
Extending the SMT-Lib Standard with Theory of

Nominative Data

Liudmyla Omelchuk
 1[0000-0002-2287-1304]

, Olena Shyshatska
 1[0000-0001-8791-8989]

1 Taras Shevchenko National University of Kyiv, Akademika Hlushkova Ave, 4d,

Kyiv, 03680 Ukraine

l.omelchuk@knu.ua, shyshatska@knu.ua

Abstract. We describe the theory of nominative data, formulate the basic prin-

ciples of the composition-nominative approach, and define the class of nomina-

tive data and functions. By using nominative data, we can increase the level of

adequacy of representation data structures, functions, and compositions that are

used in programming languages. Thus, in terms of composition-nominative ap-

proach, we can build systems of verification of programs based on a unified

conceptual basis. Computer-aided verification of computer programs often uses

SMT (satisfiability modulo theories) solvers. A common technique is to trans-

late preconditions, postconditions, and assertions into SMT formulas in order to

determine if required properties can hold. The SMT-LIB Standard was created

for forming a common standard and library for solving SMT problems. Now, it

is one of the most used libraries for SMT systems. Formulas in SMT-LIB for-

mat are accepted by the great majority of current SMT solvers. The theory of

nominative data is of interest for software modelling and verification, but cur-

rently lacks support in the SMT-LIB format. In the article, we propose the dec-

laration for the theory of nominative data for the SMT-LIB Standard 2.6. The

goal is the development of SMT solvers with nominative data support.

Keywords: SMT solver, partial logic, nominative data, composition program-

ming.

1 Introduction

Composition programming studies the systems at different levels of abstraction –

abstract, Boolean, and nominative (attribute) levels. Systems of the last level, based

on the composition-nominative methods [1], are rather expressible for a quite ade-

quate representation of the models of data structures and programs. Thus, the compo-

sition-nominative approach provides a unified methodological basis to formalize the

concept of program specification. By using nominative data, we can increase the level

of adequacy of representation data structures, functions, and compositions that are

used in programming languages. The axiomatic theory of nominative data [2] is de-

veloped in the spirit of the theory of admissible sets (S. Kripke, R. Platek, J. Barwise,

mailto:l.omelchuk@knu.ua

Yu.L. Yershov). This theory has a number of advantages with respect to the adequacy

of programming: on the one hand, it is strong enough to generate computable func-

tions over different data structures, on the other hand, it is not so restrictive as differ-

ent versions of constructive logic, but it is not excessively powerful and does not al-

low, for example, the use of axiom of constructing the set of all subsets (compared

with theory of sets by Zermelo-Frankel). Moreover, this theory uses basic data corre-

sponding to the methods of constructing data in programming. In terms of composi-

tion-nominative approach, while using nominative data one can increase the adequacy

of representation data structures, functions, and compositions used in programming

languages and build the systems of program specifications based on the single con-

ceptual framework. Basic data types of programming languages were specified in [2],

in addition, the functions over nominative data were specified in [1-4].

It is therefore natural to expect program analysis and verification tools to be able to

reason about programs, by means of deciding the validity of formulas containing vari-

ables of such types. Application of such tools requires a standard exchange format for

these types of formulas.

Dafny [5] is one of the formal verification languages. It is a hybrid language, with

functional and object-oriented features, which can automatically check programs

against specifications. Behind the scenes, Dafny converts programs for its users into

the mathematical expressions of Hoare logic with the aid of an intermediate verifica-

tion language called Boogie, and then it sends the code to an automatic proving pro-

gram called Z3 [6]. Z3 input format is an extension of the one defined by the SMT-

LIB 2 standard [7, 8]. This conversion process benefits Dafny users in eliminating the

need to write out long proofs in confusing notation while still being able to verify

their programs. As a result, Dafny requires that programmers use a strict form of syn-

tax in order to properly convert their code into mathematical expressions.

The standardization of formats in logic has played a major role in accelerating re-

search in the past. Examples for successful standardization efforts are the DIMACS

format for Boolean formulas in conjunctive normal form (CNF), and the SMT-LIB

format [6] dedicated to various first-order theories that are used in verification.

SMT-LIB was created in 2003 with the expectation that the availability of common

standards and a library of benchmarks would greatly facilitate the evaluation and the

comparison of SMT (satisfiability modulo theories) systems. Now, SMT-LIB contains

more than 100,000 benchmarks and continues to grow. Formulas in SMT-LIB format

are accepted by the great majority of current SMT solvers.

In computer science and mathematical logic, the satisfiability modulo theories

problem is a decision problem for logical formulas with respect to combinations of

background theories expressed in classical first-order logic with equality. Examples of

theories typically used in computer science are the theory of real numbers, the theory

of integers, and the theories of various data structures such as lists, arrays, bit vectors

and so on. SMT can be thought of as a form of the constraint satisfaction problem and

thus a certain formalized approach to constraint programming.

The following systems (listed alphabetically) were under active development in

2018: Alt-Ergo, AProVE, Boolector, CVC4, MathSAT 5, OpenSMT 2, raSAT,

SMTInterpol, SMT-RAT, STP, veriT, Yices 2, Z3 [6-8].

A new sublogic, or simply logic, is defined in the SMT-LIB language by a logic dec-

laration. Logic declarations have a similar format to theory declarations. Attributes

with the following predefined keywords are predefined attributes, with prescribed

usage and semantics in logic declarations [7]:

:theories :language :extensions :notes :values .

Additionally a logic declaration can contain any number of user-defined attributes.

<logic_attribute> := :theories (<symbol> +)

| :language <string>

| :extensions <string>

| :values <string>

| :notes <string>

| <attribute>

<logic> ::= (logic <symbol> <logic_attribute> +)

SMT-LIB logics refer to one or more theories:

 Functional arrays with extensionality (ArraysEx),

 Bit vectors with arbitrary size (FixedSizeBitVectors),

 Core theory, defining the basic Boolean operators (Core),

 Floating point numbers (FloatingPoint),

 Integer numbers (Ints),

 Real numbers (Reals),

 Real and integer numbers (Reals_Ints) [6-8].

We propose to add a theory of nominative data to SMT-LIB, serving as a standard

format for formulas that include operations on nominative data.

2 Composition-Nominative Approach

One of the approaches to software specification is composition programming [1-4].

Composition programming studies the systems at different levels of abstraction –

abstract, Boolean and nominative (attribute) levels. Systems of the last level based on

the composition-nominative methods [1] are rather expressive for adequate represen-

tation of the models of data structures and programs.

Thus, the composition-nominative approach provides a single methodological basis

to formalize the concept of program specification, bringing their features and their

further specification to programming languages of the lower level. This approach is

based on the following principles [1, 4]:

Development principle (from abstract to concrete): program notions should be in-

troduced as a process of their development that starts from abstract understanding,

capturing essential program properties, and proceeds to more concrete considerations.

The principle of priority of semantics over syntax: program semantic and syntactic

aspects should be first studied separately, then in their integrity in which semantic

aspects prevail over syntactic ones.

Compositionality principle: programs can be constructed from simpler programs

(functions) with the help of special operations, called compositions, which form a

kernel of program semantics structures.

Nominativity principle: nominative (naming) relations are basic ones in construct-

ing data and programs.

Here we have formulated only principles relevant to the topic of the article. A rich-

er system of principles is developed in [1-4].

3 Nominative Data

Class 𝑁𝐷 of nominative data is constructed by the following recursive definition

based on some sets of names of 𝑉 and values of 𝑊: 𝑁𝐷 = 𝑊 ∪ (𝑉
𝑚
→ 𝑁𝐷),

where 𝑉
𝑚
→ 𝑁𝐷 is the class of partial multi-valued (non-deterministic) functions.

For nominative data representation we use the form 𝑑 = [𝑣𝑖 ↦ 𝑎𝑖| 𝑖 ∈ 𝐼], where 𝐼

is some set of indices. Nominative membership relation is denoted by ∈𝑛. Thus,

𝑣𝑖 ↦ 𝑎𝑖 ∈𝑛 𝑑 means that the value of 𝑣𝑖 in 𝑑 is defined and is equal to 𝑎𝑖; this can be

written in another form as 𝑑(𝑣𝑖) ↓= 𝑎𝑖. The class 𝑁𝐷\𝑊 is called the class of proper

nominative data, or hierarchical nominative data; data from the class 𝑉
𝑚
→ 𝑁𝐷 will be

called flat nominative data, or nominative sets

Main functions over the nominative data are the following functions: naming 𝑣𝐷

and denaming of 𝑣𝐷 with a parameter 𝑣 ∈ 𝑉, and binary operations and predicates,

such as: union ∪D, subtraction \𝐷, equality (=𝑊)𝐷 on 𝑊. The function of construc-

tion of the empty nominative data []
𝐷, predicate of membership on 𝑊: ∈ 𝑊𝐷 are

also defined. Operation of renaming 𝑟𝑥
𝑣 for the nominative data ([𝑎1 ↦ 𝑏1, … , 𝑣 ↦

𝑏𝑖 , …]) yields [𝑎1 ↦ 𝑏1, … , 𝑥 ↦ 𝑏𝑖 , …]. The main compositions of functions over

nominative data are binary compositions: multiplication °𝐷, iteration ∗𝐷, merging 𝐷

and branching ternary composition 𝐷. It is shown that the composition of multiplica-

tion corresponds to the consecutive application of functions, composition of branch-

ing – to the conditional operator if-then-else of programming languages, composition

of iteration ∗𝐷 – to operator until-do, and composition of merging 𝐷 connecs nomi-

native data resulting from function-arguments.

The special kind of computability – nominative computability – is introduced for

consideration and studied in [3]. Nominative functions are the functions over the

nominative data obtained by closing of functions

{0,1, []
𝐷 ,𝐷 ,∪𝐷 , (=𝑊)𝐷 , 𝑎𝑠𝐷 , 𝑐𝑛𝐷 , ∈ 𝑊𝐷}

under compositions {°𝐷 , 𝐷 ,∗𝐷 ,𝐷}.

It is demonstrated [3] that an arbitrary partial recursive function can be represented

by nominative computable functions over the set of natural numbers by modelling in

the class of nominative data. In addition, it is shown in [3] that each nominative func-

tion can be represented by some binary - predicate 𝑃(𝑥, 𝑦), i.e. 𝑓(𝑥) = 𝑦 if and only

if 𝑃(𝑥, 𝑦) [2, 3]. For this purpose, the presentation of all functions specified in the

definition of nominative computability are built, as well as all the functions obtained

by using the compositions.

Axiomatic theory of nominative data [2] is developed in the spirit of the theory of

admissible sets (S. Kripke, R. Platek, J. Barwise, Yu.L. Yershov). This theory has a

number of advantages with respect to the adequacy of the programming: on the one

hand, it is quite powerful to generate computable functions over the different data

structures, on the other hand, it is not so restrictive as different versions of construc-

tive logic, but it is not excessively powerful and does not allow, for example, the use

of axiom of constructing the set of all subsets (compared with theory of sets by Zer-

melo-Frankel). Moreover, this theory uses the basic data (elements) corresponding to

the methods of constructing data in programming. The unary predicate 𝑈 is used, true

on the elements of the basic set 𝑊; the structure 〈𝐴, ∈𝑛, =, 𝑈〉 is considered. The theo-

ry of nominative data is constructed as the axiomatic theory of the first-order logic

with equality and ternary nominative membership relation (predicate) of the that writ-

ten in the infix form 𝑥 ↦ y ∈𝑛 𝑎 (or (𝑥, y) ∈𝑛 𝑎).

The class of 0 - formulas is the smallest class 𝑌, containing the basic formulas

and closed under the following rules:

1) if 𝜑 ∈ 𝑌, then also ¬𝜑 ∈ 𝑌,

2) if, 𝜑, ∈ 𝑌, then 𝜑 ∈ 𝑌 and 𝜑 ∈ 𝑌,

3) if 𝜑 ∈ 𝑌, then 𝑥 ↦ 𝑦𝑛𝑎 , ∃𝑥 → 𝑦𝑛𝑎  ∈ Y for all variables 𝑥, 𝑦, 𝑎.

Class of -formulas is the smallest class 𝑍, containing 0-formulas and closed in

relation to the conditions 2) and 3) determining the class of 0-formulas and further

conditions of existential quantification: if 𝜑 ∈ 𝑍, then ∃𝑢𝜑 ∈ 𝑍.

4 The Domain of Nominative Data

The theory of nominative data is of interest for software modelling and verification,

but currently lacks support in the SMT-LIB format. Therefore, we propose the theory

of nominative data for the SMT-LIB Standard 2.6 [7, 8].

For convenience, the definition of nominative data in the SMT-LIB Standard is

presented via the concepts of nominative pair (𝑥 ↦ y) and nominative set ([𝑎1 ↦
𝑏1, … , 𝑥 ↦ 𝑏𝑖 , …]). Nominative pair of two typed elements are the most basic collec-

tion datatype that we propose for an SMT-LIB theory. Semantically, assuming that

the type 𝑡1 denotes the non-empty domain (name) 𝑎 and the type 𝑡2 denotes the do-

main (value) 𝑏, the type 𝑁𝑑𝑃𝑎𝑖𝑟 𝑎 𝑡𝑜 𝑏 denotes the domain 𝑎 ↦ 𝑏. Table 1 contains

all proposed operations on nominative pairs in mathematical and in concrete SMT-

LIB notation.

This table gives a signature of the proposed SMT-LIB theory of nominative pairs.

In the first column of Table 1, we specify a mathematical notation for the functions

used with nominative pairs. In the mathematical notation, we use the following nota-

tion: 𝑎𝑖 or 𝑣 are names in the nominative pairs, 𝑏𝑖 is the value in the nominative pair,

and 𝑑 is the nominative pair. In the second column of Table 1, we specify a proposed

SMT-LIB notation for each operation. In the third column of Table 1, we specify a

signature for each operation. In the signature definition, we use the following nota-

tion: 𝛼 is a set of names in nominative pairs, and 𝛽 is a set of values in nominative

pairs.

Table 1. Signature of the SMT-LIB the theory of nominative data for nominative pair

Math. notation Proposed SMT-LIB notation Prop. SMT-LIB typing

𝑎1 ↦ 𝑏1 =𝑣 𝑎2 ↦ 𝑏2=

= {
𝑇, 𝑖𝑓 𝑎1 = 𝑎2

𝐹, otherwise

equality by name =

(ndpair <term>

<term>)

(pairnameequal

<term> <term>)

(𝑁𝑑𝑃𝑎𝑖𝑟 𝛼 𝑡𝑜 𝛽,
𝑁𝑑𝑃𝑎𝑖𝑟 𝛼 𝑡𝑜 𝛽)

𝑎1 ↦ 𝑏1 =̿ 𝑎2 ↦ 𝑏2=

= {
𝑇, 𝑖𝑓 𝑏1 = 𝑏2

𝐹, otherwise

equality by value =̿

(pairvalueequal

<term> <term>)

(𝑁𝑑𝑃𝑎𝑖𝑟 𝛼 𝑡𝑜 𝛽,
𝑁𝑑𝑃𝑎𝑖𝑟 𝛼 𝑡𝑜 𝛽)

𝑎1 ↦ 𝑏1 = 𝑎2 ↦ 𝑏2 =

= {
𝑇, 𝑖𝑓 (𝑎1 = 𝑎2)𝑎𝑛𝑑(𝑏1 = 𝑏2)

𝐹, otherwise

equality=

 (ndpairequal

<term> <term>)

(𝑁𝑑𝑃𝑎𝑖𝑟 𝛼 𝑡𝑜 𝛽,
𝑁𝑑𝑃𝑎𝑖𝑟 𝛼 𝑡𝑜 𝛽)

⇒ 𝑣𝐷(𝑑) = (𝑣, 𝑑) denaming (naming <term>

<term> <term>)

(𝛼, 𝛽, 𝑁𝑑𝑃𝑎𝑖𝑟 𝛼 𝑡𝑜 𝛽)

 𝑟𝑎
𝑣([𝑣 → 𝑏1]) = [𝑎 → 𝑏1]

Renaming

<pairrenaming

<term> <term>

<term>)

(𝛼, 𝛽, 𝑁𝑑𝑃𝑎𝑖𝑟 𝛼 𝑡𝑜 𝛽,
𝑁𝑑𝑃𝑎𝑖𝑟 𝛼 𝑡𝑜 𝛽)

Note, that the type of an 𝑛-ary predicate SMT-LIB is in specified by an 𝑛 −tuple

(𝑡1 … 𝑡𝑛), while the type of an 𝑛 -ary function with result type 𝑡0 is given by an

(𝑛 + 1) - tuple (𝑡1 … 𝑡𝑛 𝑡𝑜).

A Declaration for a nominative pair for theory of nominative data for the SMT-LIB

Standard is given in Fig. 1.

(theory NominativePair

 :smt-lib-version 2.6

 :written_by "Liudmyla Omelchuk"
 :date "15/01/2019"

 :sorts ((Int 1) (NdPair 2)))

 :funs (
 (par (X Y) (ndpair X Y (NdPair X Y)))
 (par (X Y) (naming X Y (NdPair X Y)))
 (par (X Y) (pairrenaming (NdPair X Y) X (NdPair X Y)))
 (par (X Y) (pairnameequal (NdPair X Y) (NdPair X Y) Bool))
 (par (X Y) (pairvalueequal (NdPair X Y) (NdPair X Y) Bool))
 (par (X Y) (pairequal (NdPair X Y) (NdPair X Y) Bool))))

 :definition

"Let Q be a set of sort symbols including NdPair and Bool, and let S

be the set of all (ground) sort terms over Q. For any s in S and any

function symbol f, let [[s]] and [[f]] respectively denote the inter-
pretation of s and f in some given structure.

For any S like the above, NominativePair(S) is the theory consisting

of all structures satisfying the following restrictions for all s, s'
in S:

 - [[(NdPair s s')]] is the pair from [[s]] to [[s']].

 - For all name n and data d
 [[naming]](n, d) = [[(NdPair n d)]].

 - For all nominative pair p from [[n]] to [[v]] and all name x
 [[paitrenaming]](p, x) = [[(NdPair x v)]].

 - For all nominative pairs a from [[n1]] to [[v1]] and nominative

pair b from [[n2]] to [[v2]],
 true if n1 = n2
 [[pairnameequal]](a, b) = false otherwise.

 - For all nominative pairs a from [[n1]] to [[v1]] and nominative

pair b from [[n2]] to [[v2]],
 true if v1 = v2
 [[pairvalueequal]](a, b) = false otherwise.

 - For all nominative pairs a from [[n1]] to [[v1]] and nominative

pair b from [[n2]] to [[v2]],
 true if (v1 = v2) and (n1 = n2)
 [[pairequal]](a, b) = false otherwise.
"
 :note

 "For any given S, NominativePair(S) has several models which differ

not only on how they interpret the base sorts of S other than Int and
Bool, but also on how they interpret the 'apply' function symbol when
the value of a map is queried at a point outside of its domain.

 ")

Fig. 1. A declaration for a theory of nominative pair

Nominative set of nominative pairs is the collection datatype that we propose for

SMT-LIB theory. Semantically, the nominative set types denote sets NdSet(A, B) of

finite partial functions. The Table 2 contains all proposed operations on nominative

sets in mathematical and in concrete SMT-LIB notation. This table gives a signature

of the proposed SMT-LIB theory of nominative set.

In the first column of Table 2, we specify a mathematical notation for the functions

used with nominative data. In the mathematical notation, we use the following nota-

tion: 𝑎𝑖 or 𝑣 are names in the nominative pairs, 𝑏𝑖 is the value in the nominative pair,

and 𝑑 is the nominative set. In the second column of Table 2, we specify a proposed

SMT-LIB notation for each operation. In the third column of Table 2, we specify a

signature for each operation. In the signature definition, we use the following nota-

tion: 𝛼 is a set of names in nominative pairs, 𝛽 is a set of values in nominative pairs,

and 𝛾 is a set of nominative pairs.

Table 2. Signature of the SMT-LIB theory of nominative data for nominative set

Math. notation Proposed SMT-LIB

notation

Proposed SMT-

LIB typing

[𝑎1 ↦ 𝑏1, …] (NdSet <term>*) ((𝛾)∗𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽)

𝑎 → 𝑏 ∈ 𝑑𝑛 (ndin <term> <term>) (𝛾, 𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽)

⇒ 𝑣𝐷(𝑑) = [𝑣 → 𝑑] (naming <term>

<term>)

(𝛼 𝛽 𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽)

𝑓∇𝑔 = 𝑔 ∪ {(𝑣, 𝑤)|

(𝑣, 𝑤) ∈𝑛 𝑓 & ¬∃𝑤′(𝑣,𝑤′)∈𝑛𝑔}

(ndoverlay <term>

<term><term>)

(𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽
𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽
𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽)

∪𝐷 (𝑑1, … , 𝑑𝑛) = [𝑣 ↦ 𝑑|

𝑣 ↦ 𝑑 ∈ 𝑑𝑛 1 … .𝑣 → 𝑑 ∈ 𝑑𝑛 𝑛]

(ndunion <term>
+
) (𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽)+

𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽

𝐷
\ (𝑑1, 𝑑2) = [𝑣 ↦ 𝑑|

𝑣 ↦ 𝑑 ∈ 𝑑𝑛 1 ∧ 𝑣 → 𝑑 ∉ 𝑑𝑛 2]

(ndsetminus

<term><term>)

(𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽
𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽
𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽)

[]̅̅ ̅̅
𝐷(𝑑) = [] (emptyNdSet <term>) (𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽

𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽)

=𝐷 (𝑑1, 𝑑2) =

= {

𝑇, 𝑖𝑓 𝑑1, 𝑑2 ∈ 𝑊, 𝑑1 = 𝑑2

𝐹, 𝑖𝑓 𝑑1, 𝑑2 ∈ 𝑊, 𝑑1 ≠ 𝑑2

↑ , otherwise

(ndequal

<term><term>)

(𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽
𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽)

𝑟𝑥
𝑣([𝑎1 ↦ 𝑏1 … , 𝑣 ↦ 𝑏𝑖 , . .]) =

= [𝑎1 ↦ 𝑏1 … , 𝑥 ↦ 𝑏𝑖]
(ndrenaming

<term><term><term>

<term>)

(𝛼 𝛼

𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽

𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽)

⊆𝐷 (𝑑1, 𝑑2) (ndsubset

<term><term>)

(𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽

𝑁𝑑𝑆𝑒𝑡 𝛼 𝑡𝑜 𝛽)

The theory of nominative data defines a parameterized sort and functions to read

and write elements of NdSet.

The new sort symbol NdSet takes two sort parameters: the first is the sort of the

name, the second is the sort of the value of the nominative data elements.

Two values of the same NdSet sort are equal if the Set elements are equal for every

value of the name sort.

A declaration for a nominative set of the theory of nominative data for the SMT-

LIB Standard is presented in Fig. 2.

 (theory NominativeSet

 :smt-lib-version 2.6

 :written-by "Liudmyla Omelchuk"
 :date "2019-02-25"

 :sorts ((Int 1) (NDSet 2))

 :funs (((par (X) (emptyNdSet (NdSet X)))
(par X) (naming X X (NdSet X) (NdSet X) :right_assoc)
(par X) (denaming X (NdSet X) (NdSet X) :right_assoc)
(par (X) (ndin (NdPair(X Y)) (NdSet Z) Bool))
(par (X) (ndsubset (NdSet X) (NdSet X) Bool :chainable))
(par (X) (ndunion (NdSet X) (NdSet X) (NdSet X) :right_assoc))
(par (X) (ndoverlay (NdSet X) (NdSet X) (NdSet X) :right_assoc))
(par (X) (ndsetminus (NdSet X) (NdSet X) (NdSet X) :right_assoc))
(par (X) (ndequal (NdSet X) (NdSet X) Bool :chainable))
(par (X (renaming X X (NdSet X) (NdSet X) :right_assoc))

 :definition
 "Let Q be a set of sort symbols including Set, Int, and Bool, and

let S be the set of all (ground) sort terms over Q. For any s in S
and any function symbol f, let [[s]] and [[f]] respectively denote the
Interpretation of s and f in some given structure.

 For any S like the above, NominativeSet(S) is the theory consist-

ing of all structures satisfying the following restrictions for all s
in S:

 - [[(Set s)]] is the set of all finite subsets of [[s]].

 - [[f]] is as expected if f is in {subset, in}.

 - [[(NdSet s s')]] is the nominative set of all finite partial

maps from [[s]] to [[s']].

 - [[emptyNdSet]] is the function from [[s]] to [[s']] undefined

everywhere.

 - For all nominative sets m and name x,
 [[naming]](x, m) = [[(NdPair x m)]] is the nominative set of all

finite partial maps from [[x]] to [[m]].

 - For all nominative set m and name x,
 b if [[(NdPair x b)]] in m
 [[denaming]](x, m) =
 undefined otherwise.

 - For all nominative set m, name n and nominative set v,
 true if [[(NdPair x b)]] in m
 [[ndin]]([(NdPair n v)], m) =
 false otherwise.

 - For all n > 0, nominative set a and nominative set b of [[b1]],

..., [[bn]],
 true if bi ndin a for all i = 1, ..., n
 [[ndsubset]](b, a) =
 false otherwise.

 - For all n, m > 0, nominative set a of [[a1]], ..., [[an]] and

nominative set b of [[b1]], ..., [[bm]],

 [[ndunion]](b, a) = [[a1],…[an],[b1],…,[bm]].

 - For all n, m > 0, nominative set a of [[(NdPair a1 b1)],…[(

NdPair an bn)]] and nominative set b,
 [[ndoverlay]](a, b) = [[ndunion](b,
 { x indn [[(NdPair a1 b1)],…[(NdPair an bn)]] |
 there in not any d (NdPair ai d) ndin b })].

 - For all k > 0, nominative set a of [[a1]], ..., [[an]] and nomi-

native set b of [[b1]], ..., [[bm]],
 [[ndsetminus]](a, b) = {x ndin [[s1],…[sk]] |
 for all i <=k si idin a and not (si indin b)}.

 - For all nominative set a of [[(NdPair a1 b1)],…[(NdPair an

bn)]] and name x,

 [[renaming]](x, y, a) ={x ndin [[(NdPair a1 b1)],…
 [(NdPair am bm)]] | for all i<=m
 ([(NdPair ai bi)] dnin [[(NdPair a1 b1)],…
 [(NdPair an bn)]]) and (not ai = x) } ndunion
 { [[(NdPair y bj)] | [[(NdPair x bj)] ndin
 [[(NdPair a1 b1)],…[(NdPair an bn)]]}.

 - For all k > 0, nominative set a [[a1]], ..., [[an]] and nomina-

tive set b,
 true if for all i <=n ai idin b
 [[ndsubset]](a, b) =

false otherwise.

 - For all nominative sets a, b
 [[ndequal]](a, b) = (a ndsubset b) and (b ndsubset a).

 - [[n]] is as expected if n is a numeral.

 - [[(NdSet s)]] is the set of all finite subsets of [[s]].

 - [[f]] is as expected if f is in
 { emptyNdSet, naming, denaming, ndin, ndsubsetm ndunion,
 ndoverlay, ndsetminus, ndsubset, ndequal, renaming}.
")

Fig. 2. A declaration for a theory of nominative set

Using proposed by the authors the SMT-LIB theory of nominative data, we can ad-

equately determine the structure of programming data and operations on them.

For example, the following statement in terms of the theory of nominative data:

∀𝑎∃𝑠(𝑎 ∈𝑛 𝑠)

can be specified in the form of the following SMT- LIB notation:

(forall ((a (NdPair Int))) (exists ((s (NdSet Int))) (ndin a s)))

Fig. 3-4 give an example of the use of nominative data structures in theorem prover

Z3, which is one of the SMT solvers.

Fig. 3. An example of the use of nominative data structures in Z3

Fig. 4. An example of a satisfiable of nominative data structures in Z3

The link to https://sites.google.com/knu.ua/nominative-data contains information

that relates the description of Extended SMT-Lib Standard with Theory of Nomina-

tive Data [10].

5 Conclusion

In the article, we have proposed the extension of the SMT-LIB Standard with theory

of nominative data. This theory is of interest for software modelling and verification.

At the same time, the declaration for the SMT-LIB Standard for the theory of nomina-

tive data has not yet been proposed.

To construct the extension of the SMT-LIB Standard for the constructed theory of

nominative data, we have described the main principles of the composition-

nominative approach and the definition of the class of nominative data. Such data

form a basis for adequate definition of data structures, functions, and compositions of

programming languages [2-4].

We are developing SMT solvers with nominative data support. In the forthcoming

articles we will demonstrate applications of the proposed theory.

References

1. Nikitchenko, N.: A Composition Nominative Approach to Program Semantics. Techn. Re-

port IT–TR. Technical University of Denmark, Lyngby (1998).

2. Omelchuk, L.: Aksiomatychni systemy specyfikacij program nad nominatyvnymy danymy

[Axiomatic Systems of Specifications of Programs over Nominative Data]. Candidate’s

thesis. Kyiv [in Ukrainian] (2007).

3. Nikitchenko, N., Omelchuk, L., Shkilniak S.: Formalisms for Specification of Programs

over Nominative Data. Electronic computers and informatics (ECI 2006). Košice,

Herl’any, Slovakia, 134-139 (2006).

4. Kryvolap, A., Nikitchenko, M., Schreiner, W.: “Extending Floyd–Hoare logic for partial

pre- and postconditions”, CCIS 412, Springer, Heidelberg, pp. 355-378. (2013).

5. Leino, K.R.M.: Dafny: An Automatic Program Verifier for Functional Correctness. In

LPAR-16, 6355:348–370. LNCS. Springer. (2010).

6. Moura, L., Bjørner, N.: Z3: An efficient smt solver. In In Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems (TACAS). (2008).

7. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Publishing

house of Department of Computer Science, The University of Iowa. (2017). Homepage,

http://www.SMT-LIB.org , last accessed 2019/03/11.

8. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From

an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the

ACM. Т. 53, vol. 6, pp. 937—977. (2006).

9. Sutcliffe, G., Suttner, C.: The TPTP problem library—CNF release v1.2.1. J. Autom. Rea-

soning, 21(2). pp. 177–203. (1998).

10. Theory of Nominative Data, https://sites.google.com/knu.ua/nominative-data, last accessed

2019/04/21.

http://www.smt-lib.org/
https://sites.google.com/knu.ua/nominative-data

