and checked.

Proposed threshold random scheme consists of the following three phases.
In the first phase, called the Public Key Phase, each validator from the ZK

validators subset P1 provides its public key (PubKey), epoch hash (EH) and the
signed hash H(PubKey||EH). In the role of the hash function H can be used the
Cryptographic hash function SHA256, or any other Cryptographic hash function,
similar to SHA256.

In the second phase, called the Threshold Random Encrypted Part Phase
each validator from the RP validators subset P2 generates some random string,
which is 32 byte data (thus, at our assumptions |P2| � N � 2256, where N is
the number of parties that take the part in the implementation of the current
epoch), split this random string in accordance to Shamir’s secret scheme, and
encrypts each secret by the PubKey, chosen by him from Public Key Phase.

When this process is completed, each validator from the subset P2 provides
its list of encrypted secrets, epoch hash, and the signed hash H(the root of
merkle tree||EH).
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In the third phase, called Private Key Publishing Phase, each validator from
the subset of the ZK validators P1 provides its private key (PrKey). Each party
from the subset P \ P2 reveals its random, and each party from the subset of
the RP validators P2 reveals its random using corresponding PrKey.

When this process is completed, each party which will participate in the
implementation of the next epoch computes the random re-ordering of parties
for the next epoch.

It is evident that the above described round is intended for achievement of
the following purposes:

1. We should know the result of the random, i.e. that parties from the set P1

have provided not less then 50% + 1 of all private keys, and that parties from
the set P2 have presented their ciphered data.

2. If the set P1 consists of less then 50% of corrupted parties, and the set P2

consists of less then 100% of corrupted parties, then corrupted parties could not
prevent to receive random, or to learn it in advance.

It should be noted that every time we construct new partition of the set of
parties. For correctness of the proposed protocol it is necessary that the majority
of parties in the set P1 is honest, and at least one of the parties in the set P2 is
also honest. Because we constantly mix validators, these assumptions are quite
realistic. It should be noted, however, that the probability that there is an honest
majority in each round depends on the number of honest parties in P, as well

as on the shares |P1|
|P| and |P2|

|P| .

2 The random re-ordering of the parties

When the commit-delay-reveal scheme is completed, the set of the parties which
will participate in the implementation of the next epoch can be formed. This
set can be considered as the array consisting of the same ordering of all parties
that haven’t been disqualified during the current epoch, and perhaps some new
parties are added to its tail.

For simplicity we denote this array P = 〈P1, . . . , PN 〉, and, also, we denote
R = 〈r1, . . . , rN 〉 the array of 32 byte random data that have been produced by
the parties from the array P in the current epoch. Assume that for each party
Pj that has been unsuccessful in the commit-delay-reveal scheme, as well as for
each new party Pj , its 32 byte random data rj is the zero sequence.

To implement the random re-ordering of the elements of the array P we have
used the following refinement of the Fisher—Yates shuffle scheme [27, 28, 29],
based on the use of some random positive integer M (M � N), generated on
the base of the array R.

RanReOrd(P, N , M)
begin

for i = 1 to N − 1
do
j := (M − i+ 1)(mod(N − i+ 1)) + i;
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swap P[i] and P[j];
end do

end

It is reasonable to make the following remark concerning the proposed above
algorithm RanReOrd(P, N , M).

Since M (M � N) is some random positive integer, then for any fixed integer
i = 1, . . . , N − 1 the integer

j = (M − i+ 1)(mod(N − i+ 1)) + i

is some random positive integer, such that i ≤ j ≤ N . This factor implies that

j = (M − i+ 1)(mod(N − i+ 1)) + i (i = 1, . . . , N)

is some sequence of random integers. For any fixed integer i = 1, . . . , N − 1 the
elements P[i] and P[j] (i ≤ j ≤ N) are swapped. Therefore at the completion of
the algorithm RanReOrd(P, N , M) the elements of the array P are reordered
in a random way.

The following two approaches intended to generate some random positive
integer M (M � N) on the base of the list R has been checked.

The first approach is based on the computing of the binary string

r =

N⊕
i=1

ri, (1)

where
⊕

is bit-wise XOR operation. Afterwards, the random positive integer M
can be defined as the result of the transformation of the binary string r into the
corresponding positive integer.

The justification that M is some random integer follows from the fact that
there is the honest majority among the parties that participates in the imple-
mentation of the current epoch.

The advantage of this approach consists in the fast computing of the random
positive integer M .

From our point of view, at least, the following two shortcomings are inherent
into this approach.

Firstly, there can be some groups of parties, for each of which the result
of the bit-wise XOR operation is the zero sequence, and, thus, these groups of
parties, as a matter of fact, are eliminated from the formation of the re-ordering
of parties for the next epoch.

Secondly, the corrupted parties, using these or the others unforeseen short-
comings of the delay function, can try to influence on the computation of the
binary string r (see [32], for example), and, thus, on the computation of the
integer M .

The second approach is based on the idea to use some well known sufficiently
easily computable function f(x1, . . . , xN ) of non-negative discrete independent
random variables xi (i = 1, . . . , N) with the known distribution laws.
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In this case, each random binary string ri (i = 1, . . . , N) can be transformed
independently into some random non-negative integer mi, and then we can set

M = df(m1, . . . ,mN )e. (2)

Proceeding from the probabilistic reasons, the most expedient choice is the
function

f(x1, . . . , xN ) = N−1
N∑
i=1

xi, (3)

where xi (i = 1, . . . , N) are non-negative discrete independent random variables
with the known distributions. Due to this function, the integer M can be com-
puted as follows.

Each binary string ri (i = 1, . . . , N) can be transformed into the correspond-
ing non-negative integer mi. Thus, formulae (2) and (3) imply that

M = dN−1
N∑
i=1

mie. (4)

Since ri (i = 1, . . . , N) are random values that are uniformly chosen from the
set {0, 1, 2256−1}, we deal with the function (3) under the supposition that each
xi (i = 1, . . . , N) is the uniformly distributed random variable on the consecutive
integers 0, 1, 2256 − 1.

Thus, for each random variable xi (i = 1, . . . , N) the mean equals to

E(xi) = 0.5(2256 − 1), (5)

and the variance equals to

Var(xi) =
2512 − 1

12
. (6)

Formulae (5) and (6), taking into account the properties of the mean and the
variance imply that for the random variable

X = N−1
N∑
i=1

xi (7)

we get

E(X) = E

(
N−1

N∑
i=1

xi

)
= N−1

N∑
i=1

E(xi) = N−1
N∑
i=1

0.5(2256 − 1) =

= 0.5(2256 − 1)N−1
N∑
i=1

1 = 0.5(2256 − 1)N−1N = 0.5(2256 − 1), (8)

Var(X) = Var

(
N−1

N∑
i=1

xi

)
= N−2

N∑
i=1

Var(xi) = N−2
N∑
i=1

2512 − 1

12
=
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= N−2 · 2512 − 1

12
·

N∑
i=1

1 = N−2 · 2512 − 1

12
·N =

2512 − 1

12N
. (9)

Formula (9), in its turn, implies that for the standard deviation of the random

variable X = N−1
N∑
i=1

xi the following formula is true

σX =

√
2512 − 1

12N
. (10)

It should be noted that formulae (8)-(10) represent probability-theoretic char-
acteristics of the random variable X, defined by formula (7). Unfortunately, no
probability-theoretic characteristics of the random variable constructed accord-
ing to the formula (1) are known to us.

3 Conclusion

In the given paper we have proposed some approaches for the solution of the
problem of random re-ordering for parties which will participate in the imple-
mentation of the next epoch in the completely distributed blockchain operating
on a decentralized network topology on the assumption that there are neither
a trusted third party nor a dealer. The results of experiments has shown that
time needed for computing the re-ordering is acceptable for both proposed ap-
proaches.

Comparative analysis of efficiency for different well known sufficiently eas-
ily computable functions f(x1, . . . , xN ) of non-negative discrete integer-valued
independent random variables xi (i = 1, . . . , N) form some trend for future
research.

Another trend for future research consists of comparable analysis for char-
acteristics of these re-orderings for parties to resist to these or other actions of
the corrupted parties. For the solution of this problem it is supposed to use the
System of insertion modeling and symbolic verification of large systems [33].
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