CEUR-WS.org/Vol-2393/paper_406.pdf

Event Universes: Specification and Analysis
Using Coq Proof Assistant

Grygoriy Zholtkevych[oooo‘0002_7515_2143]
School of Mathematics and Computer Science
V.N. Karazin Kharkiv national University,
4, Svobody Sqr., Kharkiv, 61022, Ukraine
g.zholtkevych@karazin.ua

Abstract. In the paper, the formal specification of event universes the-
ory developed with using Coq Proof Assistant is presented. The main
attention is paid on the discussion of the definition and obtained facts.
In the same time, a proof technique is not the subject of this discussion.
The reader can get acquainted with the details of the proof technique,
referring to the source text of Cog-scripts hosted on the GitHub, using
the links provided in the text of the paper.

Keywords: causality relationship- Calculus of Inductive Constructions-
Coq Proof Assistant- decidability- class type- Category Theory

1 Introduction

Inception of distributed computation technology has posed a problem of orches-
tration of different computational device operating. One of the key problem in
this context is to ensure adequate responses of a computational device involved
into the computation to requests of other computational devices involved into
the computation too in order to ensure all these computational devices behave
consistently and purposefully. Thus, it is needed to give system developers tools
for specification and analysis of timing constraints for ensuring the consistent
behaviours of hardware and software constituted the system being under design.
Hence, we may claim that carefully vetted specification guaranteeing the system
behaviour consistency in the time is the important part of a good design for a
distributed system.

The specificity of the design process for distributed systems is the impos-
sibility to apply the methods of dynamic analysis of program code to ensure
its correctness. The reason for the validity of this claim is that any additional
observations of the system are not possible without inclusion into the system
special components, which collect the needed information but at the same time
these components change the system behaviour. In some sense, we have be-
haviour like quantum behaviour: any observation changes essentially the system
behaviour. In the situation when dynamical analysis of the system correctness
is not useful, the static analysis remains the unique method for assessment of
system behaviour correctness. Thus, the creation of a rigorous theory, which

would ensure computer aided in developing special software for verification and
analysis of causality specifications for distributed systems is a very important
problem for nowadays.

To solve the problem we propose to use Coq Proof Assistant [1] and for con-
structing the corresponding formal theory. Informally, we use as the theoretical
framework for our construction the following papers, which had initiated and de-
veloped a number of logical time models. First of all, this is L. Lamport’s paper
[2]. Further, we need to mention G. Winskel’s papers [3]. We use also as informal
background papers of C. André and F. Mallet [4,5,6]. Own results presented in
[7,8] are also used.

2 Preliminaries: Binary Relations

Theory of binary relations form a mathematical basis for studying causality
relationship. Therefore, we present the Coqg-specification' used below for the
some needed for us fragment of the binary relation theory in this section.

We stress that we assume the some variant of the extensionality formalised
as the axiom called extensionality.

Axiom extensionality :
V (AB: Type) (fg: A—B), (V x: A fx=gx)>f=g

The next code section defines bunary relations and their properties.

Section EventPreliminaries.
Variable U : Type.

Definition BiRel : Type := U — U — Prop.

Definition Reflexive (R : BiRel) : Prop:=Vx: U, R x x.
Definition Irreflexive (R: BiRel) : Prop:=V x: U, —-R x x.
Definition Symmetric (R:BiRel):Prop:=Vxy: U Rxy > Ryx
Definition Transitive (R : BiRel) : Prop :=

V xyz: UURxy 2Ryz—>Rxz

Inductive Preorder (R : BiRel) : Prop :=
PreorderDef : Reflexive R — Transitive R — Preorder R.
Inductive Equivalence (R : BiRel) : Prop :=
EquivalenceDef :
Reflexive R — Transitive R — Symmetric R — Equivalence R.
Inductive StrictOrder (R : BiRel) : Prop :=
StrictOrderDef : Irreflexive R — Transitive R — StrictOrder R.

Definition Decidable (R : BiRel) : Prop :=
V xy: U RxyV ~Rxy.

End EventPreliminaries.

! This specification is contained in https://github.com/gzholtkevych/Causality/
blob/master/Coq/EventPreliminaries.v.

https://github.com/gzholtkevych/Causality/blob/master/Coq/EventPreliminaries.v
https://github.com/gzholtkevych/Causality/blob/master/Coq/EventPreliminaries.v

Further, we give definitions for the polymorphic identity function and composi-
tion of functions.

Definition id {A : Type} := fun x : A = x.
Definition compose {ABC: Type} (f:A—B)(g: B—C): A —>C:=
funx: A = g (£ x).

Notation "g * f" := (compose f g)
(at level 40, left associativity) : event_scope.

Now we prove the following propositions.

Proposition 1 (id_is_leftId).
For any sets A and B and function f : A — B, the equation idg f = f holds.

Proposition 2 (id_is_rightId).
For any sets A and B and function f: A — B, the equation fids = f holds.

Proposition 3 (compose_is_assoc).
For any sets A, B, C, and D and functions f : A - B, g : B — C, and
h:C — D, the equation (hg) f = h(g f) holds.

We need also the following concept

Definition Decidable (R : BiRel) : Prop:=Vxy: U RxyV —Rxy.

End EventPreliminaries.

3 Event Universes

This section introduces in the logical time model that focuses on the causality
relationships between event occurrences called instants below.

3.1 Informal Meaning and Mathematical Definitions

The principal causality relationship between events A and B is labelled by the
sentence “the event A causes the event B”. We consider informally that the
semantic meaning this sentence is the statement “if the event A has not occurred
then the event B cannot occur” rather than the statement “if the event A has
occurred then the event B should also occur”. It is evident that this semantic
meaning leads to the following properties of the causality relationship

1. each event causes itself;
2. if an event A causes an event B and the event B causes an event C then the
event A causes the event C.

Thus, we can accept the following definition of an event universe.

Definition 1. A set U equipped with a preorder (quasi-order) relation “<” is
below called an event universe.
The statement “x < y” where x,y € U is pronounced as “x causes y”.

It is well known that each preorder generates an equivalence and a strict
order, which are below called synchronisation and precedence and denoted by

W

=" and “<” respectively. The definitions of these relations are the following

Definition 2. Let a set U equipped with a preorder “&” be an event universe
then

1. the relation © = y between any x,y € U (pronounced x and y are syn-
chronous) is defined by the condition * < y and y < x and called the
synchronisation relation;

2. the relation x < y between any x,y € U (pronounced x precedes y) is defined
by the condition x < y and —~y < x and called the precedence relation.

Moreover, the next two relations called mutual exclusion and independence
are useful too.

Definition 3. Let a set U equipped with a preorder “&” be an event universe
then

1. the relation x # y between any x,y € U (pronounced x and y are mutually
exclusive) is defined by the condition x < y or y < x and called the mutual
exclusive relation;

2. the relation x || y between any x,y € U (pronounced x andy are independent)
is defined by the condition ~x < y and —y < x and called the independence
relation.

3.2 Formal Model of an Event Universe and Used Notation

Now we are ready to specify the formal model of the concept of an event universe
using Coq Proof Assistant. We consider the type classes [9,10] as the appropriate
construction of the Gallina specification language to describe the required model.
More details, one can find in the following fragment of Coq-script?.

The concept of an event universe introduces as follows

Class Event {A : Type} :=
{ universe :=A4;
causality : BiRel universe ;
(* Constraints *)
causality_constraint (* causality is a preorder *) :
Preorder universe causality ;
(* Derived relations *)
synchronisation : BiRel universe :=
fun x y = causality x y A causality y x;

2 The complete code is contained in https://github.com/gzholtkevych/Causality/
blob/master/Coq/EventDefinitions.v

https://github.com/gzholtkevych/Causality/blob/master/Coq/EventDefinitions.v
https://github.com/gzholtkevych/Causality/blob/master/Coq/EventDefinitions.v

precedence : BiRel universe :=

fun x y = causality x y A —causality y x;
exclusion : BiRel universe :=

fun x y = precedence x y V precedence y X ;
independence : BiRel universe :=

fun x y = —causality x y A —causality y x

1.
This script specifies an event universe as some type called universe equipped with
a binary relations causality. The script imposes only one constraint, namely, the
relation causality should be a preorder. The class definition determines also the
derived relations syncronisation, precedence, exclusion, and independence in
accordance with Def. 2 and 3.

In order for scripts specifying the formal theory being developed and giving
proofs of the facts are more compact and readable, the following notation is
introduced.

Notation "x <« y" (* x causes y *) := (causality x y)
(at level 70) : event_scope.

Notation "x = y" (*¥ x and y are synchronous *) := (synchronisation x y)
(at level 70) : event_scope.

Notation "x < y" (* x precedes y *) :=
(precedence x y) (at level 70) : event_scope.

Notation "x # y" (* x and y are mutually exclusive *) := (exclusion x y)
(at level 70) : event_scope.
Notation "x || y" (* x and y are independent *) := (independence x y)

(at level 70) : event_scope.

4 Properties of an Event Universe

In this section, we establish several properties of the relations mentioned in the
specification of the type class Event. In this section, we present several simple
properties of the relations mentioned in the specification of type class Event.
Our presentations are the formulations of the properties as mathematical state-
ments. Each such a statement is equipped with the reference to the correspond-
ing CIC-term [11], which one can find in https://github.com/gzholtkevych/
Causality/blob/master/Coq/EventRelationFacts.v.

Everywhere in this section, we assume that U is an event universe equipped
with the causality relation “ <« ” and the synchronisation relation “ = 7, prece-
dence relation “ <7, mutual exclusion relation “ # 7, and independence realtion
“|| 7 are defined by Def. 2 and Def. 3.

4.1 Simple Properties of Relations
Firstly, we establish the properties of the synchronisation relation.

Proposition 4 (synchronisation_implies_causality).
For any events x and y, x =y implies x < y.

https://github.com/gzholtkevych/Causality/blob/master/Coq/EventRelationFacts.v
https://github.com/gzholtkevych/Causality/blob/master/Coq/EventRelationFacts.v

Lemma 1 (synchronisation_is_reflexive)
The synchronisation relation is reflexive.

Lemma 2 (synchronisation_is_transitive)
The synchronisation relation s transitive.

Lemma 3 (synchronisation_is_symmetric)
The synchronisation relation is symmetric.

These lemmas ensure immediately the following proposition.

Proposition 5 (synchronisation_is_equivalence).
The synchronisation relation is an equivalence.

Further, we establish properties of the precedence relation.

Proposition 6 (precedence_implies_causality)
For any events x and y, x < y implies x < y.

Lemma 4 (precedence_is_irreflexive)
The precedence relation is irreflexive.

Lemma 5 (precedence_is_transitive)
The precedence relation is transitive.

These lemmas ensure immediately the following proposition.

Proposition 7 (precedence_is_strictOrder).
The precedence relation is a strict order.

Now we establish properties of the mutual exclusion relation.

Proposition 8 (exclusion_is_irreflexive).
The mutual exclusion relation is irreflexive.

Proposition 9 (exclusion_is_symmetric).
The mutual exclusion relation is symmetric.

The independence relation has the same properties.

Proposition 10 (independence_is_irreflexive).
The independence relation is irrefiexive.

Proposition 11 (independence_is_symmetric).
The independence relation is symmetric.

4.2 Relations Incompatibility

The next group of facts concerns the incompatibility of the relations being stud-
ied.

Proposition 12 (incompatibility_of_synchronisation_and_exclusion).

For any events © and y, at most one of the statements x = y and x#y is fulfilled.

Proposition 13 (incompatibility_of_synchronisation_and_independence).
For any events x and y, at most one of the statements © = y and x || y is

fulfilled.

Proposition 14 (incompatibility_of_exclusion_and_independence)
For any events x and y, at most one of the statements x#y and x || y is fulfilled.

One can note that the mutual exclusion relation between events x and y ensures
either z < y or y < x but does not determine what of these precedence state-
ments is fulfilled. To determine what precedence statement is valid one can use
the following fact.

Proposition 15 (causality_distinguishes_exclusion).
For any events x and y such that x # vy, x < y implies x < y.

Further reasoning is aimed at identifying conditions that ensure the fulfillment
of the following statement called ixsDecomposition that means the following

for any events z and y, z [yVa #yVae =y.

The next theorem formulates the obtained result.

Theorem 1 (decidable_causality_is_equivalent_to_istecomposition)
ixsDecomposition s fulfilled if and only if the causality relation is decidable.

4.3 Congruence Properties

In this subsection, we establish interrelations between the synchronisation rela-
tion and other relations being studied. The corresponding scripts proving these
facts one can find at https://github.com/gzholtkevych/Causality/blob/
master/Coq/EventSynchronisationCongruenceProperties.v.

Proposition 16 (congruence_causality). For any events x, ' and y, y' such
that x =2’ and y =9/, x < y implies 2’ < v/'.

Proposition 17 (congruence_precedence). For any events z, ' and y, y' such
that v =2’ and y =19/, x <y implies x’ < y'.

Proposition 18 (congruence_exclusion). For any events x, 2’ and y, y' such
that x = 2’ and y =19/, x # y implies ' #y'.

Proposition 19 (congruence_independence). For any events x, ' and y, y'
such that x =2’ and y =y, x || y implies 2’ || y'.

Summing up the above we can state that the synchronisation relation is a con-
gruence for all other considered relations.

https://github.com/gzholtkevych/Causality/blob/master/Coq/EventSynchronisationCongruenceProperties.v
https://github.com/gzholtkevych/Causality/blob/master/Coq/EventSynchronisationCongruenceProperties.v

5 Morphisms of Event Universes

In this section, we beat a path to using Category Theory?® for studying causality
in distributed systems. The concept of morphism is the key to such consid-
eration. The specification of type class presented below EventMorphism can be
found at https://github.com/gzholtkevych/Causality/blob/master/Coq/
EventDefinitions.v.

Class EventMorphism {A B : Type} ‘{Event A} ‘{Event B} (f : A — B) :=
{ arrow:=f;
(* Constraints *)
preserving sync : Vxy: A, X = y — arrow x = arrowy;
preserving_precedence : Vxy: A, x < y — arrow x < arrow y
1.
In other words, an event morphism is a mapping of corresponding event sets
that preserves the synchronisation and precedence relations.
The proving scenarios for the facts presented above one can find at https://
github.com/gzholtkevych/Causality/blob/master/Coq/EventMorphisms.v
First of all, we establish that morphism preserves all relations, except perhaps
independence relations.

Proposition 20 (preserving_sync).
For any event universes A and B, morphism f: A — B, and events x and y of
A such that © =y, the statement fx = fy is fulfilled.

Proposition 21 (preserving_prec).
For any event universes A and B, morphism f: A — B, and events x and y of
A such that © < y, the statement fx < fy is fulfilled.

Now we check that identity mapping is a morphism.

Proposition 22 (id_is_morphism).
For any event universe A, id4 is a morphism.

Let us make sure that the composition of morphisms is a morphism.

Proposition 23 (composition_of_morphisms_is_morphism).
For any event universes A, B, and C and morphisms f : A— B andg: B — C,
g f is a morphism.

Combining Prop. 22 and 23 with Prop. 1-3 one can obtain the following theorem.

Theorem 2. The class of event universes equipped with morphisms is a cate-
gory.

Category-theoretic studying causality relationships was initiated in the papers

[7,5].

3 See, for example, [12]

https://github.com/gzholtkevych/Causality/blob/master/Coq/EventDefinitions.v
https://github.com/gzholtkevych/Causality/blob/master/Coq/EventDefinitions.v
https://github.com/gzholtkevych/Causality/blob/master/Coq/EventMorphisms.v
https://github.com/gzholtkevych/Causality/blob/master/Coq/EventMorphisms.v

6 Conclusion

This paper presents the formal approach to study causality relationships in dis-
tributed systems.

In the paper, the basic formal theory developed with Coq Proof Assistant
has been described.

Further research and development may be focused on

— the formalisation with Coq Proof Assistant of finiteness conditions to em-
phasise the subclass of discrete event universes;

— the identification of states related to events to try to construct a natural
coalgebra for specifying the behaviour of systems being studied;

— the identification of logical clocks for obtaining some complete and usable
causality constraint specification language.

References

1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer-Verlag Berlin Heidelberg (2004)

2. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558-565 (1978)

3. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
Petri Nets: Applications and Relationships to Other Models of Concurrency. LNCS,
vol. 255, pp. 325-392 (1986)

4. André, C., Mallet, F.: UML/MARTE CCSL, Signal and Petri nets. Research Re-
port RR-6545, INRIA (2008)

5. André, C., Mallet, F., De Simone, R.: Logical time: specification vs. implementa-
tion. ACM SIGSOFT Software Engineering Notes 36(1), 1-8 (2011)

6. Mallet, F.: MARTE/CCSL for modeling cyber-physical systems. In: Drechsler, R.,
Kiihne, U. (eds.) Formal Modeling and Verification of Cyber-Physical Systems.
Springer Vieweg, Wiesbaden (2015)

7. Zholtkevych, G., El Zein, H.: Two Approaches to Modelling Logical Time in Cyber-
Physical Systems. In: Basliades, N., et al. (eds.) ICT in Education, Research, and
Industrial Applications, CCIS, vol. 826, pp. 21-40. Spinger International Publish-
ing AG (2018)

8. Zholtkevych, G., El Zein, H., Polyakova, L.: Category Methods for Modelling Log-
ical Time Based on the Concept of Clocks. In: Ermolayev, V., et al. (eds.) ICT
in Education, Research, and Industrial Applications, CCIS, vol. 1007, pp. 89-101.
Spinger International Publishing AG (2019)

9. The Coq Development Team: Type Classes. In: The Coq Reference Manual. INRIA,
8.9.0 edn. (2019), https://coq.inria.fr/distrib/current/refman/index.html,
(accessed 2.02.2019)

10. Lampropoulos, L., Pierce, P.C.: QuickChick: Property-Based Testing in Coq, Soft-
ware Foundations, vol. 4 (2018), https://softwarefoundations.cis.upenn.edu/
qc-current/index.html, (accessed 2.02.2019)

11. The Coq Development Team: The Gallina specification language. In: The Coq
Reference Manual. INRIA, 8.9.0 edn. (2019), https://coq.inria.fr/distrib/
current/refman/index.html, (accessed 2.02.2019)

12. Awodey, S.: Category Theory, Oxford Logic Guides, vol. 52. Oxford University
Press, 2nd edn. (2010)

https://coq.inria.fr/distrib/current/refman/index.html
https://softwarefoundations.cis.upenn.edu/qc-current/index.html
https://softwarefoundations.cis.upenn.edu/qc-current/index.html
https://coq.inria.fr/distrib/current/refman/index.html
https://coq.inria.fr/distrib/current/refman/index.html

	Event Universes: Specification and Analysis Using Coq Proof Assistant

