
1 

 

Semantic Segmentation of Images of Building Facilities 

Thomas Czerniawski, M.S., PhD student, Fernanda Leite, Ph.D., P.E., Associate Professor 

The University of Texas at Austin, USA 

tczernia@utexas.edu 

Abstract. Scan-to-BIM is the process of converting a 3D reconstruction into a building information 

model (BIM). The process has two parts: (1) sorting subsets of the reconstruction into classes 

(semantic segmentation) defined by a BIM taxonomy and (2) identifying geometric parameters 

describing each class instance. Here we demonstrate the ability of deep learning artificial neural 

networks to semantically segment images of building facilities. We found this deep learning 

approach capable of simultaneously recognizing: ceiling, wall, plumbing, duct, door, floor, and 

stairs classes. This semantic scope surpasses state-of-the-art building system recognition methods 

and represents progress towards comprehensive BIM creation.  

1. Introduction 

Building information models (BIM) enable simulation, automation, and information sharing. 

However, building owners do not invest in creating and maintaining BIMs for most of their 

existing building facilities (Edirisinghe et al., 2016, Shen et al., 2016, Mayo et al., 2012, Giel 

and Issa, 2015). In order to make the adoption of BIM easier, researchers have been automating 

parts of BIM creation by applying computer vision (Lee and Lu, 2017, Fathi et al., 2015, 

Pătrăucean et al., 2015, Volk et al., 2014, Xiong et al., 2013, Musialski et al., 2013, Huber et 

al., 2011, Tang et al., 2010, Brenner, 2005). The process begins by digitizing existing facilities 

using reality capture technologies including laser scanners and range cameras. Information 

from the digital reconstructions is used to automatically generate objects in a BIM as defined 

by an object class label (e.g. wall, door, window, and column) and parameters (e.g. height, 

elevation, and relationships). This technical challenge has two parts.  

(1) Sorting subsets of the spatial data into classes defined by a BIM taxonomy. 

(2) Identifying geometric parameters describing each class instance. 

Associating subsets of the input raw spatial data with a BIM taxonomy creates semantic 

interoperability between the raw spatial data and the computational/algorithmic design software 

generating the BIM. For this purpose, object recognition algorithms are used. Published work 

will typically focus on recognizing one type of object category such as plumbing (Ahmed et al., 

2014), partition walls (Hamledari et al., 2017), building facades (Oskouie et al., 2017), or a 

limited number of categories together such as walls, floor, doors, and windows (Quijano and 

Prieto, 2016, Bassier et al., 2016, Ochmann et al., 2016, Anagnostopoulos et al., 2016, Mura et 

al., 2016). Researchers have yet to combine and scale existing methods to achieve 

comprehensive BIM creation because the diversity of objects and systems encountered in 

buildings far exceeds the scope of existing recognition models.  

Emerging deep learning methods demonstrate a level of versatility that has the potential to 

greatly increase the scope of building system focused recognition. This paper presents a deep 

learning based object recognition method that successfully recognizes: ceiling, wall, plumbing, 

duct, door, floor, and stairs classes. This collection of building classes surpasses in size and 

diversity the state-of-the-art in the building systems literature.  
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2. Related Work 

Several review articles covering the automated generation of BIMs have been published (Lee 

and Lu, 2017, Fathi et al., 2015, Pătrăucean et al., 2015, Volk et al., 2014, Xiong et al., 2013, 

Musialski et al., 2013, Huber et al., 2011, Tang et al., 2010, Brenner, 2005). Deep learning 

approaches are noticeably absent. Research in deep learning applied to computer vision has 

experienced success processing both 2D and 3D data (Krizhevsky et al., 2012, Qi et al., 2016a, 

Dai et al., 2017, Qi et al., 2016b). Although datasets used to train these emerging deep learning 

algorithms are not specifically building systems focused, there is some overlap. For example, 

of the 20 classes involved in the ScanNet Benchmark Challenge1, the relevant to BIM include: 

door, floor, wall, and window. Despite this lack of BIM taxonomy coverage, these other 

datasets enable transfer learning (Pratt, 1993, Pan and Yang, 2010). Transfer learning is the 

process of reusing a model trained for one task as the starting point for a model on a second 

task. Deep learning requires algorithms to be trained on these large annotated datasets, but then 

they can be fine-tuned on building system focused specialty datasets such as 3DFacilities 

(Figure 1) (Czerniawski and Leite, 2018). 

 

Figure 1: Example of data provided in the 3DFacilities dataset; 3D reconstruction with color texture 

(scan); 3D reconstruction annotated with instance-level category labels (scan); 2D image color 

(frame); 2D image depth (frame); 2D image annotated with instance- level category labels (frame) 

                                                 
1 http://kaldir.vc.in.tum.de/scannet_benchmark/ 
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3. Methodology 

Here we implement a deep learning artificial neural network as a supervised machine learning 

algorithm. In addition to the network architecture, the implementation required training data 

and computational resources. 

3.1 Training Data 

Since its initial submission to EG-ICE in 2018 (Czerniawski and Leite, 2018), 3DFacilities 

(Figure 1) has grown to over 25,000 RGB-D frames and 110 3D reconstructions. Each 

individual RGB-D frame and each reconstruction have an associated annotation file where each 

pixel and vertex, respectively, have been categorized into one of 19 different building element 

categories. The instance count distribution in Figure 2 counts the number of physical building 

components represented in the dataset. 3DFacilities is a relatively small specialty dataset. 

Therefore, we make use of two additional datasets, MS-COCO (Lin et al., 2014) and VOC 2012 

train_aug + trainval (image segmentation datasets) (Everingham et al., 2010) and transfer 

learning as described in Section 3.3. 

 

 
Figure 2: Instance count for each of the 18 categories in 3DFacilities 

3.2 Programming Environment 

The computing demand of training deep neural networks necessitates the use of high-

performance computing. The Texas Advanced Computing Center (TACC) designs and operates 

some of the world’s most powerful computing resources. Stampede2 is the flagship 

supercomputer at The University of Texas at Austin’s TACC and provides high-performance 

computing capabilities to thousands of researchers across the U.S. It entered full production in 

Fall 2017 as an 18 petaflop system (TACC, 2018). The neural network is trained using compute 

nodes on Stampede2. 

Although it is possible to code deep learning algorithms from scratch, there are several open-

source libraries available. Tensorflow is an open source software library for high-performance 

numerical computation. It is written in Python, C++, and CUDA. Originally developed by 

researchers and engineers from the Google Brain team within Google’s AI organization, it 
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comes with strong support for machine learning and deep learning (Abadi et al., 2016). 

Tensorflow was chosen as the development environment because of its supportive online 

community and its availability on TACC resources.  

3.3 Semantic Image Segmentation 

The specific neural network architecture we used is called DeepLab (Chen et al., 2014, Chen et 

al., 2018a, Chen et al., 2017, Chen et al., 2018b). DeepLab is a state-of-the-art deep learning 

model for semantic image segmentation, where the goal is to assign semantic labels to every 

pixel in the input image. DeepLab, along with its variations, currently performs amongst the 

top performing algorithms on the PASCAL VOC Challenge leaderboard (Everingham et al., 

2018).  PASCAL VOC is a standard recognition dataset and benchmark with detection and 

semantic segmentation challenges (Everingham et al., 2010). DeepLab is an especially 

attractive option for semantic segmentation because of its availability in the Tensorflow 

research model repository.  

 Data Preprocessing 

Annotations from 3DFacilities must be converted into 8-bit images where the value of each 

pixel corresponds to the pixel’s class. There is no input image size requirement as the network 

architecture is fully convolutional. 

3DFacilities was split into a training set and a validation set using an algorithm that optimized 

for similarity between the pixel class distributions of both sets. This is so the neural network is 

validated on a dataset that has the same distribution as the dataset it is trained on. In an effort 

to reduce data dependence between the training and validation sets, sequences of 20 frames 

were used as inseparable units.  

Neural Network Training 

3DFacilities is a relatively small training dataset for deep learning. It is, nonetheless, possible 

to use the dataset to successfully train neural networks because of a technique called transfer 

learning. Transfer learning is a machine learning method where a model trained on one dataset 

is reused as the starting point for a model fine-tuned on a second dataset. This is a common 

approach given the vast compute and time resources required to develop datasets and neural 

network models. 

The DeepLab implementation used by this research uses as its foundation MobilenetV2 

(Sandler et al., 2018) that has been trained on ImageNet (Russakovsky et al., 2015) (an image 

classification dataset). The entire DeepLab implementation was then pre-trained on MS-COCO 

(Lin et al., 2014) and VOC 2012 train_aug + trainval (image segmentation datasets) 

(Everingham et al., 2010). The final layer of the neural network was replaced in order to account 

for the different semantic classes of 3DFacilities. The neural network was fine-tuned on 

3DFacilities using the Tensorflow Momentum Optimizer for nearly 75 epochs at a learning rate 

of 0.0001 (Figure 3). For comparison, the learning rate used to pre-train on PASCAL VOC was 

0.007. Total loss is a measure of classification error and is calculated using softmax cross-

entropy. 
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Figure 3: Deeplab fine-tuning on 3DFacilities, total loss vs. epochs 

4. Results and Discussion 

4.1 Semantic Image Segmentation 

Example segmentations created by the DeepLab network can be seen in Figure 5. The neural 

network limits its pixel classifications to the following seven classes: ceiling, wall, plumbing, 

duct, door, floor, and stairs. It does not assign the following 12 classes: furniture, window, 

column, beam, railing, light fixture, elevator, diffuser, fire sprinkler, cable tray, conduit, and 

background. Comparing these results to the pixel class distribution in Figure 4, it is apparent 

the neural network has a bias for classes that occur more frequently in the training dataset and 

ignores those classes that occur less frequently.  

 
Figure 4: Pixel class distribution of 3DFacilities, horizontal axis is individual frames of 3D Facilities, 

and vertical axis is percentage of pixels in frame per class 
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Figure 5: Cherry-picked results of semantically segmented images from the validation set 
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The seven classes provide partial semantic coverage of the BIM taxonomy as described in 

Tables 1 & 2 using Uniformat and Revit Families. Uniformat is a standard for classifying 

construction information in the U.S. and Canada endorsed by the American Society for Testing 

and Materials (ASTM). It classifies information based on functional elements or parts of a 

facility characterized by their function. Autodesk Revit is a prominent building information 

modeling software for people in the building industry. Components in Revit are categorized 

into families, which are groups of elements with a common set of properties. 

 
Table 1: Top three levels of the UNIFORMAT classification system associated with Semantic Class 

Outputs from Neural Network 

Level 1 

Major Group Elements 

Level 2 

Group Elements 

Level 3 

Individual Elements 

B SHELL B10 Superstructure B1010 Floor Construction 

C INTERIOR C10 Interior Construction C1010 Indoor partition 

C1020 Interior Doors 

 C20 Stairs C20 Stairs 

 C30 Interior Finishes C3030 Ceiling Finishes 

D SERVICES D20 Plumbing D20 Plumbing 

 D30 HVAC D3040 Distribution Systems 

 
Table 2: Example Standard Families in Autodesk Revit Associated with Semantic Class Outputs from 

Neural Network 

Included System Families 

 Ceilings 

 Ducts 

 Floors 

 Pipes 

 Stairs 

 Walls 

Loadable Families 

Architectural Families Structural Families MEP Systems Families 

 Doors 

 Furniture 

 Railings 

 Windows 

 Columns 

 Framing 

 Trusses 

 Conduit 

 Duct 

 Fire Protection 

 Lighting 

 Plumbing 

4.2 Conclusions and Future Work 

Scan-to-BIM involves segmenting 3D reconstructions into parts to conform to a BIM 

taxonomy. The set of seven classes successfully segmented by the neural network presented in 

this paper represents a substantial increase in semantic scope for recognition methods as 

compared to the state-of-the-art in the building systems literature.  
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Class Balancing 

The neural network has a tendency to assign classes which are most dominant in the 

3DFacilities dataset. In an effort to encourage the neural network to assign classes which appear 

less frequently in the 3DFacilities dataset, a modified loss function and a variable data feeder 

will be tested. Final image segmentation performance will be evaluated using standard metrics 

(mean IoU) (Shelhamer et al., 2017). 

Incorporating Additional Data Channels 

In an effort to improve semantic segmentation further, two additional inputs should be 

introduced to the segmentation system: a depth channel and inertial measurement unit (IMU) 

data. Since these two input types are relatively uncommon as compared to RGB input channels, 

incorporating them will be a challenge.  

Uncertainties include: modifying the DeepLab architecture and cross-modality (Gupta et al., 

2016) “warm-starting” with pre-trained parameters from standard DeepLab. The Slim 

Tensorflow interface provides functions that can be used to “warm start” training algorithms 

by using pieces of pre-existing model checkpoints2.  

Identifying Geometric Parameters for Class Instances 

Combining segmentation results for the 2D data in order to segment the 3D reconstruction can 

be performed using a multi-view classification process  (Pham et al., 2018, Qi et al., 2016b). 

Then work can begin on identifying geometric parameters describing each class instance. 
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