On the Kleene Algebra of Partial Predicates with Predicate Complement

Ievgen Ivanov, Mykola Nikitchenko^[0000-0002-4078-1062]

Taras Shevchenko National University of Kyiv, Ukraine ivanov.eugen@gmail.com, nikitchenko@unicyb.kiev.ua

Abstract. In the paper we investigate the question of expressibility of partial predicates in the Kleene algebra extended with the composition of predicate complement and give a necessary and sufficient condition of this expressibility in terms of the existence of an optimal solution of an optimization problem. The obtained results may be useful for development of (semi-)automatic deduction tools for an extension of the Floyd-Hoare logic for the case of partial pre- and postconditions.

Keywords: Formal methods, software verification, partial predicate, Floyd-Hoare logic.

1 Introduction

Floyd-Hoare logic [1, 2] is a logic which is useful for proving partial correctness of sequential programs. It is based on properties of triples (assertions) of the form $\{p\}f\{q\}$, where f is a program and p, q are predicates which specify preand post-conditions. An assertion of this kind means that if the program's input d satisfies the pre-condition p, and the program terminates on d, the program's output satisfies the post-condition q. In the classical Floyd-Hoare logic the program is allowed to be non-terminating (or have an undefined result of execution), but the pre- and postconditions are assumed to be always defined (have a well defined truth value). In the presence of pre- and postconditions defined by partial predicates (which can be undefined on some data) the inference rules (in particular, the sequence rule) of the classical Floyd-Hoare logic become unsound [13, 14], when a triple $\{p\}f\{q\}$ is understood in the following way: if a precondition p is defined and true on the program's input, and the program f terminates with a result y, and the postcondition q is defined on y, then q is true on y.

In the previous works [15, 3, 4, 10, 12, 11, 8] we investigated an inference system for an extension of Floyd-Hoare logic which remains sound in the case of partial pre- and postconditions, assuming the above mentioned interpretation of Floyd-Hoare triples. The formulations of the rules of this inference system, however, require introduction of a new composition into the logical language used to express pre- and postconditions. Whereas the formulation of the rules of the classical Floyd-Hoare logic depends on the usual boolean compositions (\neg, \land) of pre- and postcondition predicates (which are assumed to be total), the mentioned extension depends on the compositions of negation (\neg) and conjunction (\wedge) of partial predicates defined in accordance with the tables of Kleene's strong 3-valued logic, and on one additional unary composition of partial predicates which we call the composition of predicate complement and denote as \sim . This composition extends the signature of the Kleene algebra of partial predicates [9]. In this paper we investigate the question of expressibility of partial predicates in the Kleene algebra extended with the composition of predicate complement and give a necessary and sufficient condition of this expressibility in terms of the existence of an optimal solution of a special constrained optimization problem. The obtained results may be useful for development of (semi-)automatic deduction tools for the mentioned extension of the Floyd-Hoare logic for the case of partial pre- and postconditions.

2 Notation

We will use the following notation. The notation $f: A \xrightarrow{\sim} B$ means that f is a partial function on a set A with values in a set B, and $f: A \rightarrow B$ means that f is a total function from A to B. For a function $f: A \xrightarrow{\sim} B$:

- $-f(x)\downarrow$ means that f is defined on x;
- $f(x) \downarrow = y$ means that f is defined on x and f(x) = y;
- $f(x) \uparrow$ means that f is undefined on x;
- $dom(f) = \{x \in A \mid f(x) \downarrow\}$ is the domain of a function.

We will denote as $f_1(x_1) \cong f_2(x_2)$ the strong equality, i.e. $f_1(x_1) \downarrow$ if and only if $f_2(x_2) \downarrow$, and if $f_1(x_1) \downarrow$, then $f_1(x_1) = f_2(x_2)$.

The symbols T, F will denote the "true" and "false" values of predicates.

We will denote $Bool = \{T, F\}$. The symbol \perp will denote a nowhere defined partial predicate.

Let $D \neq \emptyset$ be a set, and $P_0, P_1, \dots P_n$ be partial predicates on D.

Let $APr_{P_1,...,P_n}(D) = (D \rightarrow \{T, F\}; \lor, \land, \neg, \sim, P_1, P_2, ..., P_n)$ be an algebra of partial predicates with constants $P_1, ..., P_n$, where

1. \lor, \land, \neg are the operations of disjunction, conjunction and negation on partial predicates defined in accordance with Kleene's strong three-valued logic as follows:

$$(P \lor Q)(d) = \begin{cases} T, & \text{if } P(d) \downarrow = T \text{ or } Q(d) \downarrow = T; \\ F, & \text{if } P(d) \downarrow = F \text{ and } Q(d) \downarrow = F; \\ \text{undefined} & \text{in other cases.} \end{cases}$$

$$(P \wedge Q)(d) = \begin{cases} T, & \text{if } P(d) \downarrow = T \text{ and } Q(d) \downarrow = T; \\ F, & \text{if } P(d) \downarrow = F \text{ or } Q(d) \downarrow = F; \\ \text{undefined} & \text{in other cases.} \end{cases}$$

$$(\neg P)(d) = \begin{cases} T, & \text{if } P(d) \downarrow = F; \\ F, & \text{if } P(d) \downarrow = T; \\ \text{undefined} & \text{in other case.} \end{cases}$$

2. \sim is the unary operation of predicate complement:

$$(\sim P)(d) = \begin{cases} T, & \text{if } P(d) \uparrow;\\ \text{undefined}, & \text{if } P(d) \downarrow. \end{cases}$$

We will call $APr_{P_1,...,P_n}(D)$ the Kleene algebra of partial predicates on D with predicate complement and constants $P_1,...,P_n$.

3 Main Result

Let $F^{(n)}$ be the set of all *n*-ary functions (operations) $f : \{-1, 0, 1\}^n \to \{-1, 0, 1\}$. The elements of $F^{(n)}$ will represent functions of 3-valued logic P_3 (where 1 corresponds to the "true" value and -1 corresponds to the "false" value, and 0 is an intermediate truth value).

Let $F = \bigcup_{n>0} F^{(n)}$.

We will denote as $\bar{x} = (x_1, x_2, ..., x_n)$ a tuple of values $x_i \in \{-1, 0, 1\}$. Let us consider $\{-1, 0, 1\}^n$ as a metric space with Chebyshev distance:

$$\rho_n((x_1, ..., x_n), (y_1, ..., y_n)) = \max_{i=1}^n |x_i - y_i|.$$

We will say that a function $f \in F^{(n)}$ is *short*, if it is a short map, i.e. if for all \bar{x}, \bar{y} we have

$$|f(\bar{x}) - f(\bar{y})| \le \rho_n(\bar{x}, \bar{y})$$

For any predicate $P: D \rightarrow \{T, F\}$ denote by $\Phi(P)$ a function $D \rightarrow \{-1, 0, 1\}$ such that for all $d \in D$:

$$\Phi(P)(d) = \begin{cases} 1, & \text{if } P(d) \downarrow = T, \\ 0, & \text{if } P(d) \uparrow, \\ -1, & \text{if } P(d) \downarrow = F. \end{cases}$$

Let $D \neq \emptyset$ be a set, $P_1, P_2, ..., P_n : D \xrightarrow{\sim} \{T, F\}$ be partial predicates, and

$$APr_{P_1,\dots,P_n}(D) = (D \tilde{\rightarrow} \{T,F\}; \lor, \land, \neg, \sim, P_1, P_2, \dots, P_n)$$

Let $p_i = \Phi(P_i)$ for i = 0, 1, 2, ..., n.

Denote $||f|| = \sum_{\bar{x} \in \{-1,0,1\}^n} |f(\bar{x})|$ for $f \in F^{(n)}$ and consider the following (constrained) optimization problem¹:

$$||f|| \to \min \tag{1}$$

$$f(p_1(d), p_2(d), \dots, p_n(d)) = p_0(d), \quad d \in D$$
(2)

Theorem 1. If $n \ge 1$, a predicate P_0 is expressible in the algebra $APr_{P_1,...,P_n}(D)$ if and only if on the set $F^{(n)}$ the problem (1)-(2) has an optimal solution which is a short function.

¹ If one interprets partiality in terms as possibility, minimization of ||f|| may be related to the principle of minimum specificity of D. Dubois et al. from possibility theory, or other similar principles.

4 Proof of the Main Result

Denote for all $x, y \in \{-1, 0, 1\}$:

$$\begin{aligned} \neg x &= -x \\ &\sim x = 1 - |x| \\ x^{[y]} &= \begin{cases} x, & \text{if } y = 1 \\ \sim x, & \text{if } y = 0 \\ \neg x, & \text{if } y = -1 \end{cases} \end{aligned}$$

Lemma 1. $\rho_n(\bar{x}, \bar{y}) = 1 - \min_{i=1}^n x_i^{[y_i]}$ for every $n \ge 1$ and $\bar{x}, \bar{y} \in \{-1, 0, 1\}^n$.

Proof. It is easy to see that for all $x, y \in \{-1, 0, 1\}$:

$$x^{[y]} = 1 - |x - y|$$

Then $\rho_n(\bar{x}, \bar{y}) = \max_{i=1}^n |x_i - y_i| = \max_{i=1}^n (1 - x_i^{[y_i]}) = 1 - \min_{i=1}^n x_i^{[y_i]}.$

Consider $\{-1, 0, 1\}$ as a lattice with operations:

$$x \lor y = \max(x, y);$$

 $x \land y = \min(x, y).$

Below we will assume that in expressions involving operations on $\{-1, 0, 1\}$ the operation $x^{[y]}$ has the highest priority, and is followed (by priority) by the unary operations \neg , \sim , which are followed by the binary operations \wedge and \vee . As usual, among \wedge, \vee , the operation \wedge has higher priority.

Lemma 2. For each short function $f \in F^{(n)}$ and $\bar{x} \in \{-1, 0, 1\}^n$:

$$f(\bar{x}) = \hat{f}(\bar{x}) \wedge f_{\neq 0}(\bar{x}) \vee \neg f_{\neq 0}(\bar{x})$$

where

$$\hat{f}(\bar{x}) = \begin{cases} \bigvee_{\bar{y}:f(\bar{y})=1} \bigwedge_{i=1}^{n} x_{i}^{[y_{i}]}, & \text{if } \exists \bar{y} \ f(\bar{y}) = 1 \\ -1, & \text{otherwise} \end{cases}$$
$$f_{\neq 0}(\bar{x}) = \begin{cases} \bigvee_{\bar{y}:f(\bar{y})\neq 0} \bigwedge_{i=1}^{n} \sim (x_{i}^{[y_{i}]} \wedge \sim x_{i}^{[y_{i}]}) \wedge \sim \sim x_{i}^{[y_{i}]}, & \text{if } \exists \bar{y} \ f(\bar{y}) \neq 0 \\ 0, & \text{otherwise.} \end{cases}$$

Proof. It is easy to see that for each $x, y \in \{-1, 0, 1\}$:

$$\sim (x^{[y]} \wedge \sim x^{[y]}) \wedge \sim \sim x^{[y]} = \begin{cases} 1, & \text{if } x = y \\ 0, & \text{if } x \neq y. \end{cases}$$

Then

$$f_{\neq 0}(\bar{x}) = \begin{cases} 1, & \text{if } f(\bar{x}) \neq 0\\ 0, & \text{if } f(\bar{x}) = 0. \end{cases}$$

By Lemma 1,

$$\hat{f}(\bar{x}) = \begin{cases} \bigvee_{\bar{y}:f(\bar{y})=1} (1 - \rho_n(\bar{x}, \bar{y})), & \text{if } \exists \bar{y} \ f(\bar{y}) = 1, \\ -1, & \text{otherwise.} \end{cases}$$

If $f(\bar{x}) = 1$, then $\hat{f}(\bar{x}) = 1$ and $f_{\neq 0}(\bar{x}) = 1$, so $\hat{f}(\bar{x}) \wedge f_{\neq 0}(\bar{x}) \vee \neg f_{\neq 0}(\bar{x}) = 1$. If $f(\bar{x}) = 0$, then $f_{\neq 0}(\bar{x}) = 0$, so

 $\hat{f}(\bar{x}) \wedge f_{\neq 0}(\bar{x}) \vee \neg f_{\neq 0}(\bar{x}) = (\hat{f}(\bar{x}) \wedge 0) \vee 0 = 0.$

If $f(\bar{x}) = -1$, then for each \bar{y} such that $f(\bar{y}) = 1$ we have $\rho_n(\bar{x}, \bar{y}) \ge |f(\bar{x}) - f(\bar{y})| = 2$ which implies that $1 - \rho_n(\bar{x}, \bar{y}) = -1$. Then $\hat{f}(\bar{x}) = -1$ and $f_{\neq 0}(\bar{x}) = 1$, so $\hat{f}(\bar{x}) \land f_{\neq 0}(\bar{x}) \lor \neg f_{\neq 0}(\bar{x}) = -1$.

Thus

$$f(\bar{x}) = \hat{f}(\bar{x}) \wedge f_{\neq 0}(\bar{x}) \vee \neg f_{\neq 0}(\bar{x}).$$

Lemma 3. The set of all short functions from F is a precomplete class in F and is the functional closure of the set $\{f_0, f_1, f_2, f_3, f_4\}$, where $f_0 \in F^{(0)}$, $f_1, f_2 \in F^{(1)}$, $f_3, f_4 \in F^{(2)}$ and $f_0 = 0$, $f_1(x) = -x$, $f_2(x) = 1 - |x|$, $f_3(x, y) = \max(x, y)$, $f_4(x, y) = \min(x, y)$.

Proof. Denote by S the set of all short functions from F. In accordance with its definition, a short function from F can be alternatively characterized as a function $\{-1,0,1\}^n \to \{-1,0,1\}$ $(n \ge 0)$ which does not change sign on each of the sets $\prod_{i=1}^n \{0, a_i\}$, where $a_1, ..., a_n \in \{-1,1\}^n$. In the terminology of [18], such functions correspond to the precomplete class $T^3_{\mathcal{E}_1,1}$ of functions for which the image of the product of sets, 1-equivalent to \mathcal{E}_1 is a subset of a set, 1equivalent to \mathcal{E}_1 , where two sets are 1-equivalent, if their symmetric difference has no more than 1 element. Thus S is a precomplete class in F. Obviously, $\{f_0, f_1, f_2, f_3, f_4\} \subseteq S$. On the other hand, since the constant function with value -1 is expressible as $f_1 \circ f_2 \circ f_0$, from Lemma 2 and the definition of $x^{[y]}$ it follows that each $f \in S$ can be expressed as a composition of elements of $\{f_0, f_1, f_2, f_3, f_4\}$ and of projections $\pi^n_k(x_1, ..., x_n) = x_k$ $(n \ge 1, k = 1, 2, ..., n)$. Thus S is the functional closure of $\{f_0, f_1, f_2, f_3, f_4\}$.

Lemma 4. For each $P, Q: D \xrightarrow{\sim} \{T, F\}$ and $d \in D$ we have: $\Phi(\perp)(d) = 0$

 $\begin{aligned} \Phi(\neg P)(d) &= -(\Phi(P)(d)) \\ \Phi(\sim P)(d) &= -[\Phi(P)(d)] \\ \Phi(P \lor Q)(d) &= \max(\Phi(P)(d), \Phi(Q)(d)) \\ \Phi(P \land Q)(d) &= \min(\Phi(P)(d), \Phi(Q)(d)) \end{aligned}$

Proof. Follows immediately from the definition Φ and operations \neg, \sim, \lor, \land on partial predicates.

Let $M^{(n)}$ be the set of all short functions from $F^{(n)}$.

Lemma 5. The problem (1)-(2) has an optimal solution on $F^{(n)}$ if and only if p_0 is continuous in the initial topology on D induced by $p_1, ..., p_n$ (where the codomain of p_i , $\{-1, 0, 1\}$, is considered as a discrete space).

Proof. "If": assume that p_0 is continuous in the initial topology on D induced by $p_1, ..., p_n$. Then there exists $f \in F^{(n)}$ such that $p_0(d) = f(p_1(d), ..., p_n(d))$ for all $d \in D$. Then since the set $F^{(n)}$ is finite, the problem (1)-(2) has an optimal solution on $F^{(n)}$.

"Only if": assume that the problem (1)-(2) has an optimal solution $f \in F^{(n)}$. Then $p_0(d) = f(p_1(d), ..., p_n(d))$ for all $d \in D$, so p_0 is continuous in the initial topology on D induced by $p_1, ..., p_n$.

Lemma 6. If the problem (1)-(2) has an optimal solution on $F^{(n)}$, then this solution is unique.

Proof. Assume that the problem (1)-(2) has optimal solutions $f, g \in F^{(n)}$. Then ||f|| = ||g|| and $f(p_1(d), ..., p_n(d)) = p_0(d) = g(p_1(d), ..., p_n(d))$ for all $d \in D$.

Suppose that $f \neq g$. Then there exists $\bar{x}^* = (x_1^*, ..., x_n^*) \in \{-1, 0, 1\}^n$ such that $f(\bar{x}^*) \neq g(\bar{x}^*)$.

Consider the case when $f(\bar{x}^*) \neq 0$. Let us define a function $h \in F^{(n)}$ as follows: $h(\bar{x}) = f(\bar{x})$, if $\bar{x} \neq \bar{x}^*$, and $h(\bar{x}) = 0$, if $\bar{x} = \bar{x}^*$. Then for all $d \in D$, $(p_1(d), ..., p_n(d)) \neq \bar{x}^*$, so $h(p_1(d), ..., p_n(d)) = p_0(d)$. Moreover, $||h|| = ||f|| - |f(\bar{x}^*)| = ||f|| - 1 < ||f||$ which contradicts the assumption that f is an optimal solution of (1)-(2).

Consider the case when $f(\bar{x}^*) = 0$. Then $|g(\bar{x}^*)| = 1$. Let us define a function $h \in F^{(n)}$ as follows: $h(\bar{x}) = g(\bar{x})$, if $\bar{x} \neq \bar{x}^*$, and $h(\bar{x}) = 0$, if $\bar{x} = \bar{x}^*$. Then for all $d \in D$, $(p_1(d), ..., p_n(d)) \neq \bar{x}^*$, so $h(p_1(d), ..., p_n(d)) = p_0(d)$. Moreover, $||h|| = ||g|| - |g(\bar{x}^*)| = ||g|| - 1 < ||g||$ which contradicts the assumption that g is an optimal solution of (1)-(2).

Thus f = g. So if the problem (1)-(2) has an optimal solution on $F^{(n)}$, then this solution is unique.

Lemma 7. Let $f \in M^{(n)}$, $g \in F^{(n)}$ and $g(\bar{x}) \in \{f(\bar{x}), 0\}$ for each $\bar{x} \in \{-1, 0, 1\}^n$. Then $g \in M^{(n)}$.

Proof. Let $\bar{x}, \bar{y} \in \{-1, 0, 1\}^n$. Consider the following cases.

1) $g(\bar{x}) = f(\bar{x}), g(\bar{y}) = f(\bar{y})$. Then $|g(\bar{x}) - g(\bar{y})| = |f(\bar{x}) - f(\bar{y})| \le \rho(\bar{x}, \bar{y})$.

2) $g(\bar{x}) = f(\bar{x}), g(\bar{y}) = 0$. Then $|g(\bar{x}) - g(\bar{y})| = |f(\bar{x})| \le \rho(\bar{x}, \bar{y})$, if $\bar{x} \ne \bar{y}$, and $|g(\bar{x}) - g(\bar{y})| = 0 \le \rho(\bar{x}, \bar{y})$, if $\bar{x} = \bar{y}$.

3) $g(\bar{x}) = 0, g(\bar{y}) = f(\bar{y})$. Then $|g(\bar{x}) - g(\bar{y})| = |f(\bar{y})| \le \rho(\bar{x}, \bar{y})$, if $\bar{x} \ne \bar{y}$, and $|g(\bar{x}) - g(\bar{y})| = 0 \le \rho(\bar{x}, \bar{y})$, if $\bar{x} = \bar{y}$.

4)
$$g(\bar{x}) = 0, \ g(\bar{y}) = 0.$$
 Then $|g(\bar{x}) - g(\bar{y})| \le \rho(\bar{x}, \bar{y}).$
Thus $g \in M^{(n)}$.

Lemma 8. The problem (1)-(2) has an optimal solution on $M^{(n)}$ if and only if it has an optimal solution on $F^{(n)}$ which belongs to $M^{(n)}$.

Proof. "If": assume that the problem (1)-(2) has an optimal solution $f \in F^{(n)}$ which belongs to $M^{(n)}$. Then $f(p_1(d), p_2(d), ..., p_n(d)) = p_0(d)$ for all $d \in D$. Moreover, for each $g \in M^{(n)}$ such that $g(p_1(d), p_2(d), ..., p_n(d)) = p_0(d)$ for all $d \in D$, we have $g \in F^{(n)}$, so $||f|| \leq ||g||$. So f is an optimal solution of (1)-(2)on $M^{(n)}$.

"Only if": assume that the problem (1)-(2) has an optimal solution f on $M^{(n)}$. Then $f(p_1(d), p_2(d), ..., p_n(d)) = p_0(d)$ for all $d \in D$. Then since $F^{(n)}$ is finite, the problem (1)-(2) has an optimal solution on $F^{(n)}$. By Lemma 6, the problem (1)-(2) has a unique optimal solution of $F^{(n)}$. Denote it as g. Then $g(p_1(d), p_2(d), ..., p_n(d)) = p_0(d)$ for all $d \in D$ and $||g|| \leq ||f||$. Let us define a function $h \in F^{(n)}$ as follows: for each $\bar{x} \in \{-1, 0, 1\}^n$, $h(\bar{x}) = f(\bar{x})$, if $g(\bar{x}) \neq 0$, and $h(\bar{x}) = g(\bar{x})$, if $g(\bar{x}) = 0$. Then for all $d \in D$, $h(p_1(d), ..., p_n(d)) = p_0(d)$. Moreover, $h \in M^{(n)}$ by Lemma 7. Then ||h|| = ||f||, so for each \bar{x} such that $g(\bar{x}) = 0$ we have $f(\bar{x}) = 0$. Then $||f|| \leq ||g||$. Since $||g|| \leq ||f||$ as mentioned above, we have ||f|| = ||g||. The f is an optimal solution of (1)-(2) on $F^{(n)}$ and f belongs to $M^{(n)}$.

Now we can give a proof of the main Theorem 1 from the previous section.

Proof (of Theorem 1). "If": assume that the problem (1)-(2) has an optimal solution on the set $F^{(n)}$ which is a short function. Denote by f such a solution. Then we have $p_0(d) = f(p_1(d), p_2(d), ..., p_n(d))$ for all $d \in D$. By Lemma 3, f belongs to the functional closure of $\{f_0, f_1, f_2, f_3, f_4\}$, where f_i are defined as in Lemma 3. From Lemma 4 it follows that $p_0(d) = \Phi(P)(d)$ for all $d \in D$ for some predicate $P : D \xrightarrow{\sim} \{T, F\}$ expressible in the algebra $(D \xrightarrow{\sim} \{T, F\}; \lor, \land, \neg, \sim, \bot, P_1, P_2, ..., P_n)$. Since $n \geq 1$ and the predicate \bot can be expressed as $\sim P_1 \land \sim \sim P_1$, we conclude that P is expressible in the algebra $APr_{P_1,...,P_n}(D)$. Then $\Phi(P_0)(d) = \Phi(P)(d)$ for all $d \in D$. Then the definition of Φ implies that $P_0 = P$, so P_0 is expressible in $APr_{P_1,...,P_n}(D)$.

"Only if": assume that a predicate P_0 is expressible in algebra $APr_{P_1,...,P_n}(D)$. Then Lemma 4 implies that $\Phi(P_0)(d) = f(\Phi(P_1)(d), \Phi(P_2)(d), ..., \Phi(P_n)(d))$ for all $d \in D$ for some function $f \in F^{(n)}$ which belongs to the functional closure of $\{f_0, f_1, f_2, f_3, f_4\}$, where f_i are defined as in Lemma 3. Then by Lemma 3, f is a short function and $p_0(d) = f(p_1(d), ..., p_n(d))$ for all $d \in D$. Then since $M^{(n)} \subseteq F^{(n)}$ is a finite set, the problem (1)-(2) has an optimal solution on the set $M^{(n)}$. Then Lemma 8 implies that the problem (1)-(2) has an optimal solution on $F^{(n)}$ which is a short function.

Note that the problem (1)-(2) has the following addition property.

Lemma 9. If the problem (1)-(2) has an optimal solution on $M^{(n)}$, then this solution is unique.

Proof. Assume that f, g are optimal solutions of (1)-(2) on $M^{(n)}$. Then by Lemma 8, (1)-(2) has an optimal solution on $F^{(n)}$ which belongs to $M^{(n)}$. By Lemma 6 this solution is unique. Denote it as h. Then $||h|| \leq ||f||$ and $||h|| \leq ||g||$. Then h is an optimal solution of (1)-(2) on $M^{(n)}$ and ||h|| = ||f|| = ||g||. Then f, g are optimal solutions of (1)-(2) on $F^{(n)}$. Then by Lemma 6, f = g. \Box

5 Example

In this example of application of the main result of the paper we will use the notation and terminology of the composition-nominative approach to program formalization [16, 17] and [7, 6, 5].

Let v be a fixed name, $V = \{v\}, A = \{T, F\}.$

Let $D = {}^{V}A$ be the set of named sets on V which take values in A. Then

 $D = \{[], [v \mapsto T], [v \mapsto F]\}.$

Let P_1 be a partial predicate on D such that

$$P_1(d) \cong (v \Rightarrow (d))$$

where $v \Rightarrow$ is the denaming operation [16, 17] (which has undefined value, if $v \notin dom(d)$).

Let P_0 be a partial predicate on D such that

$$P_0(d) = \begin{cases} T, & \text{if } v \Rightarrow (d) \uparrow; \\ F, & \text{if } v \Rightarrow (d) \downarrow. \end{cases}$$

Let us check if P_0 is expressible in the algebra

 $APr_{P_1}(D) = (D\tilde{\rightarrow}\{T, F\}; \lor, \land, \neg, \sim, P_1).$ Let $p_i: D \to \{-1, 0, 1\}, i = 0, 1$ be functions such that $p_i(d) = \begin{cases} 1, & \text{if } P_i(d) \downarrow = T, \\ 0, & \text{if } P_i(d) \downarrow = F. \end{cases}$ Then $p_1(d) = \begin{cases} 1, & \text{if } v \Rightarrow (d) \downarrow = T, \\ 0, & \text{if } v \Rightarrow (d) \uparrow, \\ -1, & \text{if } v \Rightarrow (d) \downarrow = F. \end{cases}$ $p_0(d) = \begin{cases} -1, & \text{if } v \Rightarrow (d) \downarrow = F. \\ 1, & \text{if } v \Rightarrow (d) \downarrow = F. \end{cases}$ The initial topology on D induced by p_1 is the power

The initial topology on D induced by p_1 is the power set of D, so p_0 is continuous. We have

$$p_0(\{d \in D \mid p_1(d) = -1\}) = \{-1\}$$
$$p_0(\{d \in D \mid p_1(d) = 0\}) = \{1\}$$
$$p_0(\{d \in D \mid p_1(d) = 1\}) = \{-1\}$$

Then a function with the graph

$$\{(-1,-1),(0,1),(1,-1)\}$$

is the unique optimal solution of the problem (1)-(2), but it is, obviously, not a short function. Then Theorem 1 implies that P_0 is not expressible in the algebra

$$APr_{P_1}(D) = (D \tilde{\rightarrow} \{T, F\}; \lor, \land, \neg, \sim, P_1).$$

6 Conclusion

We have investigated the question of expressibility of partial predicates in the Kleene algebra extended with the composition of predicate complement and have given a necessary and sufficient condition of this expressibility in terms of the existence of an optimal solution of a special optimization problem. The obtained results may be useful for development of (semi-)automatic deduction tools for an extension of the Floyd-Hoare logic for the case of partial pre- and postconditions.

References

- Floyd, R.: Assigning meanings to programs. Mathematical aspects of computer science 19(19-32) (1967)
- Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580 (1969)
- Ivanov, I., Korniłowicz, A., Nikitchenko, M.: Implementation of the compositionnominative approach to program formalization in mizar. Computer Science Journal of Moldova 26, 59–76
- Ivanov, I., Korniłowicz, A., Nikitchenko, M.: Formalization of nominative data in mizar. pp. 82–85. Proceedings of TAAPSD 2015, 23-26 December 2015, Taras Shevchenko National University of Kyiv, Ukraine (2015)
- Ivanov, I.: An abstract block formalism for engineering systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G., Zavileysky, M., Kravtsov, H., Kobets, V., Peschanenko, V.S. (eds.) Proceedings of the 9th International Conference on ICT in Education, Research and Industrial Applications: Integration, Harmonization and Knowledge Transfer, Kherson, Ukraine, June 19-22, 2013. CEUR Workshop Proceedings, vol. 1000, pp. 448–463. CEUR-WS.org (2013)
- Ivanov, I.: On existence of total input-output pairs of abstract time systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) Information and Communication Technologies in Education, Research, and Industrial Applications. Communications in Computer and Information Science, vol. 412, pp. 308–331. Springer International Publishing, Cham (2013)
- Ivanov, I.: On representations of abstract systems with partial inputs and outputs. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds.) Theory and Applications of Models of Computation. Lecture Notes in Computer Science, vol. 8402, pp. 104–123. Springer International Publishing, Cham (2014)
- Ivanov, I., Nikitchenko, M.: Inference rules for the partial floyd-hoare logic based on composition of predicate complement. In: Ermolayev, V., Suárez-Figueroa, M.C., Yakovyna, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A. (eds.) Information and Communication Technologies in Education, Research, and Industrial Applications. pp. 71–88. Springer International Publishing, Cham (2019)
- Korniłowicz, A., Ivanov, I., Nikitchenko, M.: Kleene algebra of partial predicates. Formalized Mathematics 26, 11–20 (2018)
- Korniłowicz, A., Kryvolap, A., Nikitchenko, M., Ivanov, I.: An approach to formalization of an extension of Floyd-Hoare logic. In: Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, May 15-18, 2017. pp. 504–523 (2017)

- Kornilowicz, A., Kryvolap, A., Nikitchenko, M., Ivanov, I.: Formalization of the algebra of nominative data in mizar. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the 2017 Federated Conference on Computer Science and Information Systems. ACSIS, vol. 11, pp. 237–244 (2017)
- Korniłowicz, A., Kryvolap, A., Nikitchenko, M., Ivanov, I.: Formalization of the Nominative Algorithmic Algebra in Mizar, Advances in Intelligent Systems and Computing, vol. 656, pp. 176–186. Springer International Publishing, Cham (2018)
- Kryvolap, A., Nikitchenko, M., Schreiner, W.: Extending Floyd-Hoare logic for partial pre- and postconditions. In: Ermolayev, V., Mayr, H., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) Information and Communication Technologies in Education, Research, and Industrial Applications, Communications in Computer and Information Science, vol. 412, pp. 355–378. Springer International Publishing (2013)
- Nikitchenko, M., Kryvolap, A.: Properties of inference systems for Floyd-Hoare logic with partial predicates. Acta Electrotechnica et Informatica 13(4), 70–78 (2013)
- Nikitchenko, M., Ivanov, I., Korniłowicz, A., Kryvolap, A.: Extended Floyd-Hoare logic over relational nominative data. In: Bassiliades, N., Ermolayev, V., Fill, H.G., Yakovyna, V., Mayr, H.C., Nikitchenko, M., Zholtkevych, G., Spivakovsky, A. (eds.) Information and Communication Technologies in Education, Research, and Industrial Applications. pp. 41–64. Springer International Publishing, Cham (2018)
- Nikitchenko, N.S.: A composition nominative approach to program semantics. Tech. rep., IT-TR 1998-020, Technical University of Denmark (1998)
- Skobelev, V., Nikitchenko, M., Ivanov, I.: On algebraic properties of nominative data and functions. In: Ermolayev, V., Mayr, H., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) Information and Communication Technologies in Education, Research, and Industrial Applications, Communications in Computer and Information Science, vol. 469, pp. 117–138. Springer International Publishing (2014)
- Yablonskii, S.: Functional constructions in a k-valued logic. Trudy Mat. Inst. Steklov. 51, 5–142 (1958)