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Abstract. Designers need to compare numerous design options in the process of designing an 

energy-efficient building. There are two impediments in this process, first probabilistic prediction 

of energy requirement at an early stage of design with uncertain design parameters and, second, 

selecting a design option based on the probabilistic energy prediction. The paper presents an 

integration of machine learning energy prediction model with building information modelling (BIM) 

tool to make probabilistic energy prediction, i.e. ranges of values. Wilcoxon rank-sum test is useful 

in this situation, which is capable of comparing alternatives based on probabilistic energy 

predictions. The tool has been developed to extract information from the BIM model, make 

probabilistic energy prediction using the Monte Carlo method, and perform statistical analysis. It 

has been found that BIM integrated machine learning model can make energy prediction of six 

design alternatives in 30-35 seconds with no additional modelling efforts. Higher uncertainty in the 

design parameters will result in larger uncertainty in the energy prediction, and the test may not be 

able to suggest the better option even using statistical comparison. This will require the more precise 

value of design parameters, i.e. reduced uncertainty. Different uncertainty levels in the design 

parameters have been tested to which extent they are sufficient to make a selection of the energy-

efficient option. It is observed that uncertainty levels that are suitable for decision-making depend 

on the combination of design options to be compared. It is possible to differentiate among 

alternatives with high uncertainty in the design parameters if they are entirely different else more 

precise definition of the design parameters is required. This research provides a method to select a 

better option among the developed options based on energy performance at the early stage of design. 

1 Introduction 

It has been a challenging endeavour for designers to develop an energy-efficient design to meet 

the demand for low energy use buildings. The first step in this endeavour to design a building 

envelope which results in lower energy loads, i.e. heating and cooling load (Jin and Jeong, 

2014; Méndez Echenagucia et al., 2015). A designer develops several design options for 

building envelope which needs to be evaluated for the energy performance. The design of the 

building envelope takes place at the early stage of design, which offers several challenges for 

energy performance evaluation. But, the decision-making at the early stage enhances the 

performance of building with a lesser cost of change (MacLeamy, 2004). Thus, it is imperative 

for a designer to make informed decisions at an early stage of design from an energy-efficiency 

perspective. 

There are two primary challenges for informed decision-making at the early stage for energy-

efficient design. First, make probabilistic energy performance prediction of the design options 

with uncertain design parameters and, second, use the probabilistic prediction to identify better 

solutions. Since, a number of design parameters influencing the energy loads are uncertain at 

the early stage of design (Tian et al., 2018), the probabilistic energy is estimated by simulating 

a large number of energy models (Van Gelder, Janssen and Roels, 2014). This utilises a Monte 

Carlo method to generate random samples of uncertain design parameters. The random samples 

are used with the design information (certain design parameters) to create energy models. Since 
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the simulation of a large number of energy models using conventional energy simulation tools 

such as EnergyPlus or TrnSys is time-consuming, the use of machine learning models is 

suggested in previous research works (Van Gelder, Janssen and Roels, 2014; Schlueter and 

Geyer, 2018; Singaravel et al., 2018).  

The energy performance of a design option is predicted using this approach, as probabilistic 

heating and cooling loads. The probabilistic heating and cooling loads will be a range of values; 

thus, it is not possible to compare the design options using quantitative comparison. The paper 

proposes the use of statistical method, Wilcoxon rank sum test, to assess whether two design 

options are significantly different from each other (Mann and Whitney, 1947). Based on the 

level of uncertainty in the design parameters, it may or may not be possible to draw the 

difference between two options. If options are indifferent against each other, reduction of the 

uncertainty in the design parameters is required. In this paper, this approach has been tested by 

reducing the uncertainty in the design parameters and its effect on the option selection. The 

objective of this research is to: 

1. Perform quick probabilistic energy prediction to consider design uncertainty in decision 

making using building information modelling (BIM) with an integrated machine learning 

model. 

2. Assist decision-making based on probabilistic energy prediction results using a statistical test 

for comparison with different levels of uncertainties in the design parameters. Assist means in 

this context to provide the designer with information if a decision between two design options 

is possible or if more information is required. 

2 Literature review 

The energy performance analysis tools offer limited integration with the design process due to 

the need for extensive modelling efforts and high computational time (Schlueter and Geyer, 

2018). There have been few attempts to integrate energy prediction tools with the design 

process by the integration of BIM model with energy models (Ahn et al., 2014; Negendahl, 

2015). However, the challenges of the early stage of design are not well addressed. To perform 

quick energy predictions, integrating energy prediction model with the design process will be 

of paramount importance, which is possible with an integrated BIM tool. The component-based 

machine learning (CBML) model are developed to allow better integration with multi-level-of-

detail (multi-LOD) BIM approach and extensibility to complex design cases (Geyer and 

Singaravel, 2018). The concept of CBML is based on the decomposition of design artefact and 

engineering knowledge and predicting the intermediate parameters such as heat flows before 

predicting the zone heating and cooling load. The use of deep learning technologies for the 

second generation of models improves this capability (Singaravel et al., 2018). However, 

energy prediction using CBML at the early stage of design is performed after generating the 

building elements using rules (Geyer, Singh and Singaravel, 2018). Thus, it becomes a 

simplified representation of the building energy model, which will have a similar limitation as 

to the developed CBML. 

One challenge of energy prediction at an early stage of design is uncertain design parameters. 

This issue makes the energy performance prediction process more complicated. Gelder et al., 

(2014) has proposed the use of probabilistic prediction of energy performance with uncertain 

information using the Monte Carlo method and engineering surrogate models. The probabilistic 

estimation of energy performance with uncertain inputs is possible with the use of time-efficient 

meta-models and machine learning models (Van Gelder, Janssen and Roels, 2014; Singaravel 



3 

 

et al., 2018). However, the energy prediction model needs to be integrated with BIM tool to 

streamline the energy prediction process with design. 

The decision-making exercise for building design is very complex, which involve assessment 

of building based on several contradicting performance measures such as energy consumption 

and thermal comfort etc. The simulation tools are used in assessing the building on these 

performance measures and assist in selecting a better option (de Wilde, Augenbroe and van der 

Voorden, 2002; Wilde and Voorden, 2004). The problem gets compounded with the inherent 

uncertainty in the design parameters. Thus, it is required to perform multi-criteria decision-

making based on the probabilistic distribution of the performance measure (Hopfe, Augenbroe 

and Hensen, 2013; Rezaee et al., 2015). However, the use of simulation or computation tool for 

decision-making requires much more efforts for collaboration among the designers and 

engineers (Alsaadani and Bleil De Souza, 2016). The researchers suggested using the 

simulation results to provide meaningful insights which assist the designers in the design 

process (Bleil de Souza and Tucker, 2015).   

Wilcoxon rank sum test is used to test whether the randomly selected value from one sample is 

statistically different from a randomly selected value from another sample (Mann and Whitney, 

1947; Corder and Foreman, 2014). This test is a non-parametric alternative to the two-sample 

t-test. Thus it is applied when the samples are not normally distributed. The method is used in 

quite widely used in other domain such as medicine, bio-informatics and environmental 

engineering (Gauthier and Hawley, 2007) but rarely used for building design application (Hu, 

2019). 

3 Research methodology 

The research methodology is described in two parts: First, integrated tool for quick energy 

prediction and, second, statistical analysis to differentiate among options. 

3.1 Probabilistic prediction of energy performance using BIM-integrated ML methods 

CBML model is developed based on the decomposition of an energy prediction model to a 

building element level (Geyer and Singaravel, 2018). The element level model first predicts the 

heat flow for each building component - walls, floors, roof, window and ground floor. The heat 

flow is supplemented with the other information such as operating hours, internal heat gains 

and infiltration to predict the heating or cooling load at zone level, which is summed up for 

building level. So, the energy load prediction requires the information to be present in the BIM 

model at building component level.  At the early stage of design, the designer develops a mass 

model representing the external envelope of the building. But there is no information present 

about building element at the early stage of the design and need to be generated using 

assumptions. The building elements are created using the one-zone-per-floor method described 

in Geyer et al., (2018) (Geyer, Singh and Singaravel, 2018) as shown in Figure 1.  

  

Figure 1. Generation of building elements in the mass model using the rules (Geyer et al., 2018) 
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After creating the building elements, namely walls, floors and roof, the geometrical parameters 

for these elements are certain and extracted from the BIM model (data extraction). The 

uncertain design parameters such as technical specifications, window construction and 

operational design parameters are provided using user inputs, as mentioned in Table 1. For the 

uncertain design parameters, the Monte Carlo method is used to generate a number of random 

combinations. It will result in the same number of energy models to be evaluated using a 

machine learning model. After this step, the data is passed to CBML for energy load predictions 

and results are integrated back to the BIM model. 

Table 1. Data collection for the CBML model 

Information Type Source 

Geometrical parameters for wall, roof, floors and roof Certain  BIM model (Data extraction) 

Technical specifications parameters1 

Uncertain 
User input form  

(Monte Carlo method) 
Window construction parameters2 

Operational design parameters3 

1Technical specifications parameters – u-value of wall, floor, roof and infiltration 

2Window construction parameters – the window to wall ratios in each direction, u-value and g-

value of windows 

3Operational design parameters – internal heat gains and operating hours 

In this research, newly developed CBML is used. It follows a similar component structure as in 

Geyer and Singaravel, 2018. The training data is enriched with more architectural design cases 

to get better performance of ML models. The newly developed models are tested on the design 

case outside of training data, and the performance of the models is described in Figure 2. The 

model shows the goodness-of-fit (R2) 0.998 and 0.986 for heating and cooling load, 

respectively. Thus, the model can be used for energy load predictions. 

 

Figure 2. Performance of component-based machine learning model 
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The authors have developed a method integrated with a BIM authoring application to automate 

the process of making probabilistic energy predictions using CBML. The complete process of 

integration is described in Figure 3. The geometrical parameters are extracted from the BIM 

model, which is available as design information in the model. The remaining parameters are 

unknown at an early stage of the design and collected using a user input form as uncertain 

information. This information is passed to the CBML model to make energy predictions and 

integrate the results back to the BIM model. 

 

Figure 3. Probabilistic prediction of energy performance using CBML 

3.2 Using statistical analysis to differentiate among options 

The results are statistically analysed using non-parametric test - Wilcoxon rank sum test. 

Wilcoxon rank sum test is used to determine whether two independent samples selected from 

the population are significantly different from each other (Corder and Foreman, 2014). In this 

case, it is used to determine whether two design options developed by the designer differ 

significantly from each other concerning energy performance. If this is the case, selection and 

decision making is the next step of design development. Otherwise, the uncertain parameters 

need to be defined more precisely to differentiate among the design options. The parametric 

tests are not applicable as the data is not normally distributed. The probability value (p-value) 

is calculated for each combination of design options. The p-value is considered significant if it 

is less than 0.05. This p-value means we can reject the null hypothesis and state that the design 

options under consideration are significantly different from each other. 

4 Results 

The method is implemented a testcase building Tausenpfund – an average size office building 

in Munich. It has a rectangular floor plan with a floor area of 1200 sq. m. (3×14.8×27), 

distributed equally on three floors. The method is implemented on five design options 

developed as alternatives to rectangular floor plan building. 
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4.1 Integrated tool to make energy prediction using CBML model 

The method based on the CBML model is integrated with BIM application Autodesk Revit to 

demonstrate the presented approach. The six design options are stored as conceptual masses in 

the application and accessed through the plugin. The successful completion of the tool allows 

the energy prediction and integration of energy prediction results back to the BIM model. 

 

Figure 4. Integrated tool to make energy prediction using CBML model 

The accuracy of the prediction is the same as the accuracy of CBML. In terms of time-

efficiency, it takes 30-35 seconds to make energy prediction of six design options using 500 

random samples. It means a total of 3000 energy models are evaluated in approximately 30 

seconds. The process may take up to 24 hours using traditional energy simulation tools. The 

energy prediction is made based on the mass model and user input, which requires no additional 

modelling for energy prediction. 

4.2 Statistical analysis to differentiate among options 

Four scenarios with different level of uncertainty for input parameters are analysed to ascertain 

whether it is possible to make a distinction between the design options. There is a total of 15 

combinations for six design options. The level of uncertainty and corresponding significant p-

values for heating and cooling load is presented in Table 2 and Figure 5. The number of 

significant p-values is higher as the level of uncertainty decreases. With the uncertainty of 

±25% in technical specification and operational design parameters and ±50% in window 

construction parameters, the number of significant p-values is 6 and 8 for heating and cooling 

load respectively for a total of 15 combinations. The number of significant p-values is 15 and 

14 for heating and cooling load, respectively when the uncertainty in all the uncertain 

parameters is ±5%. 
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Table 2. Level of uncertainty in uncertain parameters 

 

Technical 

specifications 

parameters 

Operational 

design 

parameters 

Window 

construction 

parameters 

No. of significant p-values 

(Heating Load, Cooling Load) 

Scenario 1 25 25 50 6/15, 8/15 

Scenario 2 5 25 50 7/15, 9/15 

Scenario 3 5 5 50 13/15, 9/15 

Scenario 4 5 5 5 15/15, 14/15 

  

Figure 5. Energy prediction results with statistical analysis in four scenarios 
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5 Discussion 

This paper has presented an approach of BIM integrated CBML model for probabilistic energy 

prediction at an early stage of design in a time-efficient way. The subsequent application of 

statistical analysis indicated for decision-making if two options show a significant difference 

in their probabilistic energy prediction of designed alternatives. The presented approach of 

making probabilistic estimation and statistical analysis has several limitations which are 

discussed in this section. The presented approach utilises CBML model, which has a limitation 

as all ML models, which is the applicability of models to new design cases, i.e. the 

generalisation. In the presented case, CBML model covers the range of design cases mentioned 

in the approach and energy prediction results are trustworthy. Hence, the applicability of CBML 

model needs to be tested extensively before using it on new design case beyond the range. A 

comparison of the final design configuration is recommended in this situation. 

The method is only applicable to uniform floor plan buildings. The generation of building 

elements based on the one-zone-per-floor rule is another simplification of the energy model. 

On the one hand, adaptions of the method for floor plans that differ on each level are possible; 

however, this requires a trade-off between modelling efforts and model accuracy as well as 

training effort. On the other hand, such simplifications are commonly used for energy prediction 

at the early stage and comply with the approach of architectural design. The essential advantage 

of the CBML method is that it allows a higher degree of flexibility than monolithic parametric 

models and provides reusability of the component model and easy integration with BIM model. 

Flexible detail levels and creation of missing building elements are possible by generative 

methods. 

The approach presents four scenarios with varying levels of uncertainty in the design 

parameters. It can be noted that the number of significant p-values increases with a lesser level 

of uncertainty. This fact shows the possibility of differentiating among all the options with a 

decreasing level of uncertainty. Also, the p-values dependent on the combination of options to 

be compared, so some combinations are different from each other even with a higher level of 

uncertainties and some are not different from each other even with precise value of design 

parameters. Thus, it may be possible that a designer needs to detail out one or more options 

before the uncertain parameters are defined more precisely. 

The level of uncertainty in the design parameters is assumed to be uniformly distributed 

between the range of mean ± variation, however other distributions such as triangular or normal 

distributions are also possible which may result in lesser uncertainty in the energy prediction 

results. Which means the decision can be made with higher uncertainty in the design 

parameters. Also, if the energy prediction results are normally distributed because of another 

type of distribution in the design parameters, it will be possible to use a powerful parametric 

statistical test. 

6 Conclusion 

The architectural design is assisted by making a probabilistic prediction of energy performance 

and statistically analysing the results for decision making. The approach offers design 

assistance in requiring information and prioritising decisions at the early stage of design by 

making quick energy prediction with BIM integrated machine learning-based energy prediction 

model and analysing the response statistically. 

The process of making energy prediction is streamlined with the use of BIM integrated machine 

learning model at building element level. The inherent uncertainty at the early stage of the 
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design reflects in the energy prediction process. It requires an evaluation of several energy 

models for making probabilistic energy predictions. The whole process is made faster by 

extraction of data from the BIM model and energy predictions using CBML method. This 

method provides quick energy prediction results for the comparison of alternatives. In contrast 

to tradition energy simulation tool, the machine learning model is at least 3000 times faster. 

The accuracy of energy prediction is the same as the accuracy of the developed CBML mode, 

which is 0.998 and 0.986 (R2 values) for heating and cooling load, respectively. 

The uncertainty in the design parameters gets translated into the uncertainty in the energy 

predictions, which requires statistical analysis for comparison. The statistical test allows 

comparing the architectural design option considering the uncertainty that is present at the early 

stage of design. The possibility to compare the design alternatives depends on the uncertainty 

in the design parameters and the combination of design alternatives, as shown in the case 

presented in this paper. It will require a more precise definition of the design parameters to 

differentiate between two similar design options if the statistical comparison is not possible. 

The integrated tool with BIM and CBML model offers an opportunity to address the design of 

energy-efficient buildings. There are some limitations of the current implementation of the 

approach such as simplifications of the energy model, applicability of machine learning model 

to new design case, uniform distribution of the design parameters and data extraction possible 

only for uniform floor plan buildings. It will require future research to address these limitations 

and to extend the applicability of the approach to more design case. 
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