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Abstract. The structural stability of a mathematical model with respect to small 

changes is a necessary condition for its correctness. The same condition is also 

necessary for the applicability of numerical methods, a computational 

experiment. But after S. Smale’s works it became clear that in smooth dynamics 

the system of a general form is not structurally stable, therefore there is no strict 

mathematical basis for modeling and computational analysis of systems. The 

contradiction appeared in science: according to physicists dynamics is simple and 

universal. The paper proposes a solution to this problem based on the 

construction of dynamic quantum models (DQM). DQM is a perturbation of a 

smooth dynamical system by a Markov cascade (time is discrete). The dynamics 

obtained in this way are simpler than smooth dynamics: the structurally stable 

DQM realizations are everywhere dense and open on the set of all DQM 

realizations. This dynamics in contrast to the classical one has a clear structural 

theory, which makes it possible to construct effective algorithms for study of 

concrete systems. For example this paper shows the use of computer simulation 

for rigorous proof of hyperbolicity of the Henon system attractor. On the other 

hand, when fluctuations tend to zero, i.e. in the semiclassical limit, the dynamics 

of the DQM goes into the initial smooth dynamics. In this paper the equivalence 

of structural stability and hyperbolicity for smooth discrete dynamical systems is 

established along this path.  

Keywords: modeling, computer simulation, structural stability, dynamical 

system, dynamic quantum model, Markov cascade, attractor. 

1 Introduction 

Computational modeling derives from two steps: (i) modeling, i.e. finding a model 

description of a real system, and (ii) solving the resulting model equations using 

computational methods [1]. Computational modeling has been used in physics, 

chemistry and related engineering for many decades because in practice hardly any 

model equations of systems of interest can be solved analytically, and this is where the 

computer comes in [2].  

However, if an arbitrarily small perturbation of the model leads to a qualitatively 

different picture of the dynamics, then such a model is not applicable to the real process: 

strictly speaking, perturbations are included in the definition of a model. Therefore 

traditionally the stability of a mathematical model with respect to relatively small 

changes is a necessary condition for its correctness [3]. The same stability condition is 



necessary for applicability of numerical methods, computational experiments since 

they inevitably lead to errors of discretization and rounding in calculations [4]. 

The qualitative invariance of a mathematical model under small perturbations is 

usually called structural stability. This formally means equivalence, in some exact 

sense, between the model and its small enough perturbation. For the smooth dynamical 

systems (sets of differential or difference equations) this equivalence is usually a 

homeomorphism between the phase portraits of these systems. Such theory of a 

structural stability going back to H. Poincare, has been developed by A.Andronov   and 

L. Pontrjagin in the case of small dimension of the phase space (1 or 2) [5]. However, 

the optimism generated by the successes of this theory disappeared after S. Smale's 

works [6]. It was shown in [7] that when the phase space has larger dimension, then 

there exist smooth dynamic systems whose neighborhoods do not contain any 

structurally stable system. For the theory of smooth dynamical systems (its old name is 

the qualitative theory of differential equations) this result has the same value as 

Liouville’s theorem on insolvability of the differential equations in quadratures has for 

the theory of their integration.  Namely, it shows that the problem of full topological 

classification of smooth dynamical systems is hopeless. This means also that there is 

no strict mathematical basis for modeling and computational analysis. The 

contradiction has appeared in science, because physicists believe that the dynamics is 

simple and universal [8]. 

The paper proposes solution to this problem, based on the construction of dynamic 

quantum models (DQM). It turns out that taking into account random fluctuations, 

necessary for the transition to the quantum model of reality, allows us to return in fact 

to the simple picture of A. Poincare’s dynamics: a dense set of structurally stable 

systems.   

DQM is so named because for Hamiltonian systems it is simply related to the 

corresponding Schrödinger equation, and its construction is the basis of the method for 

solving spectral problems [9]. But the definition of DQM is not formally related to 

Hamiltonian systems; it is defined for any ordinary differential equation or any 

diffeomorphism on any smooth Riemannian manifold.  

The structural stability of the general form DQM opens the way to a mathematically 

grounded numerical analysis of the dynamics. As an example, this paper shows the use 

of computer simulation for rigorous proof of hyperbolicity of the Henon system 

attractor [10] at certain values of parameters. DQM is the natural basis for solving the 

traditional problems of machine learning [11].  

On the other hand, when fluctuations tend to zero, i.e. in the semiclassical limit, the 

dynamics of the DQM goes into a more complex initial smooth dynamics. The old 

problem – the equivalence of structural stability and hyperbolicity for smooth discrete 

dynamical systems [12] is established by this way in this paper. 

The paper goal is 1) to build the foundations of the theory of dynamic quantum 

models (DQM); 2) to demonstrate the application of this theory for computer research 

of concrete systems and for solving traditional problems of the theory of smooth 

dynamical systems.  

The paper is organized as follows: in part 2 we synthesize the dynamic quantum 

models (DQM), in section 2.2 we define the DQM attractor, show the uniqueness of 

this definition and establish properties of the DQM attractor; in part 3 we show that 

structurally stable realizations of DQM are dense and open on the set of all its 



realizations; in part 4 we demonstrate the use of computer modeling for rigorous proof 

of hyperbolicity of the attractor of Henon system; part 5 concludes.  

We had to omit proofs of some theorems in order to fit the paper format. 

2 The Dynamic Quantum Model: Basic Definitions  

2.1 DQM Definition 

Let )(xp  be an n -dimensional smooth vector field on an n -dimensional smooth 

Riemannian manifold M , where ),...,,( 21 nxxxx  are local Euclidean coordinates on 

M , )()( n

i RCxp  ( ni ,...,1 ). On each phase curve Mtx )(  of the 

dynamical system generated by this vector field 

)(хp
dt

dx
i

i  ,    ( ni ,...,1 ) (1) 

consider the integral of the “shortened action”   
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)()(  . The value of )(ts  on each curve )(tx , which is different 

from a fixed point, is diffeomorphically expressed in t  and is called “optical time”. Let 

  be a metric such that 
)(

)(
tх

dts  : dttpd
2
)( . The following is the heuristic 

derivation or explanation of the definition of dynamic quantum model (Definition 1). 

So, the distance d  traveled by a point along the path of (1) during the time t  is 

equal to 




t

dpd
0

)(  ttp c  )(  , where )( 0tppc   is the average value 

)0( 0 tt  . (Of course this is with a single bypass of trajectory during t : turning 

points are the special case). Further, we assume that the fluctuations generate “white 

noise” )(t , acting on the configuration space with the dispersion )(tD  = t2 , 

where the diffusion coefficient 
2  is constant over the considered time interval. It will 

take some time t , until the point moves to a distance d   from the initial position, 

which exceeds the mean square error caused by )(t  during the time t , i.e. tpc   

will exceed t2 . With such a minimal t  tpc  = t , whence 2

tpc 
2

 and therefore  
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Here by assumption t  is the minimal time interval after which it becomes possible 

to make a new measurement, the difference from which will exceed the error, i.e. get a 

significantly different measurement. Owing to (2)  
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 . Thus 1) the time interval between the 

nearest significant measurements is unchanged on the optical time scale and is equal to 
2 . (In other words, the distance between them in the metric   is equal to 

2 ). 2) 

During this time “white noise” )(t  generates an irremovable random error, the 

standard deviation of which is equal to  the distance d  between the nearest significant 

measurements along the trajectory.  

So, a dynamic quantum model first shifts each point along the phase curve of a 

given dynamic system over the optical time 
2  (or ρ – length 

2 ), and then randomly 

shifts on a distance not exceeding the length of the trajectory from the original to the 

new point. The following rigorous definition summarizes this description. The 

definition of a dynamic quantum model is given for an arbitrary dynamic system (1) on 

an arbitrary compact Riemannian manifold M .  

Let G  be the shift map along the phase trajectories of (1) during the lag time t . 

Consider a smooth function 0),( zyq  ( Mzy , ) such that  

)(ydGyz  ,     1),( 
M

dzzyq ,   )(),( ydGydzzyzq
M

 , (3) 

where 0)( yd  is a continuous function on M . Here ),( zyq  defines the density 

of “local random dissipation caused by white noise,” the numbers )(yd  are assumed 

to be small. Of course, the function ),( zyq  can also be assumed continuous, 

approximating it on M  with a smooth function for any given accuracy. Then  

Definition 1. The Markov process with the transition function  


A

dzzyqAyP ),(),(    ( MA ) (4) 

is called the dynamic quantum model (DQM) for the dynamic system (1). Given the 

initial distribution, we obtain a Markov process P  with this initial distribution and the 

transition function ),( AyP : if t  is the distribution at time t , t  is the lag between 

the two nearest measurements, then the DQM sets new distribution tttP   )(  at 

time tt  .  



Thus, based on the differential equations (1), we arrive at difference equations with 

a lag of at least 
2  on the optical time scale. At first glance, the DQM may surprise 

with the discreteness of time: in the traditional model of quantum mechanics errors are 

explicitly taken into account only for spatial variables. But, as can be seen from the 

deduction, the discreteness of the measurement process is an inevitable consequence of 

the unavoidable errors of coordinates and pulses. Indeed, to measure time ultimately 

requires a clock or other device in which readings on a scale are measured in proportion 

to time at a certain speed. But if these readings and speed are determined inaccurately, 

then the time is also known only with some error. 

Definition 2. Let 
i  be cells with a diameter   of some partition of the phase space 

of a dynamical system and 0  is the initial state. Then the Markov chain with transition 

probabilities from 
i  to 

j  equal to ijp = 
0

0

),(
)(

1
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 will be called 

the  - discretization of DQM with transition function ),( AyP  and initial state 0 .  

2.2 DQM Attractor 

Attractor is the key concept of the theory of dynamical systems; its physical meaning 

is that it is “the space of steady-state regimes”. The point of the phase space is contained 

in the attractor if it belongs to the carrier of the “stationary state of the system”, i.e. to 

a measure not changing over time.  

Let M  be a compact phase space, P  is some DQM on M .  

Definition 3. The probability measure   on M  will be called the stationary 

(equilibrium) state of DQM if  )(P . The DQM attractor is the union of the 

carriers of all stationary states. 

Theorem 1. (Perron-Frobenius theorem for DQM). Let M  be an invariant 

closed set of DQM P  that does not contain its own invariant closed subsets (that is 

minimal with respect to P ). Then 

1.  there is a unique stationary state  , whose carrier is  . The state   is ergodic 

(that is the flow P  is ergodic with respect to measure  ). 

2.  For any other state (probability measure)   on   
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3.  If   is a probabilistic stationary measure of some  - discretization of the given 

DQM on  then 
0

lim


 = .  

Proof. Let M be an invariant closed set of DQM that does not contain its own 

invariant closed subsets. Let  be a stationary measure of some discretization of the 

given DQM on   with cells of diameter   (that is, a probability invariant measure of 

a Markov chain defined by Definition 3). On a compact subset   of the phase space 



the set of probability measures )( RR  forms a convex metrizable compact in the 

weak topology. Therefore in any sequence of measures 
k

  one can find a 

subsequence
n

 , converging to some measure   from R : 
n

lim
n

 =  R  in the 

sense of the weak topology on R . Since 0
0
 
nnn

P
   (in the sense of the 

weak topology) by virtue of definition 3, then  P  i.e.  is a stationary state of 

DQM. Since by the condition   does not contain non-empty proper invariant subsets 

of DQM (i.e. it is metrically transitive), then for any P -invariant measure on   the 

ergodic Neumann theorem holds: for any continuous function f  on   
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Since left side of this equality does not depend on the choice of a sequence of measures

k
 , then any weakly convergent sequence 

n
 converges to the same measure  . 

Therefore  



0

lim   and it proves 3). Since (5) holds for any stationary state on 

 , then from (5) the uniqueness of an invariant measure   also follows, which 

establishes 1). Finally, since for any other probability measure   on 
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lim   exists by virtue of (5) and is an invariant measure, then it coincides 

with  , which proves 2), QED. 

Obviously, there are only finitely many components of the DQM attractor 
k  on 

M , that is such invariant subsets of the attractor that do not contain proper invariant 

non-empty subsets. On each component 
k  of the DQM attractor there is a unique 

probability invariant measure k : kkP   . The density of k  is positive on the 

interior of 
k  by the definition of DQM. Any stationary state on M  is a convex 

combination of stationary states k  on 
k . 

Let G be shift map along the phase trajectories of (1) during the lag time of DQM. 

Definition 4. For the DQM trajectory   for the time nt : nyyy ,...,, 10  its 

differential is )()(...)()( 01 yDGyDGyDGD nn   where )( kyDG  is the 

differential of G  at the point ky , ,...1,0 nk  . For the DQM trajectory : 

01,,..., yyy n   differential )()(...)()( 01 yDGyDGyDGD nn   at ,...1,0n  .  

The measure  , induced by the measure 
 
in accordance with the Kolmogorov 

theorem [13], is defined on the space   of DQM trajectories on the component   of 

the DQM attractor.  



Theorem 2. Let M is a component of the DQM attractor of dimension 

Mm dim . Then for DQM with sufficiently small )(min ydd
y 
  (where 

0)( yd  are constants from (3)) 

1. for almost all under measure   DQM trajectories   at any nonzero vector 

)1(  uRu m
 there are limits 

rn
n

uD
n
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1

lim ,  

where sr ,...,2,1  Mm dim .  

2. At each point of each such trajectory , the filtering of subspaces is uniquely 

defined: 

 forward  
m
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 and back  
m

s RyLyLyL   )()(...)( 12 ,  

 associated with the numbers s  ...21   so that 
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  .   

These filtrations are invariant with respect to the DQM differential. Exactly if ny  

and 1ny  are consecutive points of the trajectory    at times nt  and 1nt  respectively 

then the differential )( nyDG  translates the filtering at the point ny  in the filtering at 

the point 1ny .  

Proof. Consider DQM on   as a random process ),( tX , where t  is discrete 

time, ,...,2,1,0,  ktt k
  is a DQM trajectory. Namely, for Mk  let η = 

,...),...,,,,...,(..., 101 kk   . Then the DQM trajectory ),( 0yt   with an 

initial point My 0 is the sequence
00 ),( ytX  ,

0011 ),(   GyytX ,

1122 ),(   GyytX , …,
11),(   kkkk GyytX  ,… . (Here d  is 

assumed to be so small that the addition of 
11   kkGy   when dk   performed 

on the local map of the manifold M in
mR ). Thus, the DQM trajectory   is defined 

uniquely by a sequence of vectors η and an initial point 0y : ,( 0y   η0).  



On the set   of DQM trajectories ),( tX  on    induces the dynamic process 

T – the trajectory of the trajectories: 10  T , 21  T , …, kkT  1 , … . 

Namely if ,( 00 y   η0), where ),( 000 tXy  , η0 ,...),...,,,,...,(..., 101 kk  
 

and ,( 11 y   η1), then ),( 01001  tXGyy  , η1 = R η0, where R is shift 

operator to the right. If ,( 22 y   η2) then ),( 02112  tXGyy  , η2 = R η1; 

in the general case for ,( kk y   ηk) we get ),( 011  kkkk tXGyy  
, ηk = 

= R ηk-1. By the Kolmogorov theorem on the set  of DQM trajectories on   the 

probability measure   was determined, induced there by a stationary state  on  . 

By construction measure   inherit from measure   the invariance with respect toT  (

 )(T ) and ergodicity of T  (i.e. its metric transitivity) under measure .  

Let )(),(  nDna   for ,( 0y   η). Then ),( na  are measurable 

functions on a probability space   with measure  and ),(),(  kTkakna  . 

This means that the square matrices ),( na  of order m  are a multiplicative cocycle 

on the space of trajectories   with respect to its automorphism T  by the definition 

of the cocycle [11]. Since G  is a diffeomorphism, then 0)( yDG  for all y , 

whence ))(ln( yDG  is continuous function on compact   and 


y

dyDG )(ln  . On the other hand by definition a measure for any open 

subset  C  with the characteristic function C   

})),(({ CyydC 


 = })({ Cyy  = 
M

C d . 

Therefore for any piecewise continuous function g  on M  


dg = 
M

dg  .  In 

particular since  )(),0( yDGa   on each trajectory ,(y   η), then




 da ),0(ln = 
y

dyDG )(ln . This inequality means that the cocycle 

),( na  is Lyapunov and this is the condition under which the multiplicative ergodic 

theorem for this cocycle holds. 

This theorem asserts that almost all trajectories   under measure   are 

Lyapunov correct. This means, in particular, that 

1.  for such   with )1(  uRu m
 there are limits 
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where mssr  )(,...,2,1   .  

2.  On each such trajectory , the filtering of subspaces is uniquely defined: 

 forward 
m

s RyLyLyL   )(...)()( 21    

 and back  
m

s RyLyLyL   )()(...)( 12 ,  

 associated with the numbers s  ...21  ( )(ss  )  so that 
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These filtrations are invariant with respect to the automorphism T :  if  1 nnT  , 

then the cocycle ),( na  takes the filtration n  to the filtration 1n . 

Since by the Kolmogorov theorem flow T  on a probability space   with a 

measure   inherits ergodicity from ergodicity P  on with a measure , which was 

established in Theorem 1. Then the values of rr  )( , ss )( coincide for 

almost all DQM trajectories   under measure  . In view of the correspondence 

)(),(  nDna 
 
the theorem immediately follows from here, QED.  

By analogy with the theory of smooth dynamical systems the numbers r we will 

call the Lyapunov characteristic exponents of the component   of the DQM attractor.  

3 Structural Stability in DQM 

Definition 5. The DQM realization is a sequence of smooth mappings )(yGk
 on 

  in M   ( ,...2,1,0 k ) if dydyGyG
Ck  )()()( 1

, where d(y) 

are the constants from (3). 

Here all the maps )(yGk are diffeomorphisms on Λ in Λ for sufficiently small d . 

In terms of content  ),( ytk  = )()( yGyGk 
 
are small random deviations caused 

by “white noise” at the point y  at time kt . By definition, any DQM trajectory 

,( 0y   η): kkk Gyy  1  ( ,...2,1,0 k ) is given by the initial point 

My 0 and sequence of deviations η ,...),...,,,,...,(..., 101 kk   . But on 



the DQM realization the function of deviations ),( ytk  is fixed; therefore, on it the 

DQM trajectory   with the initial point 0y  is uniquely determined: )( 0y  .  

Definition 6.  A DQM realization )(yGk  ( ,...2,1,0 k ) on a compact set 

K will be called a hyperbolic realization of DQM if at each point  kKy , 

where 
kkk KKGKK   )(, 10

 there exists a decomposition of the tangent bundle 

kTK  into the Whitney sum of the subbundles )(yE s

k  and )(yEu

k : 
kTK = )(yE s

k

+ )(yEu

k , satisfying the following conditions: 

1. the tangent map 
kDG  preserves the subbundles: 

,)( 1

s

k

s

kk EEDG   
u

k

u

kk EEDG 1)(  ; 

2.  
kDG  compresses

s

kE : on every trajectory   with an initial point 
kKy  at the 

time moment kt there are such constants 0b  and )10(    that for any 

s

kEu  and any natural n   

ubuD n

n  )(    ( )(yEu s

k ). 

3.  
kDG  stretches )(yEu

k , more precisely, on each trajectory   with an initial point 

kKy  at the time moment kt  for any 
u

kEu  and a natural n   

uDn )(  
nb

1
u    ( )(yEu u

k ).  

Theorem 3. Hyperbolic realizations are everywhere dense on the set of DQM 

realizations. More precisely, for any DQM realization
 

)(yGk  ( ,...2,1,0 k ) and 

for any sufficiently small 0  there exists such hyperbolic realization )(yGk


 of 

this DQM on the compact K , that 

1.    )//( KK
 
for the probabilistic invariant DQM measure  on  ;  

2.  on 
kK   

1
)()(

C
kk yGyG


 ( ,...2,1,0 k ).   

Definition 7. The realization of the DQM )(xGk
 on a compact K and the 

realization )(
~

xGk of this DQM on a compact K
~

 are topologically equivalent if 

they are conjugate by means of homeomorphisms 
kH  defined on some neighborhoods 



of the compacts kK  , where 
kkk KKG  )( 1

, )
~

(
~

kk KG =
1

~
kK , KK 0

, 

KK
~~

0  :  
kkkk GHHG  1

~
   ( ,...2,1,0 k ).    

 

Fig. 1. Commutative diagram of topological equivalence. 

Definition 8. A DQM realization
 

)(xGk
 on a compact K  is structurally 

stable if any realization of this DQM sufficiently close to )(xGk
 in 

1C  topology for 

all ,...2,1,0 k  is topologically equivalent to it. 

In more detail: If for every point 
kKx  there are numbers 0)( xdk  such that 

for any realization of this DQM )(
~

xGk from 
1

)(
~

)(
C

kk xGxG  ≤ )(xdk  for all k  

and 
kKx  the topological equivalence of the realizations 

kG  and 
kG

~
 follows, then 

kG  is structurally stable. 

If all )(xGk
 and all compacts 

kK  coincide for all k , then we obtain the definition 

of the structural stability of a diffeomorphism.  

Theorem 4. Any hyperbolic realization of the DQM 
kG  on the compact set 

K is structurally stable. 

Corollary 1. A diffeomorphism G  on a compact manifold M is structurally stable 

in the sense of Definition 8 if and only if it is (non-uniformly) hyperbolic. 

Proof. Let a diffeomorphism G be structurally stable. By Definition 8, this means 

that for some  dxd )(  from  )()(
~

)(
1

xdxGxG
C
  ( Mx )  it follows 

that the diffeomorphisms G and G
~

are topologically equivalent, that is, are conjugate 

on M by means of a homeomorphism. Consider DQM for G  with the same d (x) in 

(3) for all Mx . By Theorem 1, this DQM has an attractor, let   be a component 

of this attractor. By Theorem 3 there is a realization )(
~

xGk
of this DQM, hyperbolic 

in the sense of Definition 6 on a compact set K , which differs from   only by the 

order d  on the measure   of the stationary state on  . Then by virtue of the 

 
 

 

Kk  Kk+1 

Gk 

 Hk Hk + 1    

, 



structural stability of G every diffeomorphism 
kG

~
of this realization is conjugate to 

G in a neighborhood of  . Therefore the realization with zero deviations, i.e. 

coinciding with G for each k , is also hyperbolic in   in the sense of Definition 6, 

and the component   itself  is invariant with respect to G with accuracy  . But then 

the complement \M  is invariant with respect to G with accuracy  too. Unless it 

turns out that with this accuracy M , then on \M we can similarly consider 

DQM for G  with perhaps smaller than the earlier )(yd . You can find there its 

component 1  and establish for realization 
kG with zero deviations hyperbolicity in 

neighborhood of in the sense of Definition 6 1  as we did it early; and so on. In general 

let   be the greatest G -invariant with accuracy   subset in M , in which the 

realization with zero deviations )(xGk
 is hyperbolic in the sense of Definition 6. If 

M with accuracy  , then on \M  as above we can obtain a new component, 

in which the realization with zero deviations 
kG  is hyperbolic  contrary to the 

assumption about  . Tending    to zero, we obtain the hyperbolicity of the realization 

kG  with zero deviations at almost all points Mx . In this case, generally speaking, 

we have 0)(inf xd . This means the non-uniform hyperbolicity of the 

diffeomorphism G onto M .  

Conversely, the fact that the non-uniform hyperbolicity of a diffeomorphism G  

onto M implies its structural stability in the sense of Definition 8 directly follows from 

Theorem 4, QED. 

Corollary 2. If for some 0 from 
1

)(
~

)(
C

xGxG  ( Mx ) follows 

that diffeomorphisms G  and  G
~

 are topologically equivalent, then G  is (uniformly) 

hyperbolic diffeomorphism on M . 

Proof. It follows from Corollary 1 that G is hyperbolic, in general, non-uniform. 

If G  is hyperbolic exactly non-uniformly and so 0)(inf yd
 
for )(yd  from 

definition 8, then we can get some diffeomorphism G
~

 inequivalent to G  with 

arbitrarily small perturbations.  However from 
1

)(
~

)(
C

xGxG  ( Mx ) 

follows that G and G
~

 are topologically equivalent by the condition of the corollary.  

Therefore G  is uniformly hyperbolic on M , QED. 



4 Example of DQM Application: Henon System Attractor  

For the two-dimensional M. Henon system [10]: ),1(),( 2 bxaxyyx  values 

of parameters 5.0,7.1  ba  are chosen such that the hyperbolicity of dynamics on 

the attractor with this parameters is rigorously proved for R. Lozi system [14] 

),1(),( bxxayyx  . The proof of the hyperbolic dynamics here is based on 

the following statement, specifically focused on the study of concrete dynamical 

systems. For ease of application to the Henon system in the formulation we restrict 

ourselves to the two-dimensional case, although the multidimensional generalization is 

also true. 

Corollary 3. Let 
i be the cells of  -discretization of the DQM attractor for the 

system given by the diffeomorphism G , iix   ( Ni 1 ). Let the eigenvalues 
 

)(1 ix and )(2 ix  of the differential DG  at each point iix   ( Ni 1 ) 

satisfy the conditions  )(1 ix , )(2 ix


1
 for some   ( 10   ) and 

)14(4

)1(

2

2






G


 , (6) 

where 
2

G  is the norm of G  in 
2C . Then  

1.  the initial system given by the diffeomorphism G  is hyperbolic on its attractor; 

2.  any DQM   - realization of this system is hyperbolic on the DQM attractor and is 

topologically equivalent to the initial system; 

3.  the support of the attractor of the initial hyperbolic system and the attractor of its 

DQM   - realization coincide with an accuracy of order  . 

The proof of this statement essentially reproduces the proof of Theorem 4, estimate (6) 

is actually obtained there. The verification of the conditions of Corollary 3 for the 

Henon system uses 4 Maple procedures. 

1. The Animate procedure visualizes system behavior using animation technologies in 

Maple. This allows you to localize the region of the phase space in which the system 

attractor is hypothetically contained. In the graph of next fig.2 for each iteration t  

shows the point in phase space of Henon system. 

On the basis of outcomes of the numerical researches, visually presented in Figure 

2, we choose a rectangle }1.01.0;5.11|),{(  yxyx . In next 

Figure 3 for each iteration 500,...,2,1t  of Henon system corresponds its coordinate 

)(tx on the ordinate axis. 



 

Fig. 2. Phase curve of Henon system. 

 

Fig. 3. Trajectory of Henon system.  

The animation in Figure 3 suggests that the system is hyperbolic. 

2. The Prestep procedure splits the rectangle   into cells i  - squares with sides of 

length 0.01 parallel to the axes of coordinates ( Ni 1 ).Then each cell 
i   

Prestep associates a set of cells into which points from 
i can fall into one step of 

the dynamics of the Henon system. In this case it is formally verified that the domain 

  is indeed invariant with respect to the discretization of the DQM, given by the 

constructed partition of  . In other words Prestep defines a topological Markov 

chain H , the state space of which is the set of cells i
.  

3. The Findattr procedure finds in   the attractor of a topological Markov chain H
defined in Prestep. Its algorithm is based on the following consideration. On the 

state space }{ i  consider a transitive quasi-order relation: ji  
 
if there 

exists a trajectory H  from 
i  to 

j . The state 
i is recurrent if 

ii   . 

Recurrent states are divided into equivalence classes: 
ijiji  ~ . 

On }{ i )(H )(2H  ...)(3H )(nH . If )(nH

)(1 nH then )(nH is the DQM attractor. In the case under consideration, the 

attractor turns out to be connected, which corresponds to Fig. 2, obtained by the 

Animate procedure.  



4.  The Hyperproc procedure performs a main check: do the conditions of Corollary 3 

be satisfied on the attractor found by Findattr? For the Henon system under 

consideration on a rectangle }1.01.0;5.11|),{(  yxyx we 

obtain 
2

G 1.6}2,1)2({max 22 


abax . The Hyperproc procedure 

establishes that for the differential DG eigenvalues 4.0)(1 ix  and 

7.1)(2 ix  for all 
iix  . The value 59.07,1/1  . Thus 59.0 ;  

however, we choose the value 7.0 with a margin. Then, in accordance with (6), 

it is necessary that 00089.0 . 

Now the cell length of 
i (the length of a square with sides parallel to the axes of 

coordinates) is chosen equal to 0.0005 ( Ni 1 ) and already for such a small 

partition of the rectangle   we repeat the Prestep  Findattr  Hyperproc cycle 

described above. Now the other smaller cells are 
i , the other 

iix   and the other 

eigenvalues )(1 ix  and )(2 ix respectively ( Ni 1 ). If now again 4.0)(1 ix  

and 7.1)(2 ix  holds for all i , then (6) holds for such a partition and therefore 

Corollary 3 holds. In our case, the test was successful, which proves the hyperbolicity 

of the dynamics on the attractor of the Henon system for the values of the parameters 

5.0,7.1  ba . As a result, the structure of a topological Markov chain obtained in the 

course of computer calculations, by virtue of 2) and 3) of Corollary 3, gives detailed 

and rigorously proved data on the dynamics of this system. 

The selected values of the parameters 5.0,7.1  ba  are not the only ones. For 

example, similar results are obtained for 35.0,4.1  ba .  

5 Conclusion 

The structural stability of a mathematical model is a necessary condition for its 

correctness. It is also necessary for applicability of numerical methods, computational 

experiments since they inevitably lead to errors.  

But after S. Smale's works it became clear that in smooth dynamics the system of a 

general form is not structurally stable and therefore there is no strict mathematical basis 

for modeling and computational analysis of systems. The contradiction appeared in 

science: according to physicists dynamics is simple and universal. 

The paper proposes a solution to this problem based on the construction of dynamic 

quantum models (DQM). DQM is a perturbation of a smooth dynamical system by a 

Markov cascade (time is discrete). The dynamics obtained in this way are simpler than 

the classical smooth dynamics: the structurally stable realizations of DQM are 

everywhere dense (Theorem 3) and open (Theorem 4) on the set of all DQM 

realizations. This dynamics has a clear structural theory: unlike the classical systems, 

the DQM attractor is uniquely defined (Theorem 1), Lyapunov exponents exist for any 

DQM (Theorem 2). 



As a Markov cascade, the DQM is approximated by a Markov chain and on a 

compact set by a finite Markov chain arbitrarily exactly (Theorem 1). This allows you 

to clearly understand the DQM dynamics and build effective algorithms for the study 

of concrete systems that are always oriented towards parallel computing and do not 

require stable (according to Hadamard) solutions. For example, in part 4 we 

demonstrate the use of computer simulation for rigorous proof of hyperbolicity of the 

attractor of Henon system.  

On the other hand, when fluctuations tend to zero, i.e. in the semiclassical limit, the 

dynamics of the DQM goes into the initial smooth dynamics. In part 3 the equivalence 

of structural stability and hyperbolicity for smooth discrete dynamical systems is 

established along this path (Corollaries 1 and 2). 

In the future, we intend to apply the DQM algorithms, that oriented towards parallel 

computing and do not require stable solutions, to traditional problems of computational 

methods. 

We also intend to generalize dynamic quantum models on dynamical systems that 

using logical operations: proofs of theorems, software applications, information and 

network systems, etc. A natural and even obvious implementation tools for such a 

generalization are the specialized neural network. This will allow the use of DQM 

methods for problems of artificial intelligence: identification, prediction, filtering, etc.  
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