CEUR-WS.org/Vol-2393/paper_404.pdf

Empowering Fault-Tolerant Consensus Algorithm by
Economic Leverages

Igor Mazurok, Valeriy Pienko and Yevhen Leonchyk

Odessa I.I.Mechnikov National University, 2, Dvorjanskaja st., Odessa, 65082 Ukraine
igor@mazurok.com, vpenko@onu.edu.ua, leonchyk@ukr.net

Abstract. This paper describes an integrated parallel fault-tolerant consensus
algorithm for systems of distributed processing and storage of information with
low latency. An essential characteristic of this algorithm is the integration with
an economic model, ensuring its sustainable development in accordance with
the goals of functioning. The proposed algorithm is called WWH (What,
Where, How much), because it allows for one pass of the protocol to obtain
consistent solutions on the following issues: what information will be stored; to
which place of the synchronized storage it will be recorded; determination of
nodes reward for fair functioning. The algorithm is based on the ideas of the
SBFT algorithms, Raft and the basic principles of the Computable general equi-
librium to construct the internal economy of the system functioning. The algo-
rithm assumes resistance to two types of errors - Byzantine errors and equip-
ment failures.

Keywords: consensus, fault-tolerant algorithm, tokenomics, blockchain.

1 Introduction

Characteristic trend of modern information systems is the transition to a decentralized
architecture. In this case it is important to provide the following requirements:
e performance;

scalability;

tolerance to various types of attack;

immutable and tampering safety;

logic consistency.
Recently to support such a set of characteristics blockchain technology has been
used. Due to the decentralized nature the key item of these systems is the consensus
mechanism - the ability to make agreed decisions and record the corresponding results
in a distributed database, which is implemented as a set of identical linear information
structures (ledger). In traditional systems based on blockchain, a consensus of the
Proof-of-Work (PoW) type is used (Bitcoin, Ethereum etc.). However, for many ap-
plications this type of consensus is not acceptable due to poor system performance
(and/or bandwidth) and allows the system to be temporarily in an undeterministic
state (branching of the blockchain - fork). There are also other types of consensus.

https://www.tempus.org.ua/uk/partners-search/851-odessa-i-i-mechnikov-national-university-is-looking-for-partners.html

Some of them provide greater performance, but are vulnerable and poorly scalable
(Ripple, EQS, Stellar, NEM).

The evolution of modern blockchain systems began with Bitcoin. His mythical au-
thor Satoshi Nakamoto [1] offered a mechanism that takes into account almost all
aspects that determine the dynamics of this system. This ensured the stability of the
system's behavior throughout the entire lifecycle. However, the Bitcoin functionality
does not satisfy modern challenges. An example of a system that provides a higher
degree of flexibility and variation is Ethereum. A key feature of Ethereum is the sup-
port of smart contracts, which allowed its authors to call their system World Comput-
er. The emergence of Ethereum was the stimulus for the huge number of blockchain
startups initiated by 1CO. But the experience of implementing such startups has
shown that the PoW mechanism used in the Etherium does consider the specific re-
quirements of their functioning and development.

Other types of consensus suffer with essentially the same drawback - by providing
individual key requirements, they do not allow to consider the whole set of require-
ments.

Solution to this problem seems to us as follows. Instead of searching for a certain
consensus mechanism that would provide the full range of required system properties,
we suggest using a consensus mechanism, whose architecture contains managed com-
ponents that allow the main mechanism to be adapted to specific conditions. These
components are integrated into the consensus protocol, providing one or another
model of the economic behavior of the nodes and the system as a whole.

This methodology was tested in the implementation of the blockchain system to
support the public key architecture (PKI). The consensus mechanism implemented
within this system has to meet the following requirements:

e support for enterprise-scale systems, i.e. the system sets a high entry threshold
for new nodes and, as a result, the number of network nodes is limited to several
hundred;

e the system must provide a high response rate to the client request;

e processing nodes of the system are functionally equal, ensuring its decentraliza-
tion;

o reliability of operation, consisting in resistance to Byzantine threats and the fork
occurrences;

e transactions in the system are processed separately, not combined into blocks
that reduces the guaranteed transaction processing time due to high overall sys-
tem performance (there is no common transaction pool).

The relevance of the presented work is justified by the necessity to overcome the
limitations associated with the popular types of consensus PoW and PoS during mod-
ern decentralized systems development.

2 Related Works

Listed above features make us seek a suitable consensus algorithm in a more general
context of distributed computing systems. In this sense, the Paxos [2] algorithm is the

most discussed in academic publications. However, attempts to use it in real systems
cause difficulties. To avoid them, various modifications of this algorithm have been
proposed. In particular, Raft [3] was designed to support modularity, which in turn led
to its clarity and ease of implementation. It contains sufficient tools to support a ledg-
er and is focused on the use of the leader node and provides only CFT. However,
considering the above requirements, this is not enough, since Byzantine threats may
arise in the system. There is known modifications of the Raft algorithm that overcome
this limitation [4, 5]. Some features of these modifications were used in this paper.
However, the known modifications lack incentivization for fair nodes. This incentivi-
zation is often implemented as a separated subsystem. There are some attempts to
inject adequate economic mechanism into consensus algorithms (e.g. [6]) but they
still have no enough adjustability to certain economical model. But we offer to inte-
grate economic logic into the consensus mechanism.

3 Consensus with integrated economic

As mentioned above, the main mechanism to obtain the required properties of decen-
tralized system is to integrate into the consensus logic a model of economic behavior
which provides necessary adjustment of the system dynamics. This model is usually
called tokenomics, since it is based on the use of tokens - specialized cryptocurrency.

The system functions by transmitting and processing asynchronous messages be-
tween peer-to-peer network nodes. In effective tokenomics it is important to distin-
guish between the roles of nodes during their intercommunications:

e aregular node that signs and stores certificates;

e areceiving node that receives a certificate signing request (CSR) from a client, it
also receives payment from the client and rewards the nodes;

e aleader node that coordinates messaging between other nodes.

To find the optimal parameters for the system functioning we define a model con-
taining information about history of actions performed by the participants of the sys-
tem.

Such a model can naturally be defined in form of an oriented weighted graph,
whose nodes are the nodes of the system (or rather their participation in a certain
stage of network communication), communications — messages or requests marked
with information accompanying such communications.

The route in this graph describes the sequence of steps in the communication pro-
tocol, which leads to the achievement of the result. At this point, you can determine
the share of the participant's rewards based on his participation in the protocol. All
information necessary for such calculations is recorded in the blockchain of the sys-
tem together with a certificate.

The tokenomics of the entire system functions as a cyclic process, each stage of
which consists of the following steps:

1) When a CSR appears, each node i makes a bet, ensuring its honest and reliable
functioning. The sum of these rates s and client certificate payment S_,,..form
the total budget of the certificate:

Besr = Scert + 2iSi

2) Nodes perform consensus protocol;

3) The budget of each certificate is distributed in accordance with the share of each
node participation and its rate. As a result, the node reward is lost (reduced) if
the node is an attacker or has failed (crashed).

At the moment we offer the following models of the participant’s bid value:

1) Free Fixed Stake Model: All nodes can either play at a fixed rate ¢ or not play at
all;

2) Free Gambling Stake Model: A model that allows you to choose bets in a certain
range [a;], or not to play at all;

3) Force Fixed Stake Model: Participants play only at a fixed rate o;

4) Force Gambling Stake Model: A model that obliges to play, however, allows
you to independently determine the value of the bet in the range [a; B].

The system must accept one of these models for all participants . Given the above
notation the differences between models can be represented by the following Table 1.

Table 2. Stake differences between models.

Free Stake Force Stake
Fixed Model s;€{0,0} si=0
Gambling Model s; € {0}V [a; B] s; € [a; B]

A comparison of these models allows us to make some preliminary conclusions about
the results of their use. Forced rates make it economically unprofitable node down-
time. This is important for the consensus using the majority principle. Gambling
Model allows you to enter the concept of the node reputation into functioning of the
system, which means the degree of its reliable operation. Trusted nodes can afford to
bet larger. Thus, the option Force Stake Gambling Model is more adaptive to use in
environmental conditions with possible equipment failures and communication proto-
col algorithms.

The optimal model of tokenomics should provide an economic motivation for the
correct execution of all processes implemented by the system: extract the certificate,
write to the ledger and maintain its integrity.

For a detailed description of the tokenomics parameters, we describe the communi-
cation protocols used in the system.

3.1 The Protocol for Issuing a Certificate Including the Node’s Contribution

Next, the certificate issuance protocol derived from the SBFT algorithm [5] will be
described. All node’s messages transmit information in a cryptographically signed
form in order to avoid its distortion during the transmission by the communication
channel.

In order to provide sustainable functionality, the system has to satisfy the next re-
quirement: the total node number n must be greater than 2f+c where

e f-the maximum number of faulty (byzantine) nodes;
e - the maximum number of crashed nodes (at least within established period of
time).

At each step, one of the nodes plays the role of a leader. Its main task is to relay
messages received from ordinary nodes. At every communication stage the current
leader gets not less than 2f+1 uncorrupted messages with no more than f faulty mes-
sages among them. Thus, there are always at least f+1 identical messages which is
sufficient for the majority of considerations.

The protocol has several steps and can be presented schematically (see Fig. 1).
application preprepared prepared committed signed executed

re-elections

node-reception O node . node-leader

Fig. 1. The certificate issuance protocol.

At each step, the nodes send messages to each other with the following unified struc-
ture: From-Message-To. Below is a description of the actions at each step. Step is a
transition from one state to another, for example, the transition from the first state to
the second one is indicated by 1-2.

1-2) node-reception sends to all nodes the applicationRequest message (a request
to receive a certificate with proposed payment Scert) with following content:
From: node-reception To: all nodes Message: PK_applicant, Payment
where PK_applicant is a client public key, Payment is amount of tokens. This mes-
sage may have some additional data. All nodes record source and time of receiving
the request.

Possible attack: Availability of payment information prevents spam-sending unpaid
requests.

2-3) After receiving the applicationRequest message, current leader checks Pay-
ment and sends the following prepreparedRequest message to all nodes:
From: node-leader To: all nodes

Message: node-reception,PK_applicant, Payment, FFLN, t_leader, LId, VD

where FFLN is the first free number in the ledger of the current node-leader that was
not previously reserved. Thus, a new certificate will be added to the end of the ledger.
The node leader also transmits t_leader — the term number (used to select a leader
for re-election) and LId — leader's identifier.

At this step, the node-leader may initiate a selective check of the the ledger block
relevance. To do this, a VD field (verification data) is added to the prepre-
paredRequest message, containing a request for some data from the ledger blocks.

If the node-leader did not perform its functions - did not send a message within a

predetermined time (time-out) at this step or sent an incorrect message - the node
initiates re-election. Re-election starts when a sufficient number of nodes initiate re-
election (the re-election procedure is described below). An example of an invalid
message is the prepreparedRequest message, in which the public key does not match
the public key in the initial node-reception request.

Possible attack: To compromise a node-leader, a node-reception can send a differ-
ent message to it. To eliminate this, the node-leader additionally sends a message
which it received from node-reception to the other nodes. All the nodes in this step
verify this message with one they received directly from the node-reception and, in
case of any discrepancies, ignore this request, terminating the certificate issuance
protocol.

3-4) Each node sends the preparedRequest message to the current node-leader:

From: node To: node-leader Message: preparedRequest, Lid, NId
NId is the node number that generated this message.

As soon as the node-leader received the first 2f+1 preparedRequest messages, the
transition to the next step takes place.

4-5) Node-leader passing 2f+1 message in the commitedRequest message as an ar-
ray.

From: node-leader To: all nodes Message: preparedRequest[2f+1]

Each node performs a validation of the node-leader term, i.e. t_leader is not less
than its node term. Also, the FFLN relevance check is performed, providing the entry
into the longest ledger.

Any violation leads to the initiation of a re-election of the leader by the node, and
if a sufficiently large number of such failures are accumulated, this will lead to the re-
election of the node-leader.

Further according to the majority rule node prepares the following information for
inclusion in the message: node-reception, PK_applicant, Payment, FFLN, LId. The
majority rule says that the value of the field is included in the message if it is encoun-
tered no less than in the f+1 elements of the commitedRequest message array (the
message of the node itself is also taken into account).

Accumulated to this point in the communication messages information allows you
to determine which nodes acted efficiently and correctly in step 3-4. This information
is analyzed and recorded as a binary vector, Participation_1, in which the i-th element

is 1 if the node was among the first 2f+1 nodes that sent the preparedRequest mes-
sage, and its value coincided with most similar messages from other nodes.

5-6) Next, each node sends the following message to the signedRequest:

From: node To: node-leader
Message: node-reception, PK_applicant, Payment, FFLN, NId, LId, Cld, Participa-
tion_1, VDR

NId is the identifier of the node that formed this message, Cld is the identifier of
the node from which the commitedRequest is received (Cld may differ from LId if re-
election occurred at the previous stage), VDR is the information sent in response to
the VD request.

6-7) Node-leader accumulates 2f + 1 signedRequest message and sends them in the
message executedRequest in the form of an array.

From: node-leader To: all nodes Message: signedRequest[2f+1]

Information accumulated in the signedRequest array makes it possible to evaluate
the participation of nodes in step 5-6 (in addition to the vector Participation_1) and
honest storage behavior of the ladder (comparison of VD and VDR). This information
is fixed in the form of two binary vectors Participation_2 and DataSaving, similarly
to the vector Participation_1.

Information provided in these three vectors, as well as data on the participation of
nodes as leaders, is sufficient to calculate the remuneration of all participants.

If there are f+1 identical records in the message, their content is considered authen-
tic and is written to the ledger by all nodes, and the reception-node sends the signed
certificate to the Client.

Here, as well as at the end of steps 2-3 and 4-5, node-leader re-election is possible.

Since unfair storage of ledger is not economically justified, the nodes are interested
in updating its status. For this, any node based on FFLN or VD (VDR) can request the
node-leader for all previous blocks, starting with a certain number, or for missing
certificates to update its ledger.

Possible attack: Malicious nodes can intensively send a ledger repair requests to
the leader. To prevent collapse in this case, you can pay an additional fee for servicing
such requests.

3.2 Fault Tolerant Election Protocol

As mentioned above, a specially chosen node-leader plays an important role. The
need for re-election arises if a node for a sufficiently long time does not receive mes-
sages from the current node-leader or if it receives a message with violated crypto-
graphic integrity. The election of a new node-leader is a multi-step messaging process
with the robustness feature.

3.3 Rewards calculation

Upon successful completion of the protocol, all nodes have information about the
number of messages from each other with confirmed accuracy. Node messages are
considered reliable if they fall into the final majority vector. Current node-leader mes-

sages are considered confirmed if the node’s response message is valid. To define
rewards participant’s contributions have to be counted:

1. The contribution of term node-leader for reaching a consensus -from f to n and
for replicating the ledger from 0 to n-f;

2. The contribution of the ordinary node for reaching a consensus from 0 to 2 and
for replication and storage — 0 or 1.

At different terms node i can play different roles and its total contribution C; is
summed over all terms. The weighted share of P;'s reward, taking into account the s;
rate for the Gambling Model, is:

Cis;
Pi =
2iCis;

Thus, the node reward is determined by the formula: Ri=[Bcsgr,Pi], where square
brackets denote banking rounding.

4 Conclusions

Presented algorithm allows the participants (nodes) of the decentralized system to
come to a common opinion (consensus) on the contribution of each other directly
during consensus execution and does not require additional nodes that control the
process. In particular, the proposed approach was implemented within a decentralized
system supporting PKI and allowed to consider requirements of both consistency and
needed economic features.

The method of rewarding nodes described above is one of the possible options and
depends on the specific type of tasks and goals of the functioning of the system. The
search for optimal parameters of tokenomics for effective work is an open question.
Due to the fact that these parameters in the proposed scheme are expressed in the
protocol messages, it is possible to build a multi-factor simulation model to achieve
the optimal configuration.

References

1. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2009).
https://bitcoin.org/bitcoin.pdf.

2. Lamport, L.: The Part-Time Parliament. ACM Transactions on Computer Systems. 16 (2):
133-169 (1998).

3. Ongaro, D., Ousterhout, J.: In Search of an Understandable Consensus Algorithm (2014).
USENIX Annual Technical Conference.
https://ramcloud.stanford.edu/wiki/download/attachments/11370504/raft.pdf

4. Wang D., Tai, N., An, Y.: Byzantine Fault Tolerant Raft. Stanford Computer Science De-
partment (2018). http://www.scs.stanford.edu/17au-cs244b/labs/projects/wang_tai_an.pdf

5. Gueta G.G., Abraham I., Grossman S., Malkhi D. et al.: SBFT: a scalable decentralized
trust infrastructure for blockchains (2018). https://arxiv.org/abs/1804.01626

6. Amoussou-Guenou, Y., Del Pozzo, A. et al.: Correctness and Fairness of Tendermint-core
Blockchains. IACR Cryptology ePrint Archive (2018). https://arxiv.org/abs/1805.08429

Bitcoin:%20A%20Peer-to-Peer%20Electronic%20Cash%20System%22
https://bitcoin.org/bitcoin.pdf
http://research.microsoft.com/users/lamport/pubs/pubs.html#lamport-paxos
https://www.semanticscholar.org/author/Diego-Ongaro/40069180
https://www.semanticscholar.org/author/John-K.-Ousterhout/1753830
http://www.scs.stanford.edu/17au-cs244b/labs/projects/wang_tai_an.pdf
https://arxiv.org/abs/1804.01626
https://www.semanticscholar.org/author/Yackolley-Amoussou-Guenou/46178681
https://www.semanticscholar.org/author/Antonella-Del-Pozzo/2363603
https://arxiv.org/abs/1805.08429

