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1 Introduction

Floyd-Hoare logic [1,2] is a logic which is useful for proving partial correctness
of sequential programs. It is based on properties of triples (assertions) of the
form {p}f{q}, where f is a program and p, q are predicates which specify pre-
and post-conditions. An assertion of this kind means that if the program’s input
d satisfies the pre-condition p, and the program terminates on d, the program’s
output satisfies the post-condition ¢. In the classical Floyd-Hoare logic the pro-
gram is allowed to be non-terminating (or have an undefined result of execution),
but the pre- and postconditions are assumed to be always defined (have a well
defined truth value). In the presence of pre- and postconditions defined by par-
tial predicates (which can be undefined on some data) the inference rules (in
particular, the sequence rule) of the classical Floyd-Hoare logic become unsound
[13,14], when a triple {p} f{q} is understood in the following way: if a precondi-
tion p is defined and true on the program’s input, and the program f terminates
with a result y, and the postcondition g is defined on y, then g is true on y.

In the previous works [15, 3,4, 10, 12,11, 8] we investigated an inference sys-
tem for an extension of Floyd-Hoare logic which remains sound in the case of
partial pre- and postconditions, assuming the above mentioned interpretation of
Floyd-Hoare triples. The formulations of the rules of this inference system, how-
ever, require introduction of a new composition into the logical language used
to express pre- and postconditions. Whereas the formulation of the rules of the
classical Floyd-Hoare logic depends on the usual boolean compositions (—, A)
of pre- and postcondition predicates (which are assumed to be total), the men-
tioned extension depends on the compositions of negation (—) and conjunction



(A) of partial predicates defined in accordance with the tables of Kleene’s strong
3-valued logic, and on one additional unary composition of partial predicates
which we call the composition of predicate complement and denote as ~. This
composition extends the signature of the Kleene algebra of partial predicates [9].
In this paper we investigate the question of expressibility of partial predicates
in the Kleene algebra extended with the composition of predicate complement
and give a necessary and sufficient condition of this expressibility in terms of the
existence of an optimal solution of a special constrained optimization problem.
The obtained results may be useful for development of (semi-)automatic deduc-
tion tools for the mentioned extension of the Floyd-Hoare logic for the case of
partial pre- and postconditions.

2 Notation

We will use the following notation. The notation f : A= B means that f is a
partial function on a set A with values in a set B, and f : A — B means that f
is a total function from A to B. For a function f: A>B:

— f(z) | means that f is defined on z;

— f(z) 4=y means that f is defined on = and f(z) = y;
— f(z) 1 means that f is undefined on x;

— dom(f)={xz € A | f(z) }} is the domain of a function.

We will denote as fi(x1) & fo(za) the strong equality, ie. fi(x1) | if and
only if fo(z2) |, and if fi(z1) |, then fi(z1) = fo(z2).

The symbols T, F will denote the “true” and ”false” values of predicates.

We will denote Bool = {T, F'}. The symbol L will denote a nowhere defined
partial predicate.

Let D # () be a set, and Py, Py, ... P, be partial predicates on D.

Let APrp,... p, (D) = (D= {T,F};V,N,—,~,P,P,,...,P,) be an algebra
of partial predicates with constants P4, ..., P,,, where

1. V, A, — are the operations of disjunction, conjunction and negation on partial
predicates defined in accordance with Kleene’s strong three-valued logic as

follows:
T, if P(d) |=T or Q(d) =T,
(PVQ)(d) =< F, if P(d) |]=F and Q(d) |= F;
undefined in other cases.
T, if P(d) J]=T and Q(d) =T}
(PAQ)d) =1 F, if P(d) |= F or Q(d) l= F;
undefined in other cases.
T, if P(d) |=F;
(~P)(d) = { F, if P(d) |= T

undefined in other case.



2. ~ is the unary operation of predicate complement:

T if P(d) 1;

(~ P)(d) = {undeﬁned, if P(d) | .

We will call APrp, . p,(D) the Kleene algebra of partial predicates on D
with predicate complement and constants Pi, ..., P,.

3 Main Result

Let F(™) be the set of all n-ary functions (operations) f : {—1,0,1}" — {~1,0,1}.
The elements of F(™) will represent functions of 3-valued logic P; (where 1 cor-
responds to the “true” value and —1 corresponds to the “false” value, and 0 is
an intermediate truth value).

Let F'={J, -, F™.

We will denote as Z = (1,22, ..., 5) a tuple of values z; € {—1,0,1}.

Let us consider {—1,0,1}"™ as a metric space with Chebyshev distance:

pn((mh "'axn)7 (yla 7yn)) - I?Eillx ‘xz - yz‘

We will say that a function f € F(") is short, if it is a short map, i.e. if for
all z, g we have

1f(Z) = F(@)| < pu(2,0).
For any predicate P : D={T, F'} denote by @(P) a function D — {—1,0,1}
such that for all d € D:

1, ifP(d) =T,
s(P)(d)= {0, it P(d)1,
1, if P(d) |=F
Let D # () be a set, Py, Ps, ..., P, : DS{T, F'} be partial predicates, and
APTPl,-n,Pn(D) = (DL) {T7F};\/7/\7"7N7P17P27'-~7Pn)-
Let p; = ¢(P;) for i =0,1,2,...,n.

Denote |[f|| = > zc(_1,0,13 [f(@)| for f € F™ and consider the following
(constrained) optimization problem?:

|1l = min (1)

f(p1(d), p2(d), ..., pn(d)) = po(d), de D (2)

Theorem 1. Ifn > 1, a predicate Py is expressible in the algebra APrp, . p, (D)
if and only if on the set F(™ the problem (1)-(2) has an optimal solution which
is a short function.

! If one interprets partiality in terms as possibility, minimization of || f|| may be related
to the principle of minimum specificity of D. Dubois et al. from possibility theory,
or other similar principles.



4 Proof of the Main Result

Denote for all z,y € {—1,0,1}:

- = —x

~x=1-—|x|
z, ify=1
aW =d vz ify=0

-z, ify=-1
Lemma 1. p,(Z,7) =1 — min} xgyd for everymn > 1 and z,y5 € {—1,0,1}".
Proof. Tt is easy to see that for all z,y € {—1,0,1}:

2 =1 — |z —y|

Then p,,(Z,y) = max?_; |x; — y;| = max} (1 — :c[yi]) =1—min} mgyl] O

i
Consider {—1,0,1} as a lattice with operations:
x Vy = max(z,y);

z Ay =min(z,y).

Below we will assume that in expressions involving operations on {—1,0,1}
the operation z[¥ has the highest priority, and is followed (by priority) by the
unary operations —, ~, which are followed by the binary operations A and V. As
usual, among A, V, the operation A has higher priority.

Lemma 2. For each short function f € F™ and z € {-1,0,1}":

f(@) = f(@) A f0(T) V ~fr0(2)

where
f@) = {Vy:f@)—l Nz, if 3y f(y) =1

-1, otherwise
Fao(@) = Vo Ay ~ @A ~ 2PN o 2l if 35 £(5) #0 '
7 0, otherwise.
Proof. Tt is easy to see that for each z,y € {—1,0,1}:

1, ifz=y

~ (YA ~ YA o gV =
0, ifx#uy.

Then

o ={y H1e7



By Lemma 1,

fw):{vwmwﬂu—pmaym if 3 £(7) =1

-1, otherwise.

If f(z) =1, then f(Z) =1 and fxo(Z) =1, 50 f(Z) A f20(Z) V = fro(Z) = 1.

If f(Z) =0, then f.o(Z )—O,Aso

F@) A fr0(Z) V afro(Z) = (f(Z)AO)VO=0.

If f(z) = —1, then for each § such that f(y) = 1 we have p,(Z,9) > |f(Z) —
£(%)| = 2 which implies that 1 —p,(Z,7) = —1. Then f(z) = —1 and fzo0(Z) =1,

50 f(Z) A f0(T) V = f0(T) = —1.

F(®) = F(@) A F20(T) V = fr0(Z).
O

Lemma 3. The set of all short functions from F' is a precomplete class in F' and
is the functional closure of the set {fo, f1, fo, f3, fa}, where fo € FO, f1, fo €
F(l)’ f3, fa € F® and fo =0, fl(m> =T, f2($) = 1—|CL", f3($7y) = max(amy),
fa(z,y) = min(z, y).

Proof. Denote by S the set of all short functions from F'. In accordance with
its definition, a short function from F' can be alternatively characterized as a
function {-1,0,1}" — {-1,0,1} (n > 0) which does not change sign on each
of the sets []_,{0,a;}, where a1, ...,a,, € {—1,1}". In the terminology of [18],
such functions correspond to the precomplete class Tgl’l of functions for which
the image of the product of sets, l-equivalent to &£ is a subset of a set, 1-
equivalent to £, where two sets are l-equivalent, if their symmetric difference
has no more than 1 element. Thus S is a precomplete class in F. Obviously,
{fo, f1, f2, f3, fa} € S. On the other hand, since the constant function with
value —1 is expressible as fi o fo o fo, from Lemma 2 and the definition of z!
it follows that each f € S can be expressed as a composition of elements of
{fo, f1, f2, f3, fa} and of projections n}(z1,...,2n) = zx (n > 1, k =1,2,...,n).
Thus S is the functional closure of {fo, f1, f2, f3, fa}- O

Lemma 4. For each P,Q : D={T,F} and d € D we have:
&(L)(d)=0
)
)(d)]

P)(d) = —(2(P)
(P)(d),2(Q)(d))

(d
P)(d) =1 [&(P
(@

(d) = min(&(P)(d), 2(Q)(d))

?(-
&(~ P)(d
&(PV Q)(d) = max
P(PAQ)

Proof. Follows immediately from the definition ¢ and operations —, ~,V, A on
partial predicates. a

Let M (™ be the set of all short functions from F(™).



Lemma 5. The problem (1)-(2) has an optimal solution on F™ if and only
if po is continuous in the initial topology on D induced by p1,...,pn (where the
codomain of p;, {—1,0,1}, is considered as a discrete space).

Proof. “If”: assume that pg is continuous in the initial topology on D induced
by p1, ..., Pn. Then there exists f € F(™ such that po(d) = f(p1(d), ..., pn(d)) for
all d € D. Then since the set F(™) is finite, the problem (1)-(2) has an optimal
solution on F (™),

“Only if”: assume that the problem (1)-(2) has an optimal solution f € F().
Then po(d) = f(p1(d), ...,pn(d)) for all d € D, so pg is continuous in the initial
topology on D induced by p1, ..., pn- a

Lemma 6. If the problem (1)-(2) has an optimal solution on F™) | then this
solution is unique.

Proof. Assume that the problem (1)-(2) has optimal solutions f,g € F(™). Then

1711 = llgll and f(p1(d), - pa(d)) = pod) = g(pr(d), - pa(d)) for all d € D.

Suppose that f # g. Then there exists z* = (z7,...,z}) € {—1,0,1}" such
that f(z*) # g(z").

Consider the case when f(Z*) # 0. Let us define a function h € F(™ as
follows: h(z) = f(Z), if T # z*, and h(Z) = 0, if £ = Z*. Then for all d € D,
(pl(d)’m?pn(d)) # ‘f*7 S0 h(pl(d)vvpn(d)) = pO(d)‘ MOI‘EOVQI', HhH = ||f‘| -
[£(@*)] = ||fI| =1 < ||f|| which contradicts the assumption that f is an optimal
solution of (1)-(2).

Consider the case when f(z*) = 0 Then | g(**)| = 1. Let us define a function
h € F™ as follows: h(z) = g(), if T # z*, and h(Z) = 0, if £ = Z*. Then
for all d € Dv (pl(d)v"')pn(d)) 7é a S0 h(pl(d)’ 7pn(d)) - pO(d) MOI‘GOVGI‘
[|R]] = llgl] — |g(Z*)| = |lg]| — 1 < ||g]| which contradicts the assumption that g

is an optimal solution of (1)-(2).
Thus f = g. So if the problem (1)-(2) has an optimal solution on F(™), then
this solution is unique. a

Lemma 7. Let f € M) g c F™ and g(z) € {f(z),0} for each € {—1,0,1}".
Then g € M™.

Proof. Let z,5 € {—1,0,1}". Counsider the following cases.

1) g(z) = f(f?),g(ﬂ) f(@). Then |g(z) — g(7)| = |£(Z) — fF()] < p(Z,7).

2) 9(z) = f(%),9(y) = 0. Then |g(z) — g(7)| = |f(2)| < p(2,7), if T # 7, and
l9(z) —9(y)| =0 < p(z,9),ifz=9.

3) 9(z) = 0,9(y) = f(y). Then [g(z) — g(H)| = [f(H)| < p(Z,7), if T # 7, and
l9(z) —9(®)| =0 < p(z,9), if 2 = 7.

4) g(2) =0, g(y) = 0. Then [g(z) — ()| < p(Z, 7).

Thus g € M™. O

Lemma 8. The problem (1)-(2) has an optimal solution on M™ if and only if
it has an optimal solution on F(™) which belongs to M™



Proof. “If”: assume that the problem (1)-(2) has an optimal solution f € F(™)
which belongs to M ™). Then f(pi(d),p2(d), ..., pn(d)) = po(d) for all d € D.
Moreover, for each g € M (™ such that g(p;(d),p2(d), ..., pn(d)) = po(d) for all
d € D, we have g € F(™ so ||f|| < ||g||- So f is an optimal solution of (1)-(2)on
MM,

“Ounly if”: assume that the problem (1)-(2) has an optimal solution f on
M) Then f(pi(d),p2(d), ..., pn(d)) = po(d) for all d € D. Then since F(™ is
finite, the problem (1)-(2) has an optimal solution on F(™). By Lemma 6, the
problem (1)-(2) has a unique optimal solution of F(™. Denote it as g. Then
9(p1(d), p2(d), ..., pn(d)) = po(d) for all d € D and ||g|| < ||f]|. Let us define a
function h € F(™ as follows: for each # € {—1,0,1}", h(z) = f(z), if g(z) # 0,
and h(z) = g(z), if g(z) = 0. Then for all d € D, h(p1(d),...,pn(d)) = po(d).
Moreover, h € M by Lemma 7. Then ||h|| = ||f]|, so for each Z such that
9(Z) = 0 we have f(Z) = 0. Then ||f|| < ||g||- Since ||g|| < ||f]| as mentioned
above, we have ||f|| = ||g||. The f is an optimal solution of (1)-(2) on F(™ and
f belongs to M ™), ad

Now we can give a proof of the main Theorem 1 from the previous section.

Proof (of Theorem 1). “If”: assume that the problem (1)-(2) has an optimal
solution on the set F(™) which is a short function. Denote by f such a solution.
Then we have po(d) = f(p1(d),p2(d),...,pn(d)) for all d € D. By Lemma 3, f
belongs to the functional closure of {fo, f1, fo, f3, f4}, where f; are defined as
in Lemma 3. From Lemma 4 it follows that po(d) = #(P)(d) for all d € D for
some predicate P : D5{T, F'} expressible in the algebra (D= {T, F};V, A, -, ~
, L, P, Py, ..., P,). Since n > 1 and the predicate | can be expressed as ~
P\ ~~ P;, we conclude that P is expressible in the algebra APrp, . p, (D).
Then &(Py)(d) = &(P)(d) for all d € D. Then the definition of ¢ implies that
Py = P, so Py is expressible in APrp, .. p, (D).

“Only if”: assume that a predicate P, is expressible in algebra APrp, . p, (D).
Then Lemma 4 implies that &(Fy)(d) = f(®(P1)(d), P(P2)(d),...,P(Pp)(d)) for
all d € D for some function f € F(™ which belongs to the functional closure
of {fo, f1, f2, f3, fa}, where f; are defined as in Lemma 3. Then by Lemma 3,
f is a short function and po(d) = f(p1(d),...,pn(d)) for all d € D. Then since
M™ C F( is a finite set, the problem (1)-(2) has an optimal solution on the
set M (™). Then Lemma 8 implies that the problem (1)-(2) has an optimal solu-
tion on F(™) which is a short function. a

Note that the problem (1)-(2) has the following addition property.

Lemma 9. If the problem (1)-(2) has an optimal solution on M™) then this
solution is unique.

Proof. Assume that f,g are optimal solutions of (1)-(2) on M(™. Then by
Lemma 8, (1)-(2) has an optimal solution on F(™ which belongs to M. By
Lemma 6 this solution is unique. Denote it as h. Then ||h|| < || f]| and ||R]|| < ||g]]-
Then h is an optimal solution of (1)-(2) on M) and ||h|| = ||f]| = ||g||- Then
f, g are optimal solutions of (1)-(2) on F(). Then by Lemma 6, f = g. ad



5 Example

In this example of application of the main result of the paper we will use the
notation and terminology of the composition-nominative approach to program
formalization [16,17] and [7, 6, 5].

Let v be a fixed name, V = {v}, A ={T, F}.

Let D =V A be the set of named sets on V which take values in A. Then

D ={[l,[v—T],[v— Fl}.
Let P; be a partial predicate on D such that
Py(d) = (v=(d))

where v = is the denaming operation [16,17] (which has undefined value, if
v ¢ dom(d)).

Let Py be a partial predicate on D such that

T, ifv=(d)T;

Py(d) = . (@)1

F, ifv=(d)].

Let us check if Py is expressible in the algebra
APTPl(D) = (D%{T7F};va/\7_')NaP1)-
Let p; : D — {-1,0,1}, ¢ = 0,1 be functions such that
1, if P;,(d) =T,

-1, if Pi(d) |=F.
Then

pi(d)=1¢0, ifv=(d

po(d) =<1, ifv=
-1, ifv=(d)|=F.
The initial topology on D induced by p; is the power set of D, so pgy is
continuous. We have

po({d € D | pi(d) = -1}) = {1}
po({d € D | p1(d) = 0}) = {1}
po({d € D | pi(d) =1}) = {1}
Then a function with the graph
{(_17 _1)a (Ov 1)7 (L _1)}

is the unique optimal solution of the problem (1)-(2), but it is, obviously, not a
short function. Then Theorem 1 implies that P is not expressible in the algebra

APTPl(D) :(D%{T7F};\/v/\7_')NvP1)-
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Conclusion

We have investigated the question of expressibility of partial predicates in the
Kleene algebra extended with the composition of predicate complement and have
given a necessary and sufficient condition of this expressibility in terms of the
existence of an optimal solution of a special optimization problem. The obtained
results may be useful for development of (semi-)automatic deduction tools for an
extension of the Floyd-Hoare logic for the case of partial pre- and postconditions.
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